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Abstract

Background and Aims: Liver stiffness (LS) measured by 
shear wave elastography (SWE) is often influenced by hepat-
ic inflammation. The aim was to develop a dual-task convo-
lutional neural network (DtCNN) model for the simultaneous 
staging of liver fibrosis and inflammation activity using 2D-
SWE. Methods: A total of 532 patients with chronic hepatitis 
B (CHB) were included to develop and validate the DtCNN 
model. An additional 180 consecutive patients between De-
cember 2019 and April 2021 were prospectively included for 
further validation. All patients underwent 2D-SWE examina-
tion and serum biomarker assessment. A DtCNN model con-
taining two pathways for the staging of fibrosis and inflam-
mation was used to improve the classification of significant 
fibrosis (≥F2), advanced fibrosis (≥F3) as well as cirrhosis 
(F4). Results: Both fibrosis and inflammation affected LS 
measurements by 2D-SWE. The proposed DtCNN performed 
the best among all the classification models for fibrosis stage 
[significant fibrosis AUC=0.89 (95% CI: 0.87–0.92), ad-
vanced fibrosis AUC=0.87 (95% CI: 0.84–0.90), liver cirrho-
sis AUC=0.85 (95% CI: 0.81–0.89)]. The DtCNN-based pre-
diction of inflammation activity achieved AUCs of 0.82 (95% 

CI: 0.78–0.86) for grade ≥A1, 0.88 (95% CI: 0.85–0.90) 
grade ≥A2 and 0.78 (95% CI: 0.75–0.81) for grade ≥A3, 
which were significantly higher than the AUCs of the single-
task groups. Similar findings were observed in the prospec-
tive study. Conclusions: The proposed DtCNN improved di-
agnostic performance compared with existing fibrosis staging 
models by including inflammation in the model, which sup-
ports its potential clinical application.
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Introduction

Chronic hepatitis B (CHB)-related liver fibrosis has been 
recognized as a hallmark of progression from mild hepati-
tis to decompensation manifestations.1 Inaccurate fibrosis 
staging may delay antiviral therapy and increase the health-
care burden.2 It is well known that biopsy is treated as the 
reference standard for fibrosis staging, but it suffers from 
problems such as high medical cost, invasiveness, sampling 
errors, and is often accompanied by complications includ-
ing infection and hemorrhage.3–7 Biomarkers such as aspar-
tate transaminase-to-platelet ratio index (APRI) and fibrosis 
index based on four factors (FIB-4) remain controversial 
for the diagnosis of liver fibrosis. Shear wave elastography 
(SWE) is emerging as a noninvasive tool for fibrosis detec-
tion using the biomechanical properties of tissue by apply-
ing an external mechanical wave to generate deformation 
of the liver and then capturing the velocity of shear wave 
propagation, which is directly associated to stiffness.

Several guidelines have indicated that liver stiffness (LS) 
assessed by SWE can serve as an alternative to liver biopsy 
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in patients with chronic viral hepatitis.8–10 Most of the clini-
cal practice guidelines recommend liver LS measurement for 
noninvasive fibrosis staging.11 However, there are various 
potential confounding factors (e.g. liver inflammation), that 
may influence the LS measurements and lead to false positive 
LS values.12–19 Nakano et al. found that the severity of liver 
fibrosis measured by SWE was influenced by hepatic necro-
inflammation in chronic hepatitis patients but not in cirrhotic 
patients.13 Ren et al. showed that LS on SWE and transient 
elastography significantly correlated with hepatic inflamma-
tion grade on HBV patients who had no or mild (F1) fibrosis.19 
The confounding factors hindered elastography from becoming 
an ideal alternative to liver biopsy for fibrosis assessment. On 
the other hand, accurate assessment of liver inflammation in 
patients who do not have prominent liver fibrosis is important 
for guiding therapy and improving the prognosis of those pa-
tients. Therefore, a model to simultaneously predict the stages 
of liver fibrosis and inflammation is of clinical significance.

Recently, several studies that applied machine learn-
ing algorithms to two-dimensional (2D)-SWE images for 
chronic liver disease diagnosis reported satisfactory perfor-
mance.20–23 Wang et al. described a deep learning radiomics 
model for assessing liver fibrosis in CHB in a multicenter 
study that significantly improved diagnostic performance.20 
Chen et al. employed four existing classification methods 
(support vector machine, naïve Bayes, random forest, and 
k-nearest neighbors) to build a decision-support system to 
improve the diagnostic performance for fibrosis staging.21 
In this study, we developed a dual-task convolutional neural 
network (DtCNN) for assessment of fibrosis staging and in-
flammation activity based on 2D-SWE images.

Methods

Patients

The proposed DtCNN model was developed and validated in a 
retrospective cohort including a total of 966 consecutive CHB 
patients who underwent liver biopsy and 2D-SWE between 
March 2015 and November 2018. The study was in conduct-
ed following the ethical guidelines of the 1975 Declaration of 
Helsinki and was approved by the institutional review board 
of Ruijin Hospital. The requirement for informed consent was 
waived for this retrospective study. An additional 180 con-
secutive patients with known chronic liver disease or who 
were suspected of having chronic liver disease between De-
cember 2019 and April 2021 were prospectively included in 
this study. All patients in the prospective study were asked to 
provide informed consent. The inclusion criteria were (1) HB-
sAg seropositivity for more than 6 months; (2) liver fibrosis 
and inflammation stages indicating liver biopsy assessment; 
(3) antiviral treatment-naïve patients. The exclusion criteria 
were (1) the existence of other hepatitis virus coinfection or 
autoimmune liver disease, (2) the presence of severe extra-
hepatic diseases, or (3) pregnancy. A total of 532 CHB pa-
tients in the retrospective cohort and 180 in the prospective 
cohort were included in the analysis. The demographic and 
clinical data of the patients are shown in Table 1.

Serum samples were collected after the patients had 
fasted overnight (8 h) for measurement of alanine ami-
notransferase (ALT), aspartate transaminase (AST), plate-
let, total cholesterol, triglycerides, alkaline phosphatase, 
serum glucose, insulin levels, and serum uric acid. The two 
biomarker models24 were:

9

AST/AST upper limit of normalAPRI 100
platelet count (10 /L)

= ´

and
1/2age (years) AST (U/L) FIB-4 ALT (U/L) .

platelet count (109/L)
´

= ´

SWE examination

SWE was performed with an Re7 ultrasound system (Mind-
ray Medical International Co., Ltd, China, SC5-1 probe) by 
an ultrasonographer with over 15 years of experience in 
abdominal ultrasonography. The patients fasted for about 
4 hours prior to the scan and lay in the supine position 
with their right arm maximally raised and abducted during 
scans. The SWE region of interest was acquired at a location 
deeper than 2 cm from the hepatic capsule to avoid rever-
beration artifacts and was kept away from large vessels. 
The patients were asked to hold their breath for approxi-
mately 7 seconds after quiet breathing. A rectangular elec-
tronic region of interest (ROI) was shown on the best static 
SWE image, in which a circular Q-Box ROI with a diameter 
of about 2 cm and free of large vessels was set for anal-
ysis. Five consecutive 2D-SWE images were obtained for 
each patient, and the median value was reported as the LS. 
Special attention was paid to avoid focal lesions, vessels, 
biliary tracts, or artifacts from nearby lung gas or cardiac 
movement. Measurement failure was defined as Inability to 
obtain any color-coded elasticity images after five trials was 
considered measurement failure.

Histopathological analysis

Liver biopsy was performed within 1 week of the 2D-SWE 
examination. The biopsies were performed in the right liver 
lobe with percutaneous ultrasonographic guidance and pro-
cessed via formalin fixation, paraffin embedding, hematox-
ylin-eosin staining, and Masson staining. A pathologist with 
12 years of experience in hepatobiliary pathology who are 
blinded to the laboratory results and LS measurements per-
formed the histopathologic analysis of all liver specimens. 
Fibrosis staging and inflammation activity were assessed by 
the Scheuer scoring system.25 The stage of fibrosis was as-
sessed as F0, no fibrosis; F1, periportal fibrosis; F2, few 
fibrotic septa, F3, numerous septa; and F4, cirrhosis. Ac-
tivity was graded as A0, no activity; A1, mild activity; A2, 
moderate activity; and A3, severe activity. Staging of ≥F2, 
≥F3, and F4 indicated significant fibrosis, advanced fibrosis 
and cirrhosis, respectively.

DtCNN model

As shown in Figure 1, the DtCNN model contained two 
pathways to stage fibrosis (upper) and inflammation stag-
ing (below). Each pathway included five convolutional and 
pooling layers and each layer contained a 3 × 3 convolution 
kernel and a rectified linear unit (ReLu) activation function. 
A 3 × 3 convolution layer with a stride of 2 was connected 
immediately after the first convolution layer. A batch nor-
malization layer was used after each convolution for faster 
convergence. Concatenation connections between the two 
pathways were applied to provide joint features to the two 
tasks and to improve the prediction performances. Three 
fully-connected layers were connected after the convolu-
tion layers for binary classification. Dual-task learning was 
implemented by introducing several cross-feature units 
between the two pathways. An optimal linear combination 
of hidden feature layers was learned by the cross-feature 
units. Given two activation maps ,ij ij

A Bx x  from the first layer 
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for both tasks, in which A corresponds to the task of fibrosis 
staging and B corresponds to the task of inflammation stag-
ing, a linear combination matrix was learned to connect the 
first layer and the second layer ( , )ij ij

A Bx x  . Specifically, at the 
location (i, j) in the feature map, the linear combination can 
be parameterized using α:

.AA
ij ij
A A
ij i
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j
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x x
x x
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



(1)

The cross-feature unit was inserted into the two path-
ways after each convolution. That helped to regularize both 
tasks by enforcing the shared representations by combining 
both feature maps. By using this network architecture, the 
DtCNN model can learn an optimal combination of shared 
and task-specific representations in a supervised way.

The patients were randomly divided into a training cohort 
and a testing cohort. 2D-SWE images in the training cohort 
were augmented through flipping, mirroring and rotating to 
reduce the overfitting of the proposed DtCNN model. All five 
images acquired from each patient were employed in this 
model. As the training was performed on a per-image ba-
sis, the class with the highest average probability was cho-
sen to be the most likely score from multiple images. Their 
corresponding histological results (F scores and G scores) 
were used as the training labels. Three DtCNN models were 
trained and tested for binary classification of fibrosis stages 
in different subgroups, i.e. ≥F2 (significant fibrosis), ≥F3 
(advanced fibrosis), and F4 (cirrhosis). Similarly, the in-
flammatory activity was classified as A0, ≥A1, ≥A2 and A3. 
For comparison, two independent CNN models were tested: 
the fibrosis model and inflammation model. The diagnostic 
performances of using LS measurements for binary classifi-
cations were also compared.

Table 1.  Baseline characteristics of the overall study cohort

Retrospective cohort Prospective cohort

All patients 
(n=532)

Training cohort  
(n=372)

Testing cohort  
(n=160) p-value All patients  

(n=180)

Demographics

    Age, years 59.3±11.6 59.3±11.4 60.3±11.8 0.45 58.6±11.4

    Male 290 (54.5) 206 (55.4) 84 (52.5) 0.15 153(85.0)

Anthropometry

    Body mass index (kg/m2) 23.9±3.2 23.6±3.1 24±3.3 0.41 23.8±3.1

Liver biochemistry

    ALT (U/L) 40.4±55.4 41.5±62.4 43.2±64.8 0.23 38.5±48.7

    AST (U/L) 43.6±59.1 45.6±67.1 47.6±69.1 0.37 42.2±53.8

    Albumin (mg/L) 39.8±6 39.8±5.7 39.6±6.5 0.53 39.8±5.6

    Platelets (×109/L) 143.6±62.6 142.7±64 139.8±64.6 0.19 145.4±60.8

    Tbil (µmolL) 19.5±14.1 18.4±7.8 19.3±15.7 0.31 19.6±13.0

    Dbil (µmol/L) 3.9±3.1 3.9±2.6 3.7±2.9 0.22 4.1±3.2

    Cr (µmol/L) 76.1±17.4 76.5±18.2 76.9±15.7 0.44 76.0±18.0

    PT (s) 12.3±1.3 12.1±1.4 12.5±1.3 0.11 12.2±1.3

    INR 1.0±0.1 1.0±0.1 1.1±0.1 0.25 1.0±0.1

Scores

    APRI 1.2±2.4 1.3±2.7 1.4±2.8 0.24 1.1±2.1

    FIB-4 3.7±3.8 3.9±4.2 4.1±4.2 0.33 3.5±3.6

Fibrosis stage

    F0-1 186 (35.0) 130 (35.0) 56 (35) 22 (12.2)

    F2 146 (27.4) 100 (26.9) 46 (28.8) 36 (20)

    F3 118 (22.2) 82 (22.0) 36 (22.5) 27 (15.0)

    F4 82 (15.4) 60 (16.1) 22 (13.7) 95 (52.8)

Inflammation

    A0 165 (31.0) 115 (30.9) 50 (31.3) 53 (29.4)

    A1 173 (32.5) 121 (32.5) 52 (32.5) 88 (48.9)

    A2 132 (24.8) 92 (24.7) 40 (25.0) 23 (12.8)

    A3 62 (11.7) 44 (11.8) 18 (11.2) 16 (8.9)

Variables are means ± standard deviation or n (%). AFP, alpha fetal protein; ALT, alanine aminotransferase; AST, aspartate transaminase; Cr, Creatine; Dbil, direct 
bilirubin; INR, international normalized ratio; PT, prothrombin time; Tbil, total bilirubin.
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The DtCNN model was performed on a computer equipped 
with an Intel® Xeon® Processor E5-2640, 16 GB of mem-
ory, and 4 NVIDIA V100 graphic processing units with 16 
gigabytes of memory each.

Statistical analysis

Variables were reported as means±SD. Mann-Whitney U-
tests and χ2-tests were performed for the comparative anal-
ysis. Receiver operating characteristic (ROC) curves were 
plotted to evaluate the discriminating fibrosis stages as ≥F2 
(significant fibrosis), ≥F3 (advanced fibrosis), and F4 (cir-
rhosis). The area under the curve (AUC), accuracy, sensitiv-
ity, specificity, positive predictive value and negative pre-
dictive value were calculated to evaluate the performance 
of the DtCNN model. Comparisons between the AUCs were 
performed with the DeLong test.26 All statistical analyses 
were performed using SPSS v.20.0 (IBM Corp., Armonk, NY, 
USA). P value <0.05 was considered statistically significant.

Results

A typical case of liver fibrosis and inflammation is shown 
in Figure 2. The LS values increased significantly with the 
progression of liver fibrosis and inflammation (overall p < 
0.001). The patients with inflammation activities >2 had 
higher 2D-SWE LS measurement than those < 2. It can 
be observed that both fibrosis and inflammation influenced 
the LS measurement, especially for patients with higher 
fibrosis stages or severe inflammation activities. The di-
agnostic performance of the DtCNN in classifying liver fi-
brosis and inflammation using 2D-SWE images in the ret-
rospective cohort is shown in Figure 3 and Table 2. For 
classification of significant fibrosis (≥F2), the AUC of the 
liver stiffness measurement (LSM) was 0.78 [95% confi-
dence interval (CI): 0.75–0.82), sensitivity was 0.68, and 
specificity was 0.81. For classification of advanced fibrosis 
(≥F3), LSM had an AUC of 0.77 (95% CI: 0.72–0.81), sen-
sitivity of 0.60, and specificity of 0.85. For classification 
of liver cirrhosis (F4), LSM had an AUC of 0.76 (95% CI: 

Fig. 1.  Illustration of the dual-task convolutional neural network (DtCNN) model for liver fibrosis and inflammation staging. Cross-feature units between 
the two pathways were applied to provide joint features to the two tasks and to improve the prediction performances.

Fig. 2.  Typical cases of liver fibrosis and inflammation. It can be observed that both fibrosis and inflammation influence the liver stiffness (LS) measurement.
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0.72–0.80), sensitivity of 0.66, and specificity of 0.82. The 
fibrosis model outperformed the AUCs for different Scheu-
er fibrosis stages, for significant fibrosis the AUC=0.82 
(95% CI: 0.80–0.85), advanced fibrosis AUC=0.84 (95% 
CI: 0.81–0.87), liver cirrhosis AUC=0.82 (95% CI: 0.80–
0.84)). The DtCNN clearly outperformed the other classi-
fication models of Scheuer fibrosis stage [(significant fi-
brosis AUC=0.89 (95% CI: 0.87–0.92), advanced fibrosis 
AUC=0.87 (95% CI: 0.84–0.90), liver cirrhosis AUC=0.85 
(95% CI: 0.81–0.89)]. DtCNN-based inflammation staging 
had AUCs of 0.82 (95% CI: 0.78–0.86) for ≥A1, 0.88 (95% 
CI: 0.85–0.90) for ≥A2, and 0.78 (95% CI: 0.75–0.81) for 
≥A3, which were significantly higher than the single-task 
groups (Table 3).

For the prospective dataset, the DtCNN had the best di-
agnostic performance compared with the other classifica-
tion methods. The AUCs were 0.88 (95% CI: 0.83–0.91) for 
significant fibrosis, 0.83 (95% CI: 0.80–0.85) for advanced 
fibrosis, and 0.88 (95% CI: 0.82–0.93) for liver cirrhosis 
(Fig. 4 and Supplementary Table 1). DtCNN-based inflam-
mation staging had AUCs of 0.83 (95% CI: 0.79–0.86) for 
≥A1, 0.88 (95% CI: 0.86–0.91) for ≥A2, and 0.77 (95% 
CI: 0.75–0.79) for ≥A3, which were significantly higher 
than those for the single-task groups (Fig. 4 and Supple-
mentary Table 2). The main findings in the prospective vali-
dation dataset were consistent with those obtained with the 
retrospective data. The dual-task DtCNN model increased 
the diagnostic performance for both fibrosis and inflamma-

tion staging.
The 2D-SWE results for Scheuer fibrosis and inflamma-

tion stages are shown in Figure 5. With the DtCNN model, 
the diagnostic concordance rates of fibrosis staging were 
77.3% for F1, 51.3% for F2, 51.4% for F3, and 55.7% for 
F4; and the rates for inflammation staging were 58.9% for 
A0, 60.3% for A1, 48.9% for A2, and 33.0% for A3. When 
both Scheuer fibrosis and inflammation stages were taken 
into consideration in the proposed DtCNN model, the dis-
cordance was significantly less than that observed with the 
single-task models.

Discussion

This study explored the influence of liver inflammation on 
fibrosis staging using 2D-SWE. The dual-task predictive 
model significantly improved staging accuracy. The DtCNN 
model achieved better AUCs than those of the single-task 
(i.e. fibrosis or inflammation) models. Although the diag-
nostic performance of SWE has been well validated for liver 
fibrosis staging, the effect of hepatic inflammation on tissue 
stiffness has not been evaluated with the existence of liver 
fibrosis. To the best of our knowledge, this is the first deep 
learning model to assess liver fibrosis and inflammation si-
multaneously.

The LS measurement-based fibrosis staging outper-

Fig. 3.  Comparison of the receiver operating characteristic (ROC) curves of the dual-task convolutional neural network (DtCNN); fibrosis model; in-
flammation model; LSM; APRI and FIB-4 for the assessment of (A) significant fibrosis (≥F2); (B) advanced fibrosis (≥F3); (C) cirrhosis (F4); (D) ≥A1; 
(E) ≥A2; and (F) A3 inflammation using retrospective data. 
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formed APRI and FIB-4 for all groups; and with the intro-
duction of the deep learning model, the diagnostic perfor-
mance further improved in all study groups. Several studies 
have reported that the diagnostic performance of 2D-SWE 
was better than that of transient elastography and point 
SWE in assessing liver fibrosis.27–29 Although the measure-
ment of stiffness and thresholding is the most widely used 
method of fibrosis staging, deep learning has advantages 
because it can extract texture and pattern.12–14 Previous 
studies have reported that the hepatic surface nodularity,30 

coarseness of the hepatic parenchyma,31 and caudate lobe 
hypertrophy32 were significant predictors of liver cirrhosis. 
Deep learning can capture the heterogeneity of intensity 
and texture from the images.

The assessment of significant and advanced fibrosis was 
significantly improved by the DtCNN compared with single-
task models, which means the bias in 2D-SWE measure-
ment caused by liver inflammation was significant. The find-
ings are consistent with previous studies16–18 that reported 
a significant association between the extent of inflamma-

Table 2.  Comparison of diagnostic performance of the models in assessment of significant fibrosis, advanced fibrosis, and cirrhosis using retrospec-
tive data

Classification Model AUC Accuracy Sensitivity Specificity

Significant fibrosis (≥F2) DtCNN model 0.89 0.81 0.82 0.80

Fibrosis model 0.82 0.78 0.59 0.90

LSM 0.78 0.76 0.68 0.81

APRI 0.72 0.73 0.62 0.80

FIB-4 0.66 0.66 0.56 0.72

Advanced fibrosis (≥F3) DtCNN model 0.87 0.80 0.81 0.79

Fibrosis model 0.84 0.78 0.59 0.90

LSM 0.77 0.75 0.60 0.85

APRI 0.72 0.71 0.60 0.78

FIB-4 0.65 0.66 0.49 0.76

Cirrhosis (F4) DtCNN Model 0.85 0.78 0.62 0.89

Fibrosis Model 0.82 0.77 0.79 0.76

LSM 0.76 0.76 0.66 0.82

APRI 0.75 0.75 0.61 0.84

FIB-4 0.66 0.66 0.43 0.80

APRI, aspartate transaminase-to-platelet ratio index; AUC, area under the curve; DtCNN, dual-task convolutional neural network; FIB-4, fibrosis index based on four 
factors; LSM, liver stiffness measurement.

Table 3.  Comparison of diagnostic performance of the models in assessment of liver inflammation on retrospective data

Classification Model AUC Accuracy Sensitivity Specificity

≥A1 DtCNN model 0.82 0.75 0.69 0.80

Inflammation Model 0.72 0.70 0.54 0.80

LSM 0.66 0.67 0.53 0.75

APRI 0.63 0.65 0.46 0.76

FIB-4 0.59 0.63 0.26 0.85

≥A2 DtCNN model 0.88 0.80 0.82 0.79

Inflammation model 0.82 0.77 0.59 0.89

LSM 0.71 0.72 0.55 0.82

APRI 0.76 0.74 0.57 0.85

FIB-4 0.67 0.67 0.53 0.76

A3 DtCNN model 0.78 0.74 0.67 0.78

Inflammation model 0.70 0.70 0.59 0.76

LSM 0.63 0.65 0.48 0.76

APRI 0.64 0.67 0.48 0.78

FIB-4 0.62 0.63 0.29 0.85

APRI, aspartate transaminase-to-platelet ratio index; AUC, area under the curve; DtCNN, dual-task convolutional neural network; FIB-4, fibrosis index based on four 
factors; LSM, liver stiffness measurement.
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tion and 2D-SWE-based stiffness and that both measure-
ments should be evaluated and considered in the predictive 
model. It is known that the velocity of shear waves can 
be affected by inflammation because tissues are composed 
of viscoelastic materials.33 However, the extent of inflam-
mation increases the viscosity of liver tissue.34 Our DtCNN 
model performed two tasks simultaneously and shared the 
features of the layers for joint learning. It thus overcame 
the interference of liver inflammation on fibrosis staging in 
CHB patients, which is essential for elastography diagnosis. 
In addition to liver inflammation, many other confounding 
factors for fibrosis staging exist (e.g. steatosis, siderosis, 
obesity, cholestasis, and ascites). It has been reported that 
in patients with moderate to severe steatosis, the thicker 
abdominal walls attenuated ultrasound reflection and af-
fected the LS measurements.35 Fatty liver was associated 
with a significant decrease in the AUC of 2D-SWE.35 Our 
DtCNN model can easily be extended to a multitask model 
that includes more confounding factors in the prediction, 
thus further improving the diagnostic performance in real 
scenarios. In addition, CNN models have been reported to 
performance well in the assessment of liver fibrosis using 
computed tomography (CT)36–38 and magnetic resonance 
imaging (MRI).39,40 With mild modification, the DtCNN mod-
el can also be used with those imaging modalities.

Several limitations exist in this study. First, the study was 
validated only in a single center. It is necessary to test the 
performance of the DtCNN using US scanners and systems 
from different manufacturers. Standard algorithms are also 

necessary to reduce the variability of US images from dif-
ferent centers. Unlike Wang et al.,12 we developed an auto-
matic tool to select the circular ROI inside the Q-Box as the 
input of the network, as the quality of those areas were well 
controlled by the system. This technique can be easily ap-
plied to existing US scanners without specific operations for 
the selection of the scanning planes. Second, the distribu-
tion of fibrosis and inflammation stages was uneven, which 
may bias the training procedure. Resampling algorithms 
should be introduced into the data augmentation step to 
improve performance.

Conclusions

The proposed DtCNN improved the diagnostic performance 
of existing fibrosis staging models by introducing liver in-
flammation into the model. DtCNN provided more accurate 
assessments of liver fibrosis and inflammation stages than 
serum biomarkers in patients with CHB, which supports its 
potential for clinical application.
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