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The schizophrenia risk gene NRGI controls the formation of excitatory and inhibitory synapses in cortical circuits. While the
expression of different NRG1 isoforms occurs during development, adult neurons primarily express the CRD-NRG1 isoform
characterized by a highly conserved intracellular domain (NRGI1-ICD). We and others have demonstrated that Nrgl
intracellular signaling promotes dendrite elongation and excitatory connections during neuronal development. However, the
role of Nrgl intracellular signaling in adult neurons and pathological conditions remains largely unaddressed. Here, we
investigated the role of Nrgl intracellular signaling in neuroprotection and stroke. Our bioinformatic analysis revealed the
evolutionary conservation of the NRG1-ICD and a decrease in NRG1 expression with age in the human frontal cortex. Hence,
we first evaluated whether Nrgl signaling may affect pathological hallmarks in an in vitro model of neuronal senescence;
however, our data failed to reveal a role for Nrgl in the activation of the stress-related pathway p38 MAPK and DNA damage.
Previous studies demonstrated that the soluble EGF domain of Nrgl alleviated brain ischemia, a pathological process involving
the generation of free radicals, reactive oxygen species (ROS), and excitotoxicity. Hence, we tested the hypothesis that Nrgl
intracellular signaling could be neuroprotective in stroke. We discovered that Nrgl expression significantly increased neuronal
survival upon oxygen-glucose deprivation (OGD), an established in vitro model for stroke. Notably, the specific activation of
Nrgl intracellular signaling by expression of the Nrgl-ICD protected neurons from OGD. Additionally, time-lapse experiments
confirmed that Nrgl intracellular signaling increased the survival of neurons exposed to OGD. Finally, we investigated the
relevance of Nrgl intracellular signaling in stroke in vivo. Using viral vectors, we expressed the Nrgl-ICD in cortical neurons
and subsequently challenged them by a focal hemorrhagic stroke; our data indicated that Nrgl intracellular signaling improved
neuronal survival in the infarcted area. Altogether, these data highlight Nrgl intracellular signaling as neuroprotective upon
ischemic lesion both in vitro and in vivo. Given the complexity of the neurotoxic effects of stroke and the involvement of
various mechanisms, such as the generation of ROS, excitotoxicity, and inflammation, further studies are required to determine
the molecular bases of the neuroprotective effect of Nrgl intracellular signaling. In conclusion, our research highlights the
stimulation of Nrgl intracellular signaling as a promising target for cortical stroke treatment.

1. Introduction

The major synaptogenic protein Neuregulin 1 (Nrgl) controls
the formation of excitatory and inhibitory synapses in the cor-
tex [1-3]. The Nrgl gene encodes more than 20 isoforms
grouped into six types of proteins. While the Nrgl extracellu-
lar domain displays high variability, all isoforms contain the
epidermal growth factor- (EGF-) like domain located in the
extracellular domain that is necessary and sufficient for acti-
vation of the ErbB4 receptor. In addition, many Nrgl iso-

forms possess common transmembrane and intracellular
domains that elicit Nrgl intracellular (or noncanonical) sig-
naling [1]. Similarly to Notch signaling, the transmembrane
domain of Nrgl is first cleaved by alpha- or beta-secretases
and subsequently by gamma-secretase [4, 5]. Neuronal activ-
ity or binding to the ErbB4 receptor triggers this regulated
processing [2, 6-8], releasing the resulting intracellular
domain of Nrgl (Nrgl-ICD) for translocation to the nucleus.

Different studies have demonstrated that Nrgl/ErbB4
canonical signaling controls both the formation of cortical
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inhibitory circuits and the synchronization of neuronal
activity [1, 3, 9-12]. Many of these studies used gain-
and loss-of-function approaches to investigate the role of
the ErbB4 receptor and its canonical signaling in inhibi-
tory interneurons. Given the strong association of Nrgl
with schizophrenia [1], most studies have focused on the
neurodevelopmental role of Nrgl signaling in the forma-
tion of cortical circuits. In this context, we and others
have established that Nrgl intracellular signaling promotes
neurite development and the establishment of excitatory
synapses [2, 5, 7]. During the development of the peripheral
nervous system, Nrgl stimulates myelination and promotes
survival of sensory neurons [1, 6, 13]. In addition, studies
have implicated Nrgl in pathologies such as neuroinflam-
mation [14-17], neurodegenerative disorders [18-20], and
stroke [21-24]. However, the role of noncanonical Nrgl
intracellular signaling in pathological conditions or mature
neurons remains largely unaddressed. Of note, CRD-Nrgl
(also known as type III Nrgl), a transmembrane isoform
endowed with intracellular signaling, represents the most
abundant isoform of Nrgl in adult neurons.

Herein, we investigated the role of Nrgl-ICD signaling in
mature neurons and tested a working hypothesis that this
pathway may exert a neuroprotective role in mature cortical
neurons. As our bioinformatic query revealed a decrease in
NRG1 expression with age, we first hypothesized a link
between Nrgl intracellular signaling and aging. In our
in vitro experiments, Nrgl intracellular signaling failed to
affect the tested hallmarks of neuronal senescence, namely,
DNA damage and p38 mitogen-activated protein kinase
(MAPK) activation, a pathway activated by age-related
stressors such as inflammation and oxidative stress.

As previous studies indicated an increase in Nrgl expres-
sion in response to hypoxia and that ErbB4 activation
reduced ischemic infarct, we hypothesized that Nrgl intra-
cellular signaling might be neuroprotective in hypoxia
and stroke.

Our data revealed that OGD conditions triggered the
activation of Nrgl intracellular signaling in cortical neurons
in vitro, while the activation of Nrgl intracellular signaling
reduced neuronal death following OGD. Notably, we discov-
ered that Nrgl also improved neuronal survival in an exper-
imental model of cortical hemorrhagic stroke in vivo.

2. Materials and Methods

2.1. Bioinformatic Analyses of the Phylogenetic Conservation
of the Nrgl Transmembrane Region and NRG1 Expression.
The sequences of NRGI were downloaded from the Ensembl
website (https://www.ensembl.org) and aligned using Clus-
talW (McGettigan PA 2007). We aligned the following
sequences: panda (Ailuropoda melanoleuca; ENSAMEP
00000014935), dog (Canis familiaris; ENSCAFP0000
0009544), cat (Felis catus; ENSFCAP00000018373), ferret
(Mustela putorius; ENSMPUP00000010121), chimpanzee
(Pan troglodytes; ENSPTRP00000034489), human (homo
sapiens; ENSP00000287842), gorilla (Gorilla; ENSGGOP
00000023096), Macacus (Macaca mulatta; ENSMMUP
00000000296), marmoset (Callithrix jacchus; ENSCJAP
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00000047313), cavia (Cavia porcellus; ENSCPOP0000
0007007), mouse (Mus musculus; ENSMUSP00000073546),
and sheep (Ovis aries; ENSOARP00000000211). The meta-
analysis of NRG1 expression in human aging was described
previously [25]. The meta-analysis database is publicly
available under Creative Commons CC BY-NC-ND 4.0
license [25].

2.2. NRG!1 Gene and Protein Naming. We followed the
naming of Neuregulin 1 used in NCBI and Ensembl web-
sites for the use of capital letters and the NCBI Style Guide
for the use of italic and nonitalic letters. Therefore, we used
the following: NRGI, for the human gene; NRG1, for the
human protein; Nrgl, for the mouse gene; and Nrgl, for
the mouse protein.

2.3. Nrgl Constructs and Adeno-Associated Viral Vectors.
The original constructs for the expression of GFP-tagged
Nrgl-ICD and CRD-Nrgl (Nrgl-FL), aka type IIT Nrgl,
from Mus musculus, were previously generated and fully
described [5]. The constructs were subcloned into the
PAAV-hSyn-hChR2(H134R)-mCherry vector kindly depos-
ited by Karl Diesseroth into the Addgene repository
(https://www.addgene.org/26976). Briefly, the original open
reading frame was excised and the Nrgl sequence was
inserted after the human Synapsin promoter. Correct cloning
was verified via sequencing. The vector for GFP expression
under the human Synapsin promoter was kindly deposited
into the Addgene repository by Bryan Roth (https://www.
addgene.org/50465). The adeno-associated viral particles
(AAVs), serotype 1, were produced and purchased by the
Viral Vector Production Unit (UPV) of the Universitat
Autonoma de Barcelona, Spain, according to standard proto-
cols. The physical titer of the viral particle was also evaluated
by immunofluorescence in neurons to assess the biological
activity and obtain the same level of infection for the three
viruses. The correct expression of the constructs was also
verified by Western blot (not shown).

2.4. Neuronal Cultures. Primary cultures of cortical neurons
were prepared from embryonic day 17-18 (E17-18) C57Bl6]
mice, as previously described [3, 5]. Briefly, embryonic brains
were dissected and placed into ice-cold Hank’s solution with
7mM HEPES and 0.45% glucose. The tissue was trypsinized
at 37°C for 15 min and then treated with DNase (72 ug mL™;
Sigma-Aldrich) for 1min at 37°C. Cortices were washed
Hank’s solution, dissociated by mechanical disaggregation
in 5mL of plating medium (Minimum Essential Medium
(MEM) supplemented with 10% horse serum and 20% glu-
cose), and counted in a Neubauer chamber. Cells were plated
into precoated dishes with poly D-lysine (Sigma-Aldrich)
(150,000 cells per well in 12-well plates) and placed into a
humidified incubator containing 95% air and 5% CO,. The
plating medium was replaced with equilibrated neurobasal
media supplemented with B27 and GlutaMAX (Gibco; Life
Technologies Co.). Infection with viral vectors was per-
formed on day 3 (D3). On D10, the culture medium was
replaced with medium without GlutaMAX. For the paradigm
of in vitro aging, the culture medium was substituted at D14
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with a medium with B27 minus antioxidants (Thermo
Fisher, 10889038) and cells were analyzed at D21.

Oxygen-glucose deprivation (OGD) was performed as
previously described [26]. Briefly, the OGD medium (I mM
CaCl,, 5mM KCl, 137mM NaCl, 04mM KH, PO,
0.3 mM Na,HPO,, 0.5 mM MgCl,, 0.4 mM MgSO,, 25 mM
HEPES, 4 mM NaHCO,) was equilibrated at 37°C and satu-
rated with bubbling nitrogen. The culture medium was
substituted with the saturated OGD medium in a custom-
made hypoxia chamber at conditions with 0% oxygen. After
the hypoxic stress, the OGD medium was changed again
for the original conditioned culture medium.

2.5. Immunofluorescence. Immunocytochemistry was per-
formed according to a standard protocol as previously
described [5]. Briefly, neurons were fixed with 4% parafor-
maldehyde for 10 min, permeabilized for 10 min with PBS
with 0.1% Triton, and then blocked with 2% PBS-BSA.
Primary and secondary antibodies were diluted in 2%
PBS-BSA. After staining, the coverslips were mounted in
Mowiol for imaging. For fixed material, pictures were taken
with an Axioskop 2 (Zeiss) microscope and a CoolSNAP
FX camera (Roper Scientific): objectives 10X/0.3 Plan-
Neofluar, 25X/0.8 Korr Plan-Neofluar Ph2 DICIII oil.
Time-lapse imaging used a microscope Axiovert 200
(Zeiss), a camera ORCA-Flash4.0 LT sCMOS (C11440-42U)
(Hamamatsu), and an objective 10X/0.3 Plan-Neofluar.
Images were processed and analyzed with Image] and GIMP
and mounted with Inkscape software. GraphPad was used
for statistical analysis and generation of graphs.

The images of the nuclear localization of Nrgl-ICD upon
OGD were acquired with a Leica TCS SP2 AOBS (Leica
Microsystems Heidelberg GmbH, Mannheim, Germany)
inverted laser scanning confocal microscope using the oil
objective 63X Plan-Apochromat-Lambda Blue 1.4 N.A. The
excitation wavelengths for fluorochromes were 488 nm
(argon laser) for GFP and 405nm (blue diode) for DAPL
Two-dimensional pseudocolor images were gathered with a
size of 1024 x 1024 pixels and Airy 1 pinhole diameter. All
confocal images were acquired using the same settings.
Image] was used to analyze the confocal images. First, a
Z-stack was generated and an image showing a nuclear plane
was selected for each stack. GFP fluorescence intensity was
measured in the soma and in the nucleus of each neuron
using DAPI staining as a mask for delimiting the nucleus.
A total of 27 neurons (9 neurons per well) were analyzed in
three independent wells per each experimental condition.

Antibodies used were phopsho-p38 MAPK (1/200;
sc-166182; Santa Cruz), phospho-histone-h2a-x-ser139-
antibody, phospho-H2AX (1/200; 2577, Cell Signaling
Technology (CST)), GFP (1/500; GFP-1020, Aves Labs),
and MAP2 (1/500; MA5-12826, Thermo Fisher). All second-
ary antibodies are Alexa conjugated from Life Technologies.

2.6. RNA Extraction and qPCR. The neurons were cultured in
normoxic conditions and analyzed at D14. Neuronal cultures
were homogenized with TRIzol Reagent (Ambion/RNA
Life Technologies Co.), and RNA was extracted with
Direct-zolTM RNA minipreps (ZIMO research ref. R2052)

following the manufacturer’s instructions. RNA was quanti-
fied by absorbance at 260 nm using a NanoDrop ND-100
(Thermo Scientific; Thermo Fisher Scientific Inc.). Retro-
transcription to first-strand cDNA was performed using a
RevertAid H Minus First Strand ¢cDNA Synthesis Kit
(Thermo Scientific; Thermo Fisher Scientific Inc.). Briefly,
5ng of synthesized cDNA was used to perform the qPCR
using GoTaq® qPCR Master Mix (Promega Co., Madison,
WI, USA) in ABI PRISM 7900HT SDS (Applied Biosystems;
Life Technologies Co.). All values were normalized with the
housekeeping gene Gapdh. The primer pairs used in this
study were designed and validated by PrimerBank (https://
pga.mgh.harvard.edu/primerbank/) [27].

Primer sequences:

Casp2 (GGAGCAGGATTTTGGCAGTGT, GCCTGG
GGTCCTCTCTTTG)

Casp3 (ATGGAGAACAACAAAACCTCAGT, TTGC
TCCCATGTATGGTCTTTAC)

Casp7 (CCCACTTATCTGTACCGCATG, GGTTTT
GGAAGCACTTGAAGAG)

DAPKI1 (ATGACTGTGTTCAGGCAGGAA, CCGGTA
CTTTTCTCACGACATTT)

Apafl (AGTGGCAAGGACACAGATGG, GGCTTC
CGCAGCTAACACA)

MAPK1 (GGTTGTTCCCAAATGCTGACT, CAACTT
CAATCCTCTTGTGAGGG)

BAD (AAGTCCGATCCCGGAATCC, GCTCACTCG
GCTCAAACTCT)

BAX (TGAAGACAGGGGCCTTTTTG, AATTCGCCG
GAGACACTCG)

Bcl-2 (GTCGCTACCGTCGTGACTTC, CAGACATGC
ACCTACCCAGC)

BCL2I1 (GACAAGGAGATGCAGGTATTGG, TCCC
GTAGAGATCCACAAAAGT)

Aktl (ATGAACGACGTAGCCATTGTG, TTGTAG
CCAATAAAGGTGCCAT)

MAPK14 (TGACCCTTATGACCAGTCCTTT, GTCA
GGCTCTTCCACTCATCTAT)

Rbfox3 (ATCGTAGAGGGACGGAAAATTGA, GTTC
CCAGGCTTCTTATTGGTC)

Gapdh (CTCCCACTCTTCCACCTTCG, CATACC
AGGAAATGAGCTTGACAA)

2.7. Experimental In Vivo Model of Stroke. The experiments
were performed in 3-month-old C57Bl6] female mice pro-
vided by Charles River at the Centro de Biologia Molecular
“Severo Ochoa” (CSIC), Madrid, Spain. Experiments were
supervised by the bioethics committee of the institute and
performed in compliance with bioethical regulations of the
European Commission. Animals were group housed with
food and water ad libitum.

The stereotactic injection of viral vectors for the expres-
sion of GFP and Nrgl-ICD was performed 30 days before
experimental stroke. The operation was performed according
to standard procedure as previously described [28]. Briefly,
mice were anesthetized with isoflurane and placed in a ste-
reotaxic frame. Coordinates (mm) relative to bregma were
as follows: anteroposterior, 1.3; mediolateral, 1.0; and dorso-
ventral axes, 0.8. 1 uL of the virus was injected at a flow rate
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of 0.2 yuL per minute with a Hamilton syringe. At the end of
the injection, the needle was left in place for 5 minutes to
allow the diffusion of the virus and then gently withdrawn.
The injection of collagenase was performed with a similar
procedure: 18 mU of collagenase (from Clostridium histolyti-
cum, type VII-S, catalog number C2399, Sigma-Aldrich) in a
volume of 1 uL was injected at stereotaxic coordinates rela-
tive to bregma as follows: anteroposterior, 1.7; mediolateral,
1.0; and dorsoventral axes, 0.8. 1uL of collagenase was
injected at a flow rate of 0.2 uL per minute with a Hamilton
syringe. At the end of the injection, the needle was left in
place for 5 minutes to allow the diffusion of the collagenase
and then slowly withdrawn. Mice were allowed to recover
and sacrificed 24 hours after the injection of the collagenase.

2.8. Histology. Mouse brains were fixed and processed as pre-
viously described [29]. Briefly, mice were perfused through
the circulatory system with 4% paraformaldehyde, postfixed
for 2 hours, cryoprotected in 30% sucrose, and then cut with
a cryostat at 40 ym. Primary and secondary antibodies were
diluted in PBS with 0.25% Triton and 4% BSA and incubated
overnight in floating sections. The antibody for GFP staining
(GFP-1020, Aves Lab) was diluted 1/500. The Alexa488-
conjugated anti-chicken secondary antibody was purchased
from Life Technologies. Pictures were taken with a Leica
DM6000B microscope equipped with a Leica DFC35FX
camera and an HCX PL FLUOTAR 10X 0.3 dry objective.

3. Results

3.1. NRG1 Phylogenetic Conservation and Expression during
Human Aging. The NRGI gene generates six types of protein
and more than 20 isoforms that are differentially expressed
during development and regulated by neuronal activity
[1, 30]. These isoforms mostly diverge in the extracellular
region, while the transmembrane and the ICD are common
to the majority of isoforms. Therefore, we investigated the
phylogenetic conservation of NRG1 with a specific focus on
the transmembrane domain (TM) and the initial section of
the ICD. These regions contain sequences crucial to the
intracellular signaling of NRGI1 as they control NRG1 pro-
cessing and ICD nuclear localization.

We compared NRG1 sequences in different mammals,
including mouse, human, and four nonhuman primates.
Notably, we discovered the full conservation of the amino
acids of the TM domain and the phosphorylation sites
that control the processing of NRG1 in the species tested
[4, 7, 31, 32], as well as the nuclear localization signal.
Interestingly, a methionine whose mutation has been linked
to schizophrenia (Met-to-Thr, rs10503929) [33, 34] dis-
played full conservation and precedes another methionine
conserved in all primates, while not being found in the other
mammals tested (Figure 1(a)). Overall, the phylogenetic
conservation of amino acids crucial for Nrgl intracellular
signaling further supports the relevance of the Nrgl-ICD
signaling pathway.

Recent studies suggested the involvement of NRGI in
age-related neurodegenerative disorders [18-20] and the
decrease of NRGI expression during aging [30]. As the
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analysis of NRG1 expression in humans was performed on
a small dataset, we decided to perform the analysis of
NRGI expression in larger independent datasets. Specifically,
we queried the expression of NRG1 and its putative receptor
ERBB4 in a database that reports the meta-analysis of
transcriptome-wide microarray datasets from four inde-
pendent human cohorts, namely, Tgen, BrainEqtl, HBTRC,
and BrainCloud [25]. In total, these databases provided
n =716 individuals > 25 years of age. In all four cohorts, there
existed a negative correlation between age and NRG1/ERBB4
expression, indicating a decrease in both NRG1 and ERBB4
expression with increasing age (Figure 1(b)). The decrease
in expression was particularly evident for NRG1 as con-
firmed by the meta-analysis of the four databases
(NRGI, p=1.69E - 05; false discovery rate p=0.000403;
ERBB4, p =0.00361; false discovery rate p=0.0303).

We reasoned that the conservation of NRG1-ICD signal-
ing, the decreased expression of NRG1/ERBB4 during aging,
and the involvement of NRG1 in neurodegeneration might
indicate a role of NRG1 intracellular signaling in neuropro-
tection in the aging brain.

To address this working hypothesis, we first generated
viral vectors to express CRD-Nrgl full-length (Nrgl-FL)
and Nrgl-ICD.

3.2. Generation and Validation of Viral Vectors Expressing
Nrgl. We and others have previously established that the
expression of the Nrgl-ICD mimics the end product of
CRD-Nrgl full-length processing by gamma-secretase and
consistently activates Nrgl intracellular signaling [5, 6]. To
improve upon this approach, we generated AAVs to express
Nrgl-ICD and CRD-Nrgl full-length (hereafter, Nrgl-FL)
under the human Synapsin promoter (Figure 2(a)). We dis-
covered that these vectors allowed the efficient and neuronal-
specific expression of Nrgl. We fused the C-terminal portion
of Nrgl to GFP to enable visualization, and as expected, the
Nrgl-ICD construct localized mainly in the nucleus while
the Nrgl-FL localizes mostly to the cytosol and membrane.
The neurons expressing the Nrgl-ICD and Nrgl-FL failed
to exhibit overt signs of anomalies when compared to
GFP-expressing control neurons (Figure 2(b)).

3.3. Nrgl Intracellular Signaling Does Not Affect p38 MAPK
Activation and DNA Damage In Vitro. Next, we began to
evaluate the working hypothesis that Nrgl intracellular
signaling may be neuroprotective during neuronal aging
in vitro. In long-term culture, neurons accumulate various
alterations related to senescence, including oxidative stress,
DNA damage, and changes in lipid composition [35-37].

Here, we focused on two hallmarks of neuronal senes-
cence: the activation of the stress sensor p38 MAPK and
DNA damage (Figure 3 and Supplemental Figure 1).
Different cellular stressors, such as inflammatory cues and
oxidative stress, activate p38 MAPK [38]. As a readout for
p38 activation, we measured the phosphorylation of p38
MAPK, and to measure DNA damage, we quantified the
phosphorylation of H2AX, a canonical marker of DNA
damage [39].
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and the phosphorylation sites (green circles). The black arrowhead indicates the location of the Val-to-Leu (rs7494201) schizophrenia-linked
mutation that affects gamma-secretase processing and Nrgl intracellular signaling. The red arrowheads indicate the amino acids in the
nuclear localization signal required for the nuclear targeting of Nrgl-ICD. The grey arrowhead indicates the site of the Met-to-Thr
mutation, rs10503929, while the white arrowhead indicates a primate-specific polymorphism. CRD: cysteine-rich domain; EGF: epithelial
growth factor domain; TM: transmembrane domain. (b) Forest plot showing the correlation Z-score between age and mRNA expression for
NRGI and ERBB4 in four independent datasets (Tgen, n = 179; BrainEqtl, n = 256; HBTRC, n = 153; BrainCloud, n = 128). Meta-analysis

conducted at the gene level employing Stouffer’s weighted Z-score.

We cultured cortical neurons for two weeks under stan-
dard conditions to allow cortical neuron maturation [5]. At
D14 in our experimental conditions, we observed a low level
of phosphorylated p38 MAPK with only a few neurons dis-
playing signs of DNA damage (Supplemental Figure 1).
After D14, we cultured cortical neurons in a specific
medium lacking antioxidants to accelerate senescence and
then analyzed neurons at D21. These conditions prompted
a robust increase in both p38 MAPK activation and DNA
damage; however, we failed to encounter any significant
differences between Nrgl-ICD- and GFP-expressing neurons
regarding the activation of p38 MAPK or the presence of
DNA damage at D21 (Figure 3). While we acknowledge
the caveats and limitations inherent in this experimental
paradigm, our findings do not seem to indicate a
significant role of Nrgl in the regulation of the hallmarks
that we tested.

3.4. OGD Stimulates Nrgl Intracellular Signaling In Vitro.
Previous studies suggested that Nrgl forward signaling via
ErbB4 may aid recovery from stroke [21, 22, 40], a pathology
associated with aging in humans [41]. As the involvement of
Nrgl intracellular signaling in stroke remains unaddressed,
we assessed whether Nrgl intracellular signaling could be
neuroprotective in stroke.

We first asked whether OGD conditions altered Nrgl
processing and the activation of Nrgl intracellular signaling.
Neuronal depolarization or binding to the receptor ErbB4
triggers Nrgl intracellular signaling; the transmembrane
domain of Nrgl becomes cleaved, and this processing releases
the ICD that then translocates to the nucleus [2, 5-7].
With this in mind, we infected cortical neurons to express
Nrgl-FL tagged with GFP at the C-terminus to follow the
nuclear localization of Nrgl-ICD. Neuronal depolarization
induced by KCl treatment increased the nuclear localization
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FIGURE 2: Generation and validation of viral vectors for Nrgl expression. (a) Schematic representation of the constructs for the expression of
Nrgl-ICD (including the nuclear localization signal (NLS)) and Nrgl-FL both fused to GFP. The schema of the vector for the production of
AAV particles to express Nrgl under human Synapsin promoter is depicted on the right. CRD: cysteine-rich domain; EGF: epithelial growth
factor domain; TM: transmembrane domain; ITR: inverted terminal repeat; ORF: open reading frame; hGH PA: human growth hormone
polyadenylation signal. (b—j) Immunofluorescent labeling of primary cortical neurons infected to express GFP, Nrgl-ICD, or Nrgl-FL and
fixed at D14. The neurons were labeled with DAPI and microtubule-associated protein 2 (MAP2) to visualize neuronal dendrites. The
boxed area in (b, e, h) depicts the area magnified in (d, g, j). The dotted lines delimit the nuclei to highlight the specific localization of
Nrgl constructs. Scale bar, 50 um.
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FIGURE 3: Nrgl intracellular signaling does not affect the activation of p38 MAPK and DNA damage in vitro. (a-d) Representative images of
neurons subjected to in vitro aging expressing either GFP as control or Nrgl-ICD labeled by GFP (a, b) and phospho-p38 MAPK (c, d). The
color bar on the right illustrates the lookup table (LUT) for signal intensity. Scale bar, 20 yum. (e) Graph illustrates the quantification of
phospho-p38 MAPK labeling expressed in arbitrary units (a.u.). n>9 fields from two neuronal cultures. p = 0.325, ¢-test. Average + sem.
(f-1) Representative images of aged primary neurons treated as in (a-d). Labeling shows GFP (f, g) and phospho-H2AX (h, i). Scale bar,

20 um. (j) The graph shows the percentage of GFP or Nrgl-ICD-expressing neurons positive for phospho-H2AX. n =10 fields from two
neuronal cultures. p = 0.833, t-test. Average + sem.

of Nrgl-ICD similarly to that previously reported for spiral ~ revealing a marked increase in Nrgl nuclear localization
ganglion neurons [6]. Also, we challenged D14 neurons with ~ upon 90 minutes of OGD, and after 60 minutes of recovery
OGD, an established in vitro model for neuronal stroke, from OGD (Figure 4).
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FiGure 4: OGD stimulates Nrgl intracellular signaling in vitro. (a) Representative images of neurons expressing Nrgl tagged with GFP in its
C-terminal domain. (a—c) represent the normoxic control, and (d-o) depict images of neurons after hypoxia. OGD was performed at D14,
and the neurons were fixed immediately after 30 or 90 minutes of OGD or after 60 minutes of recovery after OGD. Treatment with
40 mM of KCl for 1 hour was used as a positive control. Scale bar, 10 ym. (p) The graph illustrates the ratio of the quantification of GFP
fluorescence intensity in the cell nucleus (Nrgl-ICD) to that in the soma (Nrgl-FL). n = 3. Average + sem. *p < 0.05, ***p < 0.001, one-way
ANOVA, and Tukey’s multiple comparisons test. Average + sem.
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GFP). OGD was performed at D14, and the neurons were fixed 24 hours after OGD. Arrowheads indicate the surviving neurons. Scale bar,
50 ym. (b) The graph illustrates the quantification of neuronal survival upon OGD compared to control conditions. n = 25 fields out of three
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cultures.

These data indicate that OGD conditions stimulate Nrgl
intracellular signaling in cortical neurons, and this finding
prompted us to evaluate the functional relevance of Nrgl
intracellular signaling during OGD.

3.5. Nrgl Intracellular Signaling Hampers Neuronal Loss in
an In Vitro Model of Stroke. We cultured primary cortical
neurons infected with AAVs to express either Nrgl-ICD,
Nrgl-FL, or GFP as a control (Figure 5). We challenged
D14 neurons with OGD and quantified neuronal survival
24 hours after insult.

Histologically, stroke is characterized by a “core” and by a
peri-infarct zone termed the “penumbra” that display differ-
ing degrees of neuronal loss [41]. To evaluate the role of Nrgl
intracellular signaling, we challenged the neurons with OGD
for 1.5 and 3 hours. Given the GFP tagging of Nrgl-ICD and
Nrgl-FL, we directly quantified the fractions of surviving
neurons expressing Nrgl as compared to GFP-expressing
controls. We discovered that both the expression of
Nrgl-FL and the specific activation of Nrgl intracellular sig-
naling improved the survival of neurons exposed to OGD
when compared to controls (Figure 5). Notably, the activa-
tion of Nrgl intracellular signaling by the expression of
Nrgl-ICD hampered neuronal loss in this experimental

P <0.001, *p < 0.05, two-way ANOVA, and Dunnett’s multiple comparisons test. Average + sem.

paradigm to a similar extent. Furthermore, while we observed
damage to the integrity of neuritic arborization and alterations
to the morphology of surviving neurons, the Nrgl-ICD and
Nrgl-FL partly alleviated neurodegeneration induced by 3
hours of OGD when compared to control.

Taken together, the data gathered from this in vitro
model suggest a neuroprotective role of Nrgl intracellular
signaling upon stroke.

3.6. Nrgl Intracellular Signaling Delays the Onset of
Neurodegeneration. To gain further insight into the neuro-
protective role of Nrgl-ICD, we performed time-lapse exper-
iments on neurons subjected to OGD. Briefly, we coinfected
primary neuronal cultures to express Nrgl-ICD with GFP
to allow the visualization of live neurons or only GFP as
control. At D14, we subjected neurons to OGD for 2 hours
and then filmed the neurons for 8 hours after the OGD.
Under these experimental conditions, the activation of
Nrgl intracellular signaling significantly delayed the onset of
neuronal death starting from early time points. The difference
in neuronal survival between control and Nrgl-expressing
neurons further increased at 4 and 8 hours after OGD
(Figure 6).
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FIGURE 6: Nrgl intracellular signaling delays the onset of neurodegeneration. (a) Kaplan-Meier plot displays the surviving fractions of
neurons expressing Nrgl-ICD in control and OGD conditions when compared to GFP-expressing neurons. After OGD, neurons were
imaged for 8 hours. n > 52 per group. Gehan-Breslow-Wilcoxon test for comparison between GFP and Nrgl-ICD upon OGD, p < 0.001.
(b-q) Representative images of the Nrgl-ICD and GFP plotted in (a). (b-i) display normoxic controls, and (j—q) display neurons imaged
after OGD at different time points. The LUT bar is shown on the left-hand side. Full arrowheads indicate neurons that survived
throughout the time-lapse. Empty arrowheads depict neurons that died within 8 hours after OGD. The right bar shows the LUT. Scale
bar, 50 ym.

These data also support the neuroprotective role of  role in the process of neuronal degeneration following corti-
Nrgl-ICD in vitro upon OGD, suggesting that Nrgl intracel-  cal ischemia [41]. To investigate further the neuroprotective
lular signaling hinders neurodegeneration. role of Nrgl-ICD, we measured the mRNA expression of a

panel of candidate genes that control neuronal apoptosis by
3.7. Nrgl Intracellular Signaling Controls the Expression of ~ qPCR. These preliminary experiments suggest a role for
Apoptotic Genes. Apoptotic-like pathways play an important ~ Nrgl intracellular signaling in regulating the expression of
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FIGURE 7: Nrgl intracellular signaling controls the expression of apoptosis-related genes. (a) The heatmap displays the expression of
candidate pro- and antiapoptotic genes evaluated in Nrgl-ICD-expressing neurons when compared to GFP controls. The neuronal
marker Rbfox3 is highlighted in blue. The right bar shows the LUT for the heatmap expressed in fold change. n =3 for control and
Nrgl-ICD-expressing neurons. (b) The scatter plot shows the relative change in the mRNA expression of apoptotic genes in (a) grouped
as pro- and antiapoptotic. n = 3 for control and Nrgl-ICD-expressing neurons.

genes involved in apoptosis. While we failed to observe alter-
ations to the expression of antiapoptotic genes such as Bcl-2
and Bcl2l1, we did discover a decrease in the expression of
genes involved in proapoptotic signaling (caspases 2, 3, and
7 and Dapkl) (Figure 7). We speculate that the differential
expression of pro- and antiapoptotic genes may render
Nrgl-ICD-expressing neurons less susceptible to apoptotic
stimuli, although future experiments will be required to
ascertain the validity of this hypothesis.

3.8. Nrgl-ICD Is Neuroprotective upon Stroke In Vivo.
Finally, we tested the relevance of Nrgl intracellular signaling
upon stroke in vivo by performing the stereotactic injection
of AAVs expressing either Nrgl-ICD or GFP as a control
in mouse brain cortices and then using a focal hemorrhagic
stroke to provoke an infarct adjacent to the cortical region
expressing Nrgl-ICD or GFP.

Briefly, we injected brain cortices with a small amount of
collagenase (18 mU of collagenase type VII-S from Clostrid-
ium histolyticum) to weaken the extracellular matrix of the
cerebral capillaries, thereby causing focal blood extravasation
and hemorrhage. We allowed the animals to recover for 24
hours before being sacrificed.

We analyzed the infarcted areas and scored the survival of
neurons expressing Nrgl-ICD in comparison to controls in
the core and the peri-infarct area (Figure 8 and Supplemental
Figure 2). In the control cortices, we encountered neurons
expressing GFP in the penumbra but we failed to observe
GFP-positive neurons in the core of the infarct, as expected.
Conversely, in cortices infected with Nrgl-ICD virus, we
observed a limited but significant number of neurons
expressing Nrgl-ICD in the core of the infarcted area in
different sections (GFP, 0 out 13 positive sections analyzed

FIGUre 8: Nrgl-ICD is neuroprotective upon stroke in vivo. (a—d)
Representative images of infarcted areas in the motor cortex of
mice infected to express GFP as control (a, b) of Nrgl-ICD (c, d)
at low (a, ¢) and high (b, d) magnification. GFP labeling (¢, d) and
counterstaining in DAPI (a, d). The dotted lines indicate the core
of the infarcted regions. Arrowheads indicate surviving neurons
expressing Nrgl-ICD inside the infarct (d). The boxed regions in
(a) and (c) depict the areas magnified in (b) and (d), respectively.
Scale bar in (a, ¢), 500 ym. MOp: primary motor cortex; MOs:
secondary motor cortex. Scale bar in (b, d), 100 ym.

in three brains; Nrgl-ICD, 24 out of 41 positive sections out
of three animals; p <0.01; Fisher’s exact test). Even given
the limited number of surviving neurons, these data provide
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proof-of-principle for a neuroprotective role for Nrgl
intracellular signaling following hemorrhagic cortical stroke
in vivo.

4. Discussion

Nrgl is a major regulator of cortical circuit development;
however, we know relatively little regarding its role in mature
neurons. In particular, the role of Nrgl intracellular signaling
remains largely unaddressed. Here, we investigated the role
of this signaling pathway in neuroprotection and we now
provide evidence that Nrgl intracellular signaling can allevi-
ate neuronal loss upon stroke in cortical neurons.

The expression of multiple Nrgl isoforms and bidirec-
tional signaling by Nrgl combine to complicate the study
of Nrgl signaling. While we know little about the specific
functional properties of each isoform, most of the isoforms
expressed in the adult brain cortex (mainly types II and III)
share the ICD that is released upon proteolytic processing
to elicit Nrgl intracellular signaling. Our data indicates the
phylogenetic conservation of the regions that regulate the
activation of NRGI intracellular signaling and the nuclear
localization of Nrgl-ICD, supporting the relevance of this
signaling pathway. Also, our bioinformatic analyses suggest
that NRG1 mRNA expression decreases during aging. Given
previous studies that implicate Nrgl in age-related diseases
such as neuroinflammation, neurodegeneration, and stroke
[14-16, 18-24], we assessed whether the decreased expres-
sion of Nrgl might indicate a role of Nrgl in neuroprotec-
tion. To examine the specific role of Nrgl intracellular
signaling, we took advantage of an experimental paradigm
that we and others have successfully previously employed:
we expressed the ICD to mimic the end product of Nrgl pro-
teolytic processing [5, 6]. To this end, we generated and
validated new viral vectors to activate Nrgl intracellular
signaling more efficiently.

As Nrgl expression decreased with aging, our first work-
ing hypothesis stated that Nrgl intracellular signaling might
be involved in senescence. To gain a preliminary insight into
the role of Nrgl in senescence, we tested whether Nrgl intra-
cellular signaling modulated the activation of p38 MAPK or
DNA damage in an in vitro model of neuronal senescence.
Various pathways associated with aging in neurons, such as
inflammation and oxidative stress, activate p38 MAPK
signaling [42]. Similarly, DNA damage in the brain leads to
cellular senescence [42]. In our in vitro experimental para-
digm, Nrgl intracellular signaling did not regulate these
neuronal senescence hallmarks. However, these observations
do not exclude Nrgl intracellular signaling from being
involved in other aspects of aging in cortical neurons or
under different experimental conditions and further studies
will be required to investigate this hypothesis.

We next tested the hypothesis that Nrgl intracellular sig-
naling may be involved in stroke. Stroke is the second cause
of death and disability worldwide, and as the risk of brain
stroke increases with age, the societal burden of cortical
infarct will increase significantly in the coming decades
[41]. Interestingly, previous studies suggested a role for
Nrgl in stroke: Nrgl expression increased upon stroke and
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the administration of the Nrgl-EGF domain alleviated
experimental stroke [21-23]. To the best of our knowledge,
the role of the Nrgl intracellular signaling in stroke remains
uninvestigated. Here, we established that OGD conditions
trigger the activation of Nrgl intracellular signaling, and as
a result, Nrgl-ICD accumulates in the nucleus.

Moreover, our data indicate the neuroprotective function
of Nrgl intracellular signaling in vitro and in vivo. The
expression of Nrgl-ICD delayed the onset of neural degener-
ation and improved neuronal survival in vitro. To address the
role of Nrgl-ICD signaling in vivo, we employed collagenase
injection as an experimental model of focal hemorrhagic
stroke. Compared to other experimental setups, this model
has the advantage of the controlled size and location of stroke
by stereotactic injection. Thus, we provoked stroke in an
area adjacent to the region previously infected to express
Nrgl-ICD or GFP as control. Our data indicated that the
activation of Nrgl intracellular signaling improved neuronal
survival in vivo. These findings support previous studies that
indicate a crucial role for Nrgl in stroke and unveil a novel
function of Nrgl intracellular signaling in neuroprotection
in this pathology.

Mechanistically, the molecular machinery underlying
Nrgl intracellular signaling also remains largely unknown.
In particular, the direct molecular interactors of Nrgl-ICD
remain poorly understood. The Nrgl-ICD can interact with
LIM domain kinase 1 (LIMK1) in vitro [43], while the
overexpression of type I NRG1f leads to the enrichment
and activation of LIMKI in the synaptosomes, with this
activation involved in synaptic transmission [44]. Consis-
tently, studies have highlighted LIMK1 localization to the
plasma membrane and neuronal synapses, and not the
nucleus [45]. Therefore, LIMK1 may interact with the
unprocessed membrane-bound form of Nrgl. It is unlikely
that LIMK1 may be involved in the nuclear signaling of
Nrgl-ICD.

The fact that the Nrgl-ICD sequence does not contain
overt DNA binding or transcriptional motifs has complicated
the understanding of Nrgl nuclear signaling [6]. In spiral
ganglion neurons, synaptic activity induces a transient inter-
action of Nrgl-ICD with the transcription factor Eos [46].
Therefore, hypoxic conditions may also induce the interac-
tion of Nrgl-ICD with Eos or other unidentified transcrip-
tion factors. Moreover, various mechanisms regulate gene
expression, including chromatin remodeling or the regula-
tion of mRNA stability by miRNA. Independently of the
molecular interactors, our preliminary data suggest that
Nrgl intracellular signaling controls the apoptotic response,
consistent with the observation that Nrgl signaling promotes
the survival in sensory ganglia [6]. However, the complex
molecular biology of neurodegeneration in stroke remains
poorly understood and we may envision different mecha-
nisms. Many stroke risk factors promote the production of
ROS [41]. For instance, glutamate excitotoxicity leads to
accumulation of Ca®*, which in turn promotes the generation
of ROS by inducing mitochondrial depolarization and the
activation of ROS-generating enzymes [41]. Oxidative stress
can promote inflammation, activate death signaling path-
ways, and inhibit synaptic activity.
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As the Nrgl-ICD promotes neurotransmission and the
formation of excitatory connections [5], we speculate that
Nrgl-ICD might protect neurons from the synaptic dysfunc-
tion provoked by oxidative stress. We hope that future studies
will determine the mechanisms underlying the neuroprotec-
tive role of Nrgl intracellular signaling in this context.

In conclusion, our work establishes a novel role for intra-
cellular Nrgl signaling in neuroprotection upon stroke
in vitro and in vivo. The finding that the highly conserved
Nrgl-ICD has a neuroprotective role may foster the identifi-
cation of new therapeutic targets to treat neurodegeneration
following brain infarct.
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Supplementary Materials

Supplemental Figure S1: low levels of p38 MAPK activation
and DNA damage at D14. (a) Representative images of neu-
rons at D14 cultured under standard conditions and stained
for phospho-p38 MAPK and DAPIL Immunostaining and
imaging were performed under the same conditions as for
D21 neurons in Figure 3. The bar on the right depicts the
LUT for the signal intensity. Scale bar, 20 ym. (b) Represen-
tative images of primary neurons as in (a), labeled with DAPI
and phospho-H2AX staining. Immunostaining and imaging
were performed under the same conditions as for D21
neurons in Figure 3. The bar on the right depicts the LUT
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for signal intensity. Scale bar, 20 ym. (c) The graph illustrates
the quantification of phospho-p38 MAPK labeling expressed
in arbitrary units (a.u.). n =4 fields. Average + sem. (d) The
graph illustrates the quantification of phospho-H2AX label-
ing expressed as a percentage of positive neurons. n = 4 fields.
Average + sem. Supplemental Figure S2: identification of the
infarcted area. (a) Representative images of infarcted areas in
the motor cortex from Figure 8 stained for DAPI and visual-
ized in grey. Brains were infected to express GFP as control or
Nrgl-ICD. Boxed areas are magnified in (c) with the corre-
sponding numbers. The dotted line delimits the infarct area
characterized by condensed pyknotic nuclei. Scale bar,
100 pm. (b) The color code employed in the figure: red box
for the infarcted area, green box for the noninfarcted area,
blue for total DNA in the mask and graph, and magenta for
condensed DNA in the mask and graph. (c) Magnified areas
from (a). The mask shows the total area occupied by DNA in
blue and the condensed DNA in magenta defined by an
upper threshold of intensity. Scale bar, 25um. The graph
exhibits the quantification of the masks in the upper lane
expressed as the total area occupied by the DNA (Tot, the
fraction of the area of the image, in blue) and condensed
DNA (Cond, the fraction over the total area of the DNA,
magenta). In the infarcted area, the total area occupied
by DNA decreases while the fraction of condensed DNA
increases. (Supplementary Materials)
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