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This paper proposes a new method, oriented to image real-time processing, for identifying crop rows in maize fields in the images.
The vision system is designed to be installed onboard a mobile agricultural vehicle, that is, submitted to gyros, vibrations, and
undesired movements. The images are captured under image perspective, being affected by the above undesired effects. The image
processing consists of two main processes: image segmentation and crop row detection. The first one applies a threshold to separate
green plants or pixels (crops and weeds) from the rest (soil, stones, and others). It is based on a fuzzy clustering process, which
allows obtaining the threshold to be applied during the normal operation process. The crop row detection applies a method based
on image perspective projection that searches for maximum accumulation of segmented green pixels along straight alignments.
They determine the expected crop lines in the images. The method is robust enough to work under the above-mentioned undesired
effects. It is favorably compared against the well-tested Hough transformation for line detection.

1. Introduction

1.1. Problem Statement. The increasing development of
robotics equipped with machine vision sensors applied to
Precision Agriculture is demanding solutions for several
problems. The robot navigates and acts over a site-specific
area of a larger farm [1], where one important part of the
information is supplied by the vision system.

An important issue related with the application of ma-
chine vision methods is that concerning the crop row and
weed detection, which has attracted numerous studies in this
area [2–6]. This will allow site-specific treatments trying to
eliminate weeds and to favor the growth of crops.

The robot navigates on a real terrain presenting irreg-
ularities and roughness. This produces vibrations and also
swinging in the pitch, yaw, and roll angles. Moreover, the
spacing of crop rows is also known. Because of the above,
the crop rows are not projected on the expected locations
in the image. On the other hand the discrimination of crops
and weeds in the image is a very difficult task because their

red, green, and blue spectral components display similar
values. This means that no distinction is possible between
crops and weeds based on the spectral components. Thus
the problem is to locate the crop rows in the image. To
achieve this goal, in this paper we propose a new strategy
that exploits the specific arrangement of crops (maize) in the
field and also applies the knowledge of perspective projection
based on the camera intrinsic and extrinsic parameters. This
method is inspired by the human visual perception and
like humans applies a similar reasoning for locating crop
rows in the images, although it exploits the camera system
geometry, because it is available. As we will see in the next
section, the crop row location is not new and has been
considered already in the literature; the method proposed in
this paper gains advantage over existing approaches because
it has been designed to achieve high effectiveness in real-time
applications. This makes the main contribution of this paper.
The method does not include a segmentation step, which is
found in most other methods for plant detection. This tries
to avoid time consumption as compared to other strategies.
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The segmentation step has been replaced by a simple thresh-
olding method, where the threshold is previously established
by applying a learning-based fuzzy clustering strategy. Clus-
ter centers for green textures are obtained during an off-line
learning phase, and then this knowledge is exploited during
the online decision phase. Crop row detection is an easy step
where simple straight lines are traced, based on perspective
projection, looking for specific pixels alignments defining
crop rows.

Moreover it applies downsampling for reducing image
sizes. All above steps are oriented to gain time reduction
during the computational process. The proposed approach
is favorably compared against some existing approaches in
both effectiveness and time reducing.

1.2. Revision of Methods. Several strategies have been pro-
posed for crop row detection. Fontaine and Crowe [7] tested
the abilities of fourth-line detection algorithms to determine
the position and the angle of the camera with respect to
a set of artificial rows with and without simulated weeds.
These were stripe analysis, blob analysis, linear regression,
and Hough transform.

(1) Methods Based on the Exploration of Horizontal Strips.
Søgaard and Olsen [8] apply RGB color image transforma-
tion to grayscale. This is done by first dividing the color
image into its red, green, and blue spectral channels and
then by applying the well-tested methods to extract living
plant tissue described in [9]. After this, the greyscale image
is divided into horizontal strips where maximum grey values
indicate the presence of a candidate row, each maximum
determines a row segment, and the center of gravity of
the segment is marked at this strip position. Crop rows
are identified by joining marked points through a similar
method to the one utilized in the Hough transform or
by applying linear regression. Sainz-Costa et al. [6] have
developed a strategy based on analysis of video sequences
for identifying crop rows. Crop rows persist along the
directions defined by the perspective projection with respect
the 3D scene in the field. Exploiting this fact, they apply
greyscale transformation, and then the image is binarized
by thresholding. Each image is divided into four horizontal
strips. Rectangular patches are drawn over the binary image
to identify patches of crops and rows. The gravity centers
of these patches are used as the points defining the crop
rows, and a line is adjusted considering these points. The
first frame in the sequence is used as a lookup table that
guides the full process for determining positions where the
next patches in subsequent frames are to be identified. Hague
et al. [10] transform the original RGB image to gray scale.
The transformed image is then divided into eight horizontal
bands. The intensity of the pixels across these bands exhibits
a periodic variation, due to the parallel crop rows. Since
the camera characteristics, pose and the crop row spacing
are known a priori, the row spacing in image pixels can be
calculated for each of the horizontal bands using a pinhole
model of the camera optics. A bandpass filter can then be
constructed which will enhance this pattern and has a given

frequency domain response. Sometimes horizontal patterns
are difficult to extract because crops and weeds form a unique
patch.

(2) Methods Based on the Hough Transformation. According
to Slaughter et al. [11], one of the most commonly used
machine vision methods for identifying crop rows is based
upon the Hough [12] transform. It was intended to deal with
discontinues lines, where the crop stand is incomplete with
gaps in crop rows due to poor germination or other factors
that result in missing crop plants in the row. It has been
intended for real-time automatic guidance of agricultural
vehicles [13–16]. It is applied to binary images, which are
obtained by applying similar technique to the ones explained
above, that is, RGB image transformation to grayscale and
binzarization [3, 4, 17]. Gée et al. [18] apply a double Hough
transform under the assumption that crop rows are the only
lines of the image converging to the vanishing point, the
remainder lines are rejected, additional constraints such as
interrow spacing and perspective geometry concepts help
to identify the crop rows. It is required to determine the
threshold required by the Hough transform to determine
maximum peaks values [19, 20] or predominant peaks [21].
Depending on the crop densities, several lines could be
feasible, and a posterior merging process is applied to lines
with similar parameters [3, 4, 17]. Ji and Qi [22] report
that Hough transform is slow due to the huge computation;
they propose a randomized Hough transform to reduce
computational time. Some modifications have been pro-
posed to improve the Hough transformation such as the
one proposed in Asif et al. [23], which apply the Hough
only to those points which are edge points along the crops.
But this requires the application of techniques for edge
extraction. Also the randomized Hough transformation has
been proposed with this goal [22]. It is intended to avoid
redundant computations in the Hough transform. It operates
iteratively by randomly sampling a set of points to compute
a single localization in the Hough space. Since two pixels are
trivially collinear, the parameters of the line on which they
lie can be estimated. These parameters are used to increment
the accumulator cell in the Hough space. In summary,
the Hough transform is computationally expensive and the
randomized Hough transform requires selecting pairs of
points to be considered as a unique line, that is, pairs of
points belonging to a crop row. If we apply this technique in
images where edge points have been extracted, the selection
of those pairs becomes more complex. Furthermore, the
computational cost of Hough-based algorithms is very
sensitive to the image resolution after down-sampling, but
also when weeds are present and irregularly distributed, this
our case, this is could cause the failure detection. Moreover,
as the weed density increases the crop row detection becomes
more and more difficult.

(3) Vanishing Point Based. Pla et al. [24] propose an ap-
proach which identifies regions (crops/weeds and soil) by
applying color image segmentation. They use the skeleton of
each defined region as a feature to work out the lines which
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define the crop. The resulting skeletons of each region can
be used as curves which define the underlying structure of
the crop and to extract the straight lines where the plants,
and soil rows lie. Segments in the skeletons are defined as
chains of connected contour points and they must be of
a defined length. This allows selecting candidate lines for
crop row detection, among all candidates the ones that meet
the vanishing point. The vanishing point is detected using
previous information about the vanishing point found in the
previous images, performing a sort tracking on the vanishing
point. This process is highly dependent on the skeletons,
which are not always easy to extract and isolate, particularly
considering that crops and weeds patches appear overlapped
among them.

(4) Methods Based on Linear Regression. Some of the tech-
niques above apply this approach. Billingsley and Schoen-
fisch [25] reported a crop detection system that is relatively
insensitive to additional visual “noise” from weeds. They
used linear regression in each of three crop row segments
and a cost function analogous to the moment of the best-fit
line to detect lines fitted to outliers (i.e., noise and weeds)
as a means of identifying row guidance information. As
mentioned above, Søgaard and Olsen [8] also apply linear
regression, which is a feasible approach if weed density is
low and pixels belonging to crop rows are well separated.
Otherwise it is highly affected by pixels belonging to weeds
because of their strong contribution to line estimation.

(5) Stereo-Based Approach. Kise et al. [26] and Kise and
Zhang [27] developed a stereovision-based agricultural
machinery crop row tracking navigation system. Stereoimage
processing is used to determine 3D locations of the scene
points of the objects of interest from the obtained stereoim-
age. Those 3D positions, determined by means of stereoim-
age disparity computation, provide the base information
to create an elevation map which uses a 2D array with
varying intensity to indicate the height of the crop. This
approach requires crops with significant heights with respect
the ground. Because in maize fields, during the treatment
stage, the heights are not relevant, it becomes ineffective
in our application. Rovira-Más et al. [28] have applied
and extended stereovision techniques to other areas inside
Precision Agriculture. Stereo-based methods are only feasible
if crops or weeds in the 3D scene display a relevant height and
the heights differ in both kind of plants.

(6) Methods Based on Blob Analysis. This method finds and
characterizes regions of contiguous pixels of the same value
in a binarized image [7]. The algorithm searches for white
blobs (interrow spaces) of more than 200 pixels, as smaller
blobs could represent noise in the crop rows. Once the blobs
are identified, the algorithm determines the angle of their
principal axes and the location of their center of gravity. For
a perfectly straight white stripe, the center of gravity of the
blob was over the centerline of the white stripe, and the angle
was representative of the angle of the interrow spaces. The
algorithm returned the angle and center of gravity of the blob

closest to the centre of the image. Identification of blobs in
images infested with weeds in maize fields becomes a very
difficult task, because weeds and crops under overlapping in
localized areas produce wide blobs.

(7) Methods Based on the Accumulation of Green Plants.
Olsen [29] proposed a method based on the consideration
that along the crop row an important accumulation of green
parts in the image appears. The image is transformed to
gray scale, where green parts appear clearer that the rest. A
sum curve of gray levels is obtained for a given rectangular
region exploring all columns in the rectangle. It is assumed
that vertical lines follow this direction in the image. Images
are free of perspective projection because they are acquired
with the camera in orthogonal position. A sinusoidal curve is
fitted by means of least squares to the sum curve previously
obtained. Local maxima of the sinusoid provide row centers
locations. This is a simple and suitable method, which can
be still simplified but it is not of our interest because of
the fact that the images we work with are taken from the
tractor under perspective projection but not orthogonal. In
this paper we exploit the idea of green plant accumulation
under a simpler strategy.

(8) Methods Based on Frequency Analysis. Because crop rows
are vertical in the 3D scene, they are mapped under perspec-
tive projection onto the image displaying some behavior in
frequency domain. Vioix et al. [30] exploit this feature and
apply a bidimensional Gabor filter, defined as a modulation
of a Gaussian function by a cosine signal. The frequency
parameter required by the Gabor filter is empirically deduced
from the 2D-Fast Fourier Transform [31]. Bossu et al.
[32] apply wavelets to discriminate crop rows based on the
frequency analysis. They exploit the fact that crop rows are
well localized in the frequency domain; thus selecting a
mother wavelet function with this frequency the crop rows
can be extracted. In maize fields where the experiments are
carried out, crops do not display a clear frequency content in
the Fourier space, therefore the application of filters based on
the frequency becomes a difficult task.

1.3. Motivational Research and Design of the Proposed Strategy.
Our work is focused on crop row detection in maize for
specific treatments requiring discrimination among crops
and weeds. This means that crop rows must be identified and
located in the image conveniently. Some of the requirements
proposed by Astrand [33] and reported in [11] for guidance
systems can be considered for crop row detection; the prob-
lem is essentially similar. Therefore, our system is designed to
be

(i) able to locate crop rows with the maximum accuracy
as possible,

(ii) able to work on real-time,

(iii) able to work on sown crops, not manually planted,
which means that weeds and crops grow simulta-
neously displaying, at the early growth stage of the
treatment, similar heights and also similar spectral
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signatures. This means that discrimination between
crops and weed cannot be made by height or spectral
signatures only,

(iv) able to work when plants are missing in the row,

(v) able to work when there is high weed pressure,

(vi) able to work under different weather (luminance)
conditions,

(vii) able to locate crop rows with the least assumptions
and constraints.

The aim of this study is to present a general method for
identifying crop rows in maize fields from the images. We
exploit the advantages of the existing methods introduced
above, extracting the main ideas, and design a new strategy
for crop row detection inspired on the human visual per-
ception abilities which is able to work in real time.

This method is also dedicated to be applied in maize with
crop row spacing and also to deal with and without seedling
spacing. It is summarized in the two main steps as follows.

(a) Segmentation of green plants (crop and weeds).

(b) Crop row identification.

2. Materials and Methods

2.1. Images. The images used for this study correspond to
maize crops. They were captured with a Canon EOS 400D
camera during April/May 2011 in a 1.7 ha experimental
field of maize in La Poveda Research Station, Arganda del
Rey, Madrid. All acquisitions were spaced by five/six days,
that is, they were obtained under different conditions of
illumination and different growth stages. The digital images
were captured under perspective projection and stored as 24-
bit color images with resolutions of 5 MP saved in RGB (red,
green, and blue) color space in the JPG format. The images
were processed with MATLAB R2009a [34] under Windows
7 and Intel Core 2 Duo CPU, 2.4 GHz, 2.87 GB RAM. A set
of 350 images were available for processing.

With the aim of testing the robustness and performance
of the proposed approach, we have worked with images
captured under different conditions, including different
number of crop rows; these conditions have been identified
in the real fields as possible and also those that could cause
problems during the detection process in normal operation.
The following is a list of representative images from the set of
available images, illustrating some of such conditions:

(a) different brightness due to different weather condi-
tions, Figures 1(a) and 1(b);

(b) different growth stages, Figures 2(a) and 2(b);

(c) different camera orientations, that is, different yaw,
pitch and roll angles, and heights from the ground,
Figures 3(a) and 3(b);

(d) different weed densities, Figures 4(a) and 4(b).

2.2. Image Segmentation: Green Plants Identification. For
real-time applications is of great relevance to simplify this
process as much as possible. Instead of using vegetation
indices [9, 35], which require an image transformation from
RGB color space to gray scale, we used a learning-based
approach with the goal of obtaining the percentage of the
green spectral component with respect to the remainder,
which allowed us to consider a pixel belonging to a green
plant. This relative percentage is intended to deal with
illumination variability so that it determines relative values
among the three spectral RGB components that identify
green plants. This is carried out by applying a fuzzy clustering
approach. Under this approach there is a learning phase
which is applied to during offline activity for computing the
relative percentage or threshold and a decision phase where
the threshold is applied without additional computation.

The learning phase was designed as follows. From the
set of available images we randomly extracted n training
samples, stored in X , that is, X = {x1, x2, . . . , xn} ∈ Rd,
where d is the data dimensionality. Each sample vector xi

represents an image pixel, where its components are the three
RGB spectral components of that pixel at the original image
location (x, y). This means that in our experiments the data
dimensionality is d = 3. Each sample is to be assigned to a
given cluster wj , where the number of possible clusters is c,
that is, j = 1, 2, . . . , c. In the proposed approach c is set to 2
because we were only interested in two types of textures, that
is, green plants (crop/weeds) and the remainder (soil, debris,
stones).

The samples in X are to be classified based on the well-
known fuzzy clustering approach that receives the input
training samples xi and establishes a partition, assuming the
number of clusters c is known. The process computes for
each xi at the iteration t, its degree of membership in the

cluster wj(μ
j
i ) and updates the cluster centers v j as follows

[36]:

μ
j
i (t + 1) = 1

∑c
r=1

(
di j(t)/dir(t)

)2/(b−1) ;

v j(t + 1) =
∑n

i=1

[
μ
j
i (t)

]b
xi

∑n
i=1

[
μ
j
i (t)

]b .

(1)

d2
i j ≡ d2(xi, v j) is the squared Euclidean distance. The

number b is called the exponential weight [37, 38], b > 1.
The stopping criterion of the iteration process is achieved

when ‖μj
i (t + 1) − μ

j
i (t)‖ < ε for all i j or a number tmax of

iterations is reached.
The method requires the initialization of the cluster

centers, so that (1) can be applied at the iteration t = 1.
For this purpose, we applied the pseudorandom procedure
described in Balasko et al. [39].

(1) Perform a linear transform Y = f (X) of the training
sample values so that they range in the interval [0, 1].

(2) Initialize v = 2DM ◦ R + Dm, where m is the mean
vector for the transformed training samples values in
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(a) (b)

Figure 1: Different brightness due to different weather conditions: (a) darker; (b) clearer.

(a) (b)

Figure 2: Different crop growth stages: (a) low; (b) high.

(a) (b)

Figure 3: Different yaw, pitch and roll angles, and heights from the ground.
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(a) (b)

Figure 4: Different weed densities: (a) low; (b) high.

Y and M = max(abs(Y − m)), both of size 1 × d;
D = [1 . . . . 1]T with size c × 1; R is a c × d matrix
of random numbers in [0, 1]; the operation ◦ denotes
the element by element multiplication.

Once the learning process is finished we obtain two cluster
centers v1 and v2 associated to clusters w1 and w2. Without
loss of generality, let v1 ≡ {v1R, v1G, v1B} the one associated
to the green plants. It is a 3-dimensional vector where its
components v1R, v1G, and v1B represent the averaged values
for the corresponding RGB spectral components; thus the
threshold value for discriminating among green plants and
the remainder ones is finally set to TG = v1G/(v1R +v1G +v1B).

Once TG is available, the green parts on the images are
identified assuming the corresponding RGB pixels contain
the G spectral value greater than TG. Therefore, during
the online identification process only is required the logical
comparison.

2.3. Crop Row Identification. Once green parts were extracted
in the image, next step was crop row identification. For such
purpose we make use of the following constraints, based on
the image perspective projection and the general knowledge
about the maize field.

(i) The number of crop lines (L) to be detected is
known and also the approximate x position or image
column at the bottom of the image where every crop
line starts. This assumption is based on the system
geometry and the image perspective projection.

(ii) We are going to detect crop lines that start from
the bottom of the image and end at the top of the
image. Lines starting from both left and right sides
of the image and vanishing at the top are rejected.
This is because image geometry allows to consider
this situation. An extension of this algorithm could
be done to detect those lines with its corresponding
computing time cost.

(iii) All the images have been acquired with a camera
onboard a tractor and pointing in the same direction
as the crop lines, therefore images are mapped under

in perspective projection and the crop lines converge
in the well-known vanishing point. This constraint is
inspired by methods based on the vanishing point,
as described in the introduction. Though crop lines
are parallel, distance between crop lines seems to be
greater at the bottom of the image than at the top,
due to perspective. This algorithm works considering
that crop lines are going to have that appearance
in the image with a range of tolerance that can be
adjusted depending on the stability of the tractor and
the evenness of the ground. We assume that crop
lines starting from the left bottom of the image have
a clockwise slope and lines starting from the right
bottom of the image have an anticlockwise slope.
The bigger the range of tolerance the higher the
computing time. In this paper we have used a 15% of
tolerance which means that crop lines may vary from
one image to the next one a 15% of the width of the
image.

The algorithm works as follows.

(1) From every pixel in the bottom row we trace all
the possible lines starting on that pixel and ending
on every pixel of the top line, that is, if the image
has N-columns, we will trace N2 lines from every
pixel of the bottom row, which means that we finally
trace N2 lines. This number of calculated lines is
the highest number of lines in case we make no
constraints. Nevertheless, as we will see in step 4 and
5 important constrains can be applied to reduce this
number. Figure 5 shows the bean of lines traced for
two pixels placed at the bottom row of the image. For
illustrating purposes we have traced broad beams of
lines, but the number of lines to cope with all possible
situations, but this number could be considerably
reduced by applying previous knowledge, like the
slope. This is applied in this work as described below,
reducing the computational cost.

(2) For every traced line starting on a pixel of the bottom
row, we count the number of “green” pixels that
belong to that line. This is possible because the image
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Figure 5: Lines traced from every pixel of the bottom row in the
image.
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Figure 6: Number of green pixels found for the best line of every
pixel of the bottom line.

has been already segmented and pixels belonging to
green parts have been identified. Now, the line with
the highest number of green pixels is the candidate
line to represent the crop row for that pixel of the
bottom row.

(3) We repeat the same procedure for all the pixels of
the bottom row, and finally we obtain c-candidates
lines, that is, one for every pixel of the bottom row.
As we can see in Figure 6, every pixel location in the
bottom row of the image has a value for its best line.
Those values become higher as the represented line
approaches the real crop line. They are the peaks in
the lower part in Figure 6.

(4) Since we know the number of crop lines to be
detected and also where they roughly start at the
bottom row, we can choose the closer and highest
values, which are identified by peaks in the accumu-
lator. With such a figure, assume the number of crop
rows to be detected is four; so we look for four peaks
that are conveniently spaced because of the crop rows
arrangement in maize fields and also based on camera
system geometry. This idea is inspired in methods
based on the accumulation of green plants, described
in the introduction.

The following are three considerations that can be ap-
plied to speed up the computational process from the point
of view of a real-time application.

(1) For each selected line we store the start and end
points, obtaining the corresponding equation for the
straight line.

(2) Because of the perspective of the image it is not
necessary to trace all the lines to the top row (as
mentioned in step 1) but only those whose slope is
according to what we expect. That is, if we are dealing
with left pixels of the image we would trace only lines
with a slope clockwise and without reaching the end
of the right side of the image. For right pixels we
would search for anticlockwise slopes starting from
the right side and without reaching the left side of
the image. This idea is based on the vanishing point
concept, applied in some approaches as described in
the introduction.

(3) In addition to it, it is not necessary to trace lines pixel
by pixel. Depending on the image resolution a “pixel
step” can be used without affecting final result and
reducing considerably the computational cost.

(4) Notice that there are some values to be adjusted
before the algorithm runs. These values depend on
the images we are dealing with and on the stability
of the camera. The higher the image resolution the
higher the “pixel step” for lines calculation. Fur-
thermore, the higher the stability of the tractor the
thinner the range of pixels of the top row for tracing
lines.

3. Results

Our proposed crop row detection (CRD) method consists
on a first stage or learning phase where the threshold TG is
obtained for segmenting green plants. With such purpose
we have processed 200 images, selected from the set of 350
images available, from which we have randomly extracted
40.000 training samples. The selected images cover the broad
range of situations, that is, different number of rows, weather
conditions, weed concentrations and growth states according
to Figures 1 to 4.

With these training samples, we apply the fuzzy clus-
tering procedure described in Section 2.2, from which we
compute two cluster centers identifying both green plants
(v1) and soil or other components (v2). Our interest is only
focused on segmenting green plants, therefore, from v1 we
compute the threshold TG defined in Section 2.2 as the
percentage of the green component in v1, that is, TG = 0.37.
This is the threshold finally used for image segmentation.

Table 1 displays both cluster centers v1 and v2 and the
percentage of the highest value in the spectral components
associated to each cluster center. As we can see green
and soil pixels can be identified by the corresponding
percentages, each one applied over the green and red spectral
components. This was the general behavior observed for the
set of images analyzed.

As mentioned during the introduction, the Hough
transform has been applied in several methods for crop row
detection, hence we compare the performance of our CRD
approach against the Hough (HOU) transform. We have
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Table 1: Percentage of the green spectral component for green plants and for other components (soil, debris, stones).

Spectral component
values

Percentage of the
highest spectral

component

v1 (green plants) {137.80 140.68 106.07} 0.37 (green)

v2 (soil and other
components)

{188.49 177.71 153.53} 0.36 (red)

Table 2: Performances of HOU and CRD approaches measured in terms of percentage of effectiveness and processing times.

Image resolution (pixels)
Percentage of effectiveness Processing time (seconds)

HOU CRD HOU CRD

162× 216 86.3 97.1 1,088 0,580

194× 259 89.4 97.3 1,305 0,737

243× 324 89.1 97.3 2,120 0,928

324× 432 90.9 97.4 4,752 1,667

486× 648 91.1 97.5 8,153 3,216

applied identical conditions to the Hough transform than the
ones applied in our CRD approach, so it works in terms of
comparability; they are synthesized as follows.

(a) Search for lines arising from the bottom of the image
and ending at the top, that is, suspicious useless lines
are not explored.

(b) Only are allowed lines with slopes close to the ones
expected at each side of the image. Horizontal lines
and many others that do not meet the above are
rejected.

(c) The Hough transform is implemented to work under
the normal representation, polar coordinates [40],
with unit increments in the parameter representing
the angle.

The comparison is established in terms of effectiveness and
processing times. The effectiveness is measured based on
the expert human criterion, where a line, which has been
detected, is considered as correct if it overlaps with the real
crop row alignment. Over the set of 350 images analyzed,
we compute the average percentage of coincidences for
both CRD and HOU. Also, because the main goal of the
proposed approach is its profit for real time applications,
we measure computational times. Also, with the goal of
real-time, we have tested these performances for different
image resolutions. As we can see image resolutions differ
from the ones in the original images, these resolutions have
been obtained by applying a down-sampling process to the
original image.

This is intended under the idea that it is possible to
reduce the image dimension retaining the main information
without affecting the effectiveness and reducing the pro-
cessing time. Table 2 displays the results. The first column
contain different image resolutions, which are obtained
by selecting large regions of interest in each image, with
horizontal and vertical sizes of 1940 × 2590 pixels, and
these regions contains different number of crop rows under
different configurations provided by the images displayed
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Figure 7: Times in seconds against the different image resolutions.

in Figures 1 to 4. These large regions are split by 10, 8,
6, and 4, which are, respectively the ones represented in
Table 2. We have chosen this set of values because with them
we obtain similar performances in terms of effectiveness
with acceptable processing times. The effectiveness for higher
resolutions is similar, but the processing times increase
considerably. Below the lower resolution, the effectiveness
decreases considerably.

The second and third columns contain the percentage
of effectiveness and columns fourth and fifth the processing
times measured in seconds. All these measurements repre-
sent average values over the set of 350 images processed. For
clarity, Figure 7 represents the processing times in Table 2,
for the four resolutions studied.

From results in Table 2 we can infer that CRD outper-
forms HOU in terms of effectiveness, with a near constant
value regardless the image resolution. With lower resolu-
tions, that is, with image divisions above 12, this percentage
decreases drastically, achieving values below 85%. This is
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because for low resolutions some important information in
the images is lost. Thus, from values in Table 2 and because
the processing time is lower with small image resolutions,
from a real-time point of view, a suitable resolution with
acceptable performance is the lowest, that is, the one for
162 × 216. From Figure 7, one can see that the increasing
of time is not linear. For resolutions above 243×324 time
differences are more pronounced.

The worst performance obtained for HOU can be
explained because crops and weeds concentration produces
a high density of values, representing peaks, in the cell
accumulator. These values do not display a high clear value,
theoretically representing a unique crop line. Moreover, the
absolute maximum value around the expected crop line most
times does not represent the correct line. Thus, it is necessary
to define a patch selecting different high peak values for each
expected line, which are averaged, to obtain the final value.
Because this patch has not clear limits, its selection becomes a
difficult task and errors in the selection produce errors in the
crop row localization, which explain the worst performance
of HOU against CRD.

4. Conclusions

We developed a new method for crop row detection that
improves Hough-based methods in terms of effectiveness
and computing time. The goal is its application to real-time
implementations.

Furthermore, our approach has been proved to be robust
enough to different images typologies.

The proposed method is robust enough to work in
images under perspective projection. It can detect any num-
ber of crop lines with any slope converging in a vanishing
point. It works with either high or low image resolutions.

Future works must be oriented toward weeds detection
by establishing cells around crop lines and calculating the
percentage of greenness of every cell. This should be intended
for posterior actuations to kill weeds.
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Guillemin, “Spatial and spectral method for weeds detection
and localization,” Eurasip Journal on Advances in Signal
Processing, vol. 7, pp. 679–685, 2004.

[31] J. Bossu, Ch. Gée, J. P. Guillemin, and F. Truchetet, “Devel-
opment of methods based on double Hough transform and
Gabor filtering to discriminate crop and weeds in agronomic
images,” in Proceedings of the SPIE 18th Annual Symposium
Electronic Imaging Science and Technology, vol. 6070, no. 23,
San Jose, Calif, USA, 2006.

[32] J. Bossu, Ch. Gée, G. Jones, and F. Truchetet, “Wavelet trans-
form to discriminate between crop and weed in perspective
agronomic images,” Computers and Electronics in Agriculture,
vol. 65, no. 1, pp. 133–143, 2009.

[33] B. Astrand, Vision based perception or mechatronic weed con-
trol, Ph.D. thesis, Chalmers and Halmstad Universities, Swe-
den, Stockholm, 2005.

[34] TheMatworks, http://www.mathworks.com/, 2011.
[35] A. Ribeiro, C. Fernández-Quintanilla, J. Barroso, and M. C.

Garcı́a-Alegre, “Development of an image analysis system
for estimation of weed,” in Proceedings of the 5th European
Conference on Precision Agriculture (ECPA ’05), vol. 1, no. 1,
pp. 169–174, 2005.

[36] H. J. Zimmermann, Fuzzy Set Theory and its Applications,
Kluwer Academic, Norwell, Mass, USA, 1991.

[37] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function
Algorithms, Plenum Press, New York, NY, USA, 1981.

[38] R. O. Duda, P. E. Hart, and D. S. Stork, Pattern Classification,
John Wiley & Sons, New York, NY, USA, 2000.

[39] B. Balasko, J. Abonyi, and B. Feil, Fuzzy Clustering and Data
Analysis Toolbox for Use with Matlab, Veszprem University,
Hungary, Budapest, 2008.

[40] R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image
Processing Using MATLAB, Prentice Hall, Upper Saddle River,
NJ, USA, 2009.


