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Abstract
In this study, eight types of bacteria were cultivated, including Staphylococcus aureus. The infrared absorption spectra 
of the gas surrounding cultured bacteria were recorded at a resolution of 0.5 cm−1 over the wavenumber range of 7500–
500 cm−1. From these spectra, we searched for the infrared wavenumbers at which characteristic absorptions of the gas 
surrounding Staphylococcus aureus could be measured. This paper reports two wavenumber regions, 6516–6506 cm−1 and 
2166–2158 cm−1. A decision tree–based machine learning algorithm was used to search for these wavenumber regions. The 
peak intensity or the absorbance difference was calculated for each region, and the ratio between them was obtained. When 
these ratios were used as training data, decision trees were created to classify the gas surrounding Staphylococcus aureus 
and the gas surrounding other bacteria into different groups. These decision trees show the potential effectiveness of using 
absorbance measurement at two wavenumber regions in finding Staphylococcus aureus.
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Introduction

The presence of the Staphylococcus (S.) aureus species in 
humans is associated with the occurrence of several health 
hazards, including bacteremia, infective endocarditis, osteo-
myelitis, pulmonary infections, gastroenteritis, meningitis, 
toxic shock syndrome, and urinary tract infections [1–4]. 
Annually, the USA alone records up to 20,000 deaths, 
which are partly attributable to the presence of S. aureus 
[5]. Accordingly, precise, effective prevention and treatment 
methods must be developed to neutralize the effects of such 
lethal bacteria. From a medical research perspective, this 
entails the development of effective procedures for monitor-
ing the strain and reproduction rate of S. aureus.

Infrared laser radiations and optical parametric genera-
tions that oscillate at a specific wavenumber have been pro-
posed as a means of facilitating easy and continuous analy-
sis of the volatile organic compounds contained in human 
exhaled breath [6–8]. If the presence of bacteria could be 

confirmed by laser spectroscopy, reproduction monitoring 
could be realized by measuring the surrounding air with-
out establishing contact with the concerned bacteria. How-
ever, this method has not been applied to the reproduction 
monitoring of S. aureus. A similar method to analyze the 
reproduction of S. aureus would facilitate the realization 
of healthy human life, but appropriate investigations in this 
regard are yet to be undertaken. This study aims to address 
this gap in the existing literature.

Bacterial species possess unique characteristic odors. 
These odors arise because of the release of volatile organic 
compounds characteristic of each species into the atmos-
phere. Previous studies have utilized gas chromatography 
and mass spectrometry to demonstrate that the S. aureus 
metabolites contain isovaleric acid and 2-methyl-butanal [9]. 
However, infrared spectroscopy fails to detect these vola-
tile metabolites because their derived peak does not always 
appear solely at the position of the strong infrared absorp-
tion peak obtained from their stable molecular structure 
[10]. This might result in the aggregation of several char-
acteristic molecules that absorb infrared rays. Furthermore, 
any overlap with the absorption peaks of other molecules 
can potentially impede metabolite quantification [11]. This 
necessitates the availability of the characteristic-spectrum 
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wavenumber information to realize accurate metabolite 
detection via infrared spectroscopy [12, 13].

The proposed research employs a decision tree–based 
machine learning algorithm to detect the wavenumber 
range across which the infrared absorption spectra peculiar 
to S. aureus can be recorded. Recent advances in machine 
learning technology have demonstrated its significant poten-
tial with regard to efficiently handling classification tasks 
involving large quantities of data that cannot be analyzed 
by humans; moreover, it can handle data that are too small 
in value to be distinguished using ordinary analysis meth-
ods [14–20]. This paper presents an approach to classify 
infrared absorption spectra via machine learning. A dataset 
comprising approximately 5 × 109 data points was used to 
this end. The results obtained in this study demonstrate the 
realization of accurate bacterium-propagation detection in 
the gas surrounding S. aureus via infrared irradiation of the 
odorous surrounding space.

Materials and methods

Sample collection

Eight common types of bacteria were cultivated in this 
study. Table 1 lists these bacteria types considered along 
with their specifications. The S. aureus species considered 
in this study include the standard type (Id: Sa) and its drug-
resistant strain (mrSa). All bacteria types were cultivated 
in sheep-blood medium consisting of casein peptone 13.0 g 

L−1, soybean protein digest 5.0 g L−1, growth factors 2.2 g 
L−1, NaCl 5.0 g L−1, agar 13.0 g L−1, and 5% defibrinated 
sheep blood (Nissui Plate Sheep Blood Agar 51,001, Nissui 
Pharmaceutical Co., Ltd.). Only one type of bacteria was 
planted in each Petri dish. Two Petri dishes planted with the 
same type of bacteria were placed in an airtight container, 
and the bacteria were cultured in an incubator while inside 
the airtight container. The culturing was performed at a tem-
perature of 37 °C over a period of approximately 40 h. Post-
culturing, the gas surrounding the bacterium was aspirated 
into gas bags (smart bag PA, smart bag 2F, Tedlar bag or 
ANALYTIC-BARRIER Bag, GL Sciences) by the indirect 
sampling method using a dry pump, as shown in Fig. 1. Each 
gas bag was equipped with a standard sleeve (6–7 mm O.D.) 
connected to a silicone tube within 1 m. The other end of the 
silicone tube was placed within 5 cm of the object.

The number of cultures is shown in the “Number of sam-
ples” column in Table 1. One gas sample was obtained from 
one airtight container. Absorbance measurements were per-
formed multiple times for each sample. The number of infra-
red absorption spectra obtained for each sample is shown in 
parentheses in the “Total number of measurements” column. 
For example, S. aureus was cultured four times, each gas 
sample obtained in each culture was measured four times, 
and a total of 16 spectra were obtained.

Table 1   Eight facultative anaerobic bacteria species cultured in this 
study in sheep-blood medium. Staphylococcus aureus and Pseu-
domonas aeruginosa were cultivated in two types, a standard bac-
terium and a drug-resistant bacterium. For the other six species of 
bacteria, either standard bacteria or drug-resistant bacteria were used 
as samples. “Number of samples” is equal to the number of cultures. 
For example, methicillin-resistant Staphylococcus aureus (ID: mrSa) 

was cultivated seven times, and a sample of the gas around the bac-
terium was collected in each culture. In the case of mrSa, the absorb-
ance was measured once to four times for each sample. The number 
in parentheses in “Total number of measurements” is the number of 
absorption spectra measurements for each sample, and the total num-
ber of infrared absorption spectra (Total number of measurements) is 
1 + 1 + 4 + 4 + 4 + 4 + 4 = 22 spectra

Air around bacteria Genus species ID Strain/origin Number 
of sam-
ples

Total number of measurements Incuba-
tion time 
(h)

Standard strains Staphylococcus aureus Sa Type strain (NBRC 13,276) 4 16 (4 + 4 + 4 + 4) 39
Hospital isolates Methicillin-resistant 

Staphylococcus aureus
mrSa Clinical isolate 7 22 (1 + 1 + 4 + 4 + 4 + 4 + 4) 44

Standard strains Escherichia coli Ec Type strain (NBRC 3972) 2 8 (1 + 7) 32
Pseudomonas aeruginosa Pa1 Type strain (NBRC113275) 2 11 (5 + 6) 38.5

Hospital isolates Pseudomonas aeruginosa Pa2 Hospital environment 4 20 (5 + 5 + 5 + 5) 39
Klebsiella pneumoniae Kp Clinical isolate 2 8 (1 + 7) 32
Enterobacter cloacae Enc Clinical isolate 2 8 (1 + 7) 39
Acinetobacter baumannii Abb Clinical isolate 10 53 (5 + 6 + 5 + 5 + 5 + 5 + 5 + 5 + 

6 + 6)
38.5

Streptococcus pneumoniae Scp Clinical isolate 4 18 (4 + 6 + 4 + 4) 37.5
Enterobacter aerogenes Ena Clinical isolate 2 10 (4 + 6) 37.5
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Methods

Infrared spectroscopy

A gas cell characterized by a 10 m optical-path length was 
set in the sample compartment of the VERTEX 70v FT-IR 
spectrometer (Bruker Corporation; USA), as shown in 
Fig. 2. There was an intake port and an exhaust port at the 
top of the gas cell. The air in the cell was exhausted from the 
exhaust port with the PM28309-950.50 vacuum pump (KNF 
Neuberger GmbH; Germany), and background measurement 
was performed in a vacuum state. Subsequently, by closing 
the exhaust port and opening the intake port, the sample was 
introduced into the gas cell by suction until the pressure in 
the cell reached atmospheric pressure. The infrared absorp-
tion spectrum corresponding to the gas was recorded under 
atmospheric pressure. The measured wavenumber range was 
500–7500 cm−1, while the corresponding spectral resolution 
and integration time were 0.5 cm−1 and 10 min, respectively.

Machine learning

A decision tree algorithm was used to detect the absorp-
tion peaks specific to Staphylococcus aureus from the 
infrared absorption spectrum group of the gas around the 
bacteria. The classification and regression tree was used 
as the decision tree algorithm, and Scikit-learn was used 
as the library [21]. The details concerning the decision 
tree algorithm parameters are listed in Table 2. Training 
data were created by the following three methods. The 
learning was conducted 150 times, and the calculation was 
repeated under the condition that the data used to create 
one decision tree would not be used again. The learner was 
trained with data for all peak intensity ratios or all ratios of 
absorbance differences. Therefore, a combination of very 
small peak intensities or values of very small absorbance 
differences were sometimes selected. Slight differences in 

absorbance cannot be measured without using a device 
with a high signal-to-noise absorbance ratio. To increase 
the versatility of the results, the decision tree with a rela-
tively high peak intensity and which was judged to be use-
ful was selected from the 150 decision trees; the results are 
discussed in the following section. Test data were not used 
in this study as our intention was to classify the training 
data. We used Microsoft Excel 2016 and 2019 and Visual 
Studio 2019 to create the training data. For machine learn-
ing, we used RAPIDS Docker (21.08-cuda11.0-runtime-
ubuntu18.04-py3.8) and Scikit-learn (version 0.23.1).

Classification by peak intensity ratio  Numerous peaks were 
observed in the infrared absorption spectra obtained for 
each bacteria type. The wavenumber and absorbance values 
as well as minimum values on both sides of the absorp-
tion peaks were extracted. The points corresponding to the 
minimum absorbance values were considered to constitute 
the baseline. The difference between the peak and baseline 
absorbance values was calculated and used as the peak inten-
sity. A maximum of 7667 peak intensities were detected 

airtight case
vacuum pumppetri dish

gas bag

container

Fig. 1   Collection of mixed gas. Petri dishes inoculated with bacteria 
were placed in a closed container and placed in an incubator. After 
the culture time shown in Table  1 had elapsed, a silicone tube was 
inserted through the insertion port of the closed container. Subse-
quently, the gas around the Petri dish was recovered in the gas bag, 
which was inside an airtight case that gave the gas bag a negative 
pressure via a vacuum pump

gas cell

FT-IR spectrometer (VERTEX 70v)

vacuum pump
sample

intake exhaust
gas bag

infrared ray

Fig. 2   Infrared absorption spectrum measurement. A vertical gas cell 
was installed in the sample compartment of the infrared spectropho-
tometer (VERTEX 70v). At the top of the gas cell were an intake and 
an exhaust. A gas bag was connected to the intake port, and a vacuum 
pump was connected to the exhaust port. Infrared rays were reflected 
multiple times in the gas cell as illustrated by the line with arrows

Table 2   Decision tree 
parameters. Arguments 
specified by fit function of 
scikit-learn

Parameter Value

ccp_alpha 0
criterion Gimi
splitter Best
class_weight None
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for each spectrum. The absolute peak intensity value was 
proportional to the sample gas concentration, i.e., the partial 
pressure of gas released by the bacteria. Consequently, the 
intensity values differed from one gas sample to another. 
To eliminate the influence of sample-gas concentration, 
the ratio of any two peak intensities was used to classify 
the infrared absorption spectra. In other words, the infrared 
absorption spectra were characterized using the mixing ratio 
of the two partial structures that absorbed infrared rays. The 
ratio of all peak intensities to other peaks was calculated and 
considered as learning data. The peak intensity ratio data 
were a maximum of 2.94 × 107 real array. Because this study 
used 174 infrared absorption spectra, the training data had 
a structure of 2.94 × 107 columns × 174 rows. Each row of 
the training data was labeled (i) “gas surrounding S. aureus 
(Sa and mrSa)” and (ii) “others”—comprising 38 and 136 
infrared absorption spectra, respectively.

Classification based on absorbance difference at two 
wavenumbers  When generating training data in Method 1, 
the peak intensity—that is, the difference between the peak and 
baseline absorbance values—was determined from the infrared 
absorption spectra. Therefore, when calculating the peak 
intensity, it is necessary to determine the peak absorbance value 
along with the corresponding minimum values on both sides 
of the peak. The wavenumbers that determine the absorbance 
values at three points differ across spectra. Therefore, to calculate 
the peak intensity, it is necessary to measure the absorbance by 
changing the wavenumber in the wavenumber range where the 
peak is detected. When measuring infrared absorption outside 
laboratory settings and classifying the infrared absorption 

Depth = 0

Depth = 1

Peak intensity (6514.3 ± 1.3 cm-1) / Peak intensity (2163.4 ± 0.6 cm-1) <= 2.441
gini = 0.341

samples = 174
value = [38, 136]

Peak intensity (6893.6 ± 1.4 cm-1) / Peak intensity (2164.2 ± 0.2 cm-1) <= 829.091
gini = 0.05

samples = 39
value = [38, 1]

True

gini = 0.0
samples = 135
value = [0, 135]

False

gini = 0.0
samples = 1

value = [0, 1]

gini = 0.0
samples = 38
value = [38, 0]

Fig. 3   Decision tree generated by Method 1 (using peak intensity 
ratio as training data). The spectrum of S. aureus, Sa and mrSA (38 
spectra), and the spectrum of other bacteria (136 spectra) were sepa-
rated. The numbers in parentheses are the wavenumber ranges that 
include the peaks. At Depth 0, the spectra were divided into two 

groups depending on whether the peak intensity ratio was less than 
or exceeded 2.441. All Staphylococcus aureus spectra were classified 
in the group with a peak intensity ratio of 2.441 or less, and only one 
spectrum of other bacteria was included in this group
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Fig. 4   Peak intensity data used to generate the decision tree shown 
in Fig. 3. The vertical axis is the peak intensity value in the range of 
6514.3 ± 1.3 cm−1, and the horizontal axis is the peak intensity value 
in the range of 2163.4 ± 0.6  cm−1. The dark black markers indicate 
results obtained for the gas surrounding S. aureus, and other marks 
are data for bacteria other than S. aureus. The slope of the straight 
line passing through each point and the origin is the peak intensity 
ratio. The slope of the solid line is 2.441, which is the boundary value 
obtained by the decision tree. All S. aureus data are plotted in the 
area to the right of the border. There is one □ plot in this area. This is 
Escherichia coli data
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spectra of mixed gases on the spot, it is desirable to fix the 
wavenumber when measuring the absorbance; for this, an 
infrared-light-emitting diode can be used.

Considering this application, we also formulated a procedure 
for classifying the difference between absorbance values at two 
points with constant wavenumbers. In this method, training data 
were created using the absorbance values in the wavenumber 
region where the peak specific to S. aureus was detected, 
which was found in Method 1. The wavenumber regions were 
6515.6–6507.6 cm−1 and 2158.4–2166.3 cm−1. Each region 
contained 67 absorbance data. The difference between each 
absorbance value and another absorbance value was calculated for 
each of the two regions. The difference in absorbance was an array 
of 2211 values in each region. We calculated the ratio of the values 
in both arrays and created an array of 2211 × 2211 = 4.89 × 106 
values. Subsequently, as in Method 1, the arrays corresponding 
to each of the 174 spectra were arranged in the row direction to be 
training data, and classes (i) and (ii) labels were assigned.

Classification performed using three absorbance val-
ues  The absorbance values measured at three points within 
each wavenumber domain (six points in total) were used 
to classify the infrared absorption spectra. This approach 
is similar to that considering peak intensity. However, the 
wavenumbers corresponding to the absorbance values used 
in this calculation were maintained constant. This method 
used the difference in the shape of the spectrum to classify 
the spectra. Similar to Method 2, the absorbance values 
at three points were selected for the wavenumber region 
where the peak intensity was detected. We calculated a 
straight line connecting the point with the lowest wave-
number and the point with the highest wavenumber. A 
vertical line was drawn from the remaining one point to a 
straight line, and the difference in absorbance was calcu-
lated along the vertical line. Training data were created by 
replacing the ratio of the difference values on the vertical 
line with the ratio of the difference in absorbance used in 
Method 2.
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Fig. 5   Absorbance from 6518.7 to 6504.2  cm−1 (a–j) and that from 
2167.0 to 2157.5  cm−1 (k–f). All 174 spectra used in this study are 
plotted. The colored curves are the spectrum of the gas around each 
bacterium, and the solid black curves are the curves obtained by 
averaging the absorbance. These wavenumber regions (from 6518.7 
to 6504.2  cm−1, from 2167.0 to 2157.5  cm−1) include the regions 

(6514.3 ± 1.3  cm−1 and 2163.4 ± 0.6  cm−1) where the peaks selected 
by the decision tree shown in Fig.  3 were observed. The absorb-
ances measured from 6515.6 to 6507.6  cm−1 and from 2158.4 to 
2166.3  cm−1 were used when creating training data in Methods  2 
and 3. Vertical axis values were adjusted to ensure the absorbance at 
6515.3 and 2158.8 cm−1 equals zero
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Results and discussions

Classification by peak intensity ratio

Figure 3 illustrates the decision tree generated by Method 
1. The spectral separation was performed in two stages—
“Depths 0–1.” The training data comprised 174 spectra, 
including two classes—peripheral gases obtained by cul-
turing (i) S. aureus and (ii) other bacteria, containing 136 
and 38 spectra, respectively. During Depth 0 classification, 
99% separation was achieved, and the spectra were classi-
fied based on the ratio of peak intensities corresponding to 
the (6514.3 ± 1.3) and (2163.4 ± 0.6) cm−1 wavenumbers. 
The 174 spectra at Depth 0 were divided into two groups 
comprising 38 + 1 and 135 spectra, depending on whether 
the above-described peak ratio was less than or exceeded 
2.441. The former group comprised 38 and 1 spectra cor-
responding to classes (i) and (ii), respectively. Accord-
ingly, these 38 + 1 spectra were divided into two classes 
referred to as “Depth 1.”

Figure 4 depicts the peak intensity distribution observed 
in the (6514.3 ± 1.3) and (2163.4 ± 0.6) cm−1 wavenumber 
ranges. The dark black markers indicate values obtained 
from the gas surrounding S. aureus. The gradient of the 
straight line depicted in the figure is 2.441, and it cor-
responds to the value on the right side of the classifica-
tion relation for Depth 0 (Fig. 3). Most spectra with peak 
intensity ratios of 2.441 or less were included in the class 
containing S. aureus.

Figure 5 shows the spectrum at approximately 6514.3 
and 2163.4 cm−1. All spectra were overlaid for each bacte-
ria type. The black lines are the average curves of absorb-
ance. (Hereinafter, the curves are used as curves repre-
senting the characteristics of the spectral shape for easy 
viewing.) Table 3 shows the values of the mean and the 
standard deviation of the absorbance at 6514.2 cm−1 and 
2163.4 cm−1.

Classification based on absorbance difference at two 
wavenumbers

Figure 6 shows a decision tree generated using the ratio 
of the absorbance differences as training data. The value 
selected at Depth 0 was

This value was divided into two groups with a threshold 
of 3.341. Thirty-eight spectra of class (i) and two spec-
tra of class (ii) were mixed in the group with the value 
less than 3.341, but any spectra other than the two spectra 
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belonging to class (ii) were classified according to the 
label. Figure 7 shows the distribution of the absorbance 
difference. The slope of the straight line is 3.341, which 
is the threshold at Depth 0.

Figure 8 shows the four wavenumbers (6514.2, 6509.8, 
2163.1, and 2164.9 cm−1) extracted by machine learning. 

The spectra in this figure are curves of the average value 
of absorbance shown by the black line in Fig. 5. In Figs. 8a 
and b, the absorbance values are translated so that the 
absorbances of 6509.8 cm−1 and 2164.9 cm−1 are zero. 
Therefore, the value in Eq. (1) is the ratio of the value on 
the vertical axis of 6514.2 cm−1 to the value on the vertical 
axis of 2163.1 cm−1.

Classification performed using three absorbance 
values

Figure 9 shows a decision tree created using the absorbance 
at three points for each region. The wavenumbers selected 
by machine learning were replaced as follows:

The index selected by the machine to classify the spectra 
was the ratio of

to

(2)

w1 = 6514.4 cm−1, w2 = 6512.8 cm−1, w3 = 6511.8 cm−1,

w4 = 2164.0 cm−1, w5 = 2163.1 cm−1, w6 = 2162.6 cm−1

(3)
Absorbance at w2−

{

Absorbance at w3 − Absorbance at w1

w3 − w1

(

w2 − w1

)

− Absorbance at w1

}

(4)

Absorbance at w5−

{

Absorbance at w6 − Absorbance at w4

w6 − w4

(

w5 − w4

)

− Absorbance at w4

}

Fig. 6   Decision tree gener-
ated by Method 2 (using 
the ratio of the difference in 
absorbance at two points as 
training data). “Absorbance 
(6514.2 cm−1—6509.8 cm−1)” 
shows the absorbance at 
6514.2 cm−1 minus the absorb-
ance at 6509.8 cm−1

Absorbance (6514.2 cm-1—6509.8 cm-1) /

Absorbance (2163.1 cm-1—2164.9 cm-1)  >= 3.341
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The boundary value for this indicator is − 3.189. Fig-
ure 10 depicts the distribution obtained by this method. Fig-
ure 11 shows the wavenumbers used to create the decision 
tree. 6514.4 and 6511.8 cm−1 are the wavenumbers that give 
the peak absorbance, and 6513.2 cm−1 is the wavenumber 
near the bottom. It can be seen that the classification was 
performed using the absorbance of the two peaks on both 
sides of 6513.2 cm−1. By contrast, it can be seen that the 
wavenumbers of 2164.0, 2163.1, and 2162.6  cm−1 were 
selected to emphasize the absorbance change near the peak 
with 2163.4 cm−1.

Relationship between infrared absorption spectrum 
and volatile organic compounds

Mass spectrometer studies have shown that S. aureus 
releases isovaleric acid and 2-methyl-butanal [9]. Therefore, 
the infrared absorption spectra of the two volatile organic 
compounds and the spectra of the gas around the S. aureus 
were compared. Isovaleric acid and 2-methyl-butanal were 
purchased from Tokyo Chemical Industry at purities > 99.0% 
(GC) and > 95.0% (GC), respectively. After filling the PA 
bag with nitrogen (purity > 99.99995%), each reagent was 
injected into the bag using a pipette. In addition, a sample 
containing pure water (filtered with Direct-Q 3UV, Merck 
Millipore S.A.S.) in a bag containing each reagent was also 
prepared. At the time of measurement by Fourier transform 
infrared (FTIR), the water vapor in the bag was saturated 
because the water remained as droplets on the inside surface 
of the bag.

The spectra of the gas around the bacteria were fitted 
with the spectrum of VOCs. The fitting curves are shown 
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2164.9  cm−1 selected in the decision tree. The absorbance at 
6509.8 cm−1 and 2164.9 cm−1 was plotted to be zero. Therefore, the 
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Fig. 9   Decision tree gener-
ated by Method 3 (method of 
creating training data using 
the 3 values of absorbance). 
“Absorbance (6514.4 cm−1—
6512.8 cm−1—6511.8 cm−1

)” is the difference between 
the absorbance obtained at the 
wavenumber marked in the 
center, 6512.8 cm−1, and the 
line connected by the two points 
measured at the underlined 
wavenumbers, 6514.4 and 
6511.8 cm−1
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in Fig. 12. The spectra of isovaleric acid and 2-methyl-
butanal are displayed superimposed on the spectra of the 
gas around the bacteria. The absorbances of isovaleric acid 
and 2-methyl-butanal were each multiplied by a certain 
magnification. The magnifications were determined by 
the least-squares method using the absorbances of Sa and 
mrSa. In regions I, III, and V, the wavenumbers that give 
peaks in the spectra of Sa and mrSa and the wavenum-
bers that give peaks in the spectra of isovaleric acid and 
2-methyl-butanal were the same. However, regarding the 
absorbance of region II, the absorbance of the reagent was 
higher than that of Sa and mrSa. In addition, in regions 
IV and VI, the absorbance of isovaleric acid was low, and 
the absorbance of 2-methyl-butanal was higher than that 
of Sa and mrSa. The black solid lines in Fig. 10 (a) and (d) 
are curves obtained by adding the spectra of the mixed gas 
of isovaleric acid and water and that of the mixed gas of 
2-methyl-butanal and water. The absorbance of isovaleric 
acid and water and the absorbance of 2-methyl-butanal 
and water were multiplied by different magnifications. All 
coefficients were calculated by the least-squares method. 
The shape of the black curve (isovaleric acid + 2-methyl-
butanal + water) was closer to the shape of the spectrum 
of Sa and mrSa than the shape of the red curves (isovaleric 
acid) and blue curves (2-methyl-butanal).

From the above, the following can be considered.

1.	 In the mixed gas around bacteria, it is highly possible 
that the VOCs detected by a mass spectrometer do not 

exist alone, but are bound to other molecules, including 
water.

2.	 By synthesizing the spectra of isovaleric acid and 
2-methyl-butanal, each containing water, it was possible 
to create a curve with shapes close to the spectra of Sa 
and mrSa. Therefore, the partial pressure of both VOCs 
is thought to affect the absorbance in the wavenumber 
region extracted by machine learning.

3.	 The black line did not completely reproduce the Sa 
and mrSa spectra of regions II, IV, and V. In particu-
lar, region II is an important region for distinguishing 
S. aureus from other bacteria. We surmise it could not 
be reproduced because many molecules other than 
isovaleric acid, 2-methyl-butanoic, and water were pre-
sent in the mixed gas, and the molecules influenced each 
other. In other words, it can be said that it is impossible 
to distinguish bacteria by a deductive method that pre-
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Fig. 10   Data of absorbance difference used when creating the deci-
sion tree shown in Fig. 9. The slope of the solid line is − 3.189, which 
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the vertical axis were calculated such that the values of absorbance 
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the training data. As shown in a, because the absorbance values of 
6514.4 and 6511.8  cm−1 were larger than the absorbance value of 
6512.8  cm−1, the difference was negative, and the boundary value 
obtained by the decision tree was a negative value, − 3.189
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dicts the spectrum of a mixed gas by superimposing the 
infrared absorption spectra of molecules detected by a 
mass spectrometer. Therefore, an inductive method for 
measuring the spectrum of an actual sample and search-
ing for a characteristic wavenumber using machine 
learning is necessary for the classification of mixed 
gases.

Conclusions

This paper presented an approach for analyzing the infra-
red absorption spectra of gases surrounding bacteria using 
a decision tree–based machine learning algorithm. The 
proposed method offers an effective means to determine 
the presence (or absence) of the S. aureus bacteria. The 
wavenumber corresponding to the characteristic absorb-
ance value of a spectrum can be determined using the deci-
sion tree algorithm. In this study, spectral classification was 
performed considering the differences between absorbance 
values corresponding to two or three points in the infrared 
absorption spectra. These differences were calculated using 
the following methods.

1.	 Considering the peak absorbance value and correspond-
ing minima on either side of this peak. The baseline 
(minimum) values corresponding to the two adjacent 
points were subtracted from the peak value to determine 
the peak intensity.

2.	 Considering the absorbance values at two points (cor-
responding to fixed wavenumbers) and calculating the 
difference between them.

3.	 Considering the absorbance values at three points with 
constant wavenumbers, and of these points, we calcu-
lated a straight line connecting the two points on both 
sides. Subsequently, a vertical line was drawn from the 
remaining points to a straight line, and the difference in 
absorbance was calculated on the vertical line.

The results of this study reveal that all three methods are 
equally capable of identifying the gas produced by S. aureus. 
Thus, this study is the first of its kind to confirm the feasi-
bility of using infrared adsorption spectra to measure and 
monitor the growth of S. aureus. The findings of this study 
are expected to afford humanity the realization of several 
health benefits arising from the use of such technologies in 
medical practice.
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