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Summary Cell death after treatment with chemotherapy is exerted by activation of apoptosis. and the p53 protein has been shown to actively
participate in this process. This recent focus on TP53 status as a possible determinant of cancer therapy response has raised the question of
whether or not mutations in the TP53 gene have an influence on paclitaxel therapy. The TP53 status has been analysed at the DNA level in

tumours from 45 ovanan cancer patients randomized to treatment with paclitaxel and cisplatin or cyclophosphamide and cisplatin. Therapy
response was obtained for 38 patients with clinically evaluable disease after initial surgery. The positive response rate to the paclitaxeU
cisplatin therapy was 8500 vs 61 0o for the patients who received the cyclophosphamide/cisplatin regimen. A significant difference in relapse-
free survival in favour of paclitaxel/cisplatin chemotherapy was found (P = 0.001). A total of 33 tumour samples (73%o) had detectable
sequence alterations in the TP53 gene. When relapse-free survival was estimated for all patients with TP53 alterations in their tumours. a

significant better outcome for the paclitaxel/cisplatin group was found compared with the patient group receiving cyclophosphamide and
cisplatin therapy (P = 0.002). We did not observe an association between TP53 tumour status and prognosis for patients who received
paclitaxeUcisplatin combination treatment. indicating that the effect of this therapy is not influenced by this parameter.
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Txxo-thirds of patients w ith epithelial ovarian cancer are diagnosed
w-ith adx anced stages. Treatment includes surgical resection of the
primarx tumour and metastases to reduce tumour xolume. foHlow ed
bv cvtotoxic chemotherapy. As manx as 60-73%E of these oxarian
carcinomas are responsix-e to drug regimens. includinc the DNA-
binding agents cyclophosphamide and cisplatin. or the microtubuli-
stabilizing agent paclitaxel together w-ith cisplatin (IMcGuire et al.
1996). The effectixeness of cancer chemotherapy is restricted by
failure of some tumours to respond and by the appearance of resis-
tant cell populations in patients xho relapse after initial response.
Understanding resistance to chemotherapy is dependent on the
elucidation of the molecular mechanisms bx w-hich anti-cancer
drugs induce cell death (Kerr et al. 1972: Vaux. 1993). It has been
show-n in sexeral tx pes of carcinomas that cell death after treatment
,A-ith chemotherapy inxolxves actix ation of apoptosis ( Eastman.
1990: Hickman. 1992). Exposure of the cells to both platinum
analogues or taxanes is associated wvith morphological changes in
apoptosis lBhalla et al. 1993: Haxrileskx et al. 1995).

Apoptosis is a geneticallv controlled process. and a xarietx of
genes haxe been identified codin2 for inducers or inhibitors of this
process. The tumour-suppressor protein p53 has been shown to
exert marked effects on apoptosis in some cells in addition to its
inxolxvement in the control of the cell cycle and in DNA repair.
Multiple studies haxe rexealed that wild-type p53 protein and
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members of the Bcl-2 protein family- (includinc Bcl-2 and Bax)
undergo complex regulatix e interactions during the modulation of
programmed cell death. Wild-type p53 has been shoxwn to induce
an up-regulation of Bay mRNA (NMixvashita et al. 1994) and a
concomitant dox%-n-regulation of Bcl-2 mRNA ( Haldar et al. 1994)
that correlates to the induction of programmed cell death
(Mixashita et al. 1994). It has been reported that cells functionally
deficient in p53 or w-ith elexated lexels of either Bcl-' or BCI-XL
are relativelv resistant to cxtotoxic agents. such as platinum
analogtues (Lou-e et al. 1993a. 1994: Dole et al. 1995).

Alterations of the TP53 gzene. either as a result of point muta-
tions or deletions. are the most frequent abnormalities described in
human cancers. Abnormal p53 protein has been reported to be
associated with shorter disease-free survival and poor clinical
outcome of oxvarian cancer patients (Lex esque et al. 1995: X an der
Zee et al. 1995). A significant association has been reported
betw een TP53 missense mutations and tumours resistance to
cisplatin-based therapy (Righetti et al. 19961.

During the last X ears. the inclusion of paclitaxel in the treatment
of adx anced oxarian cancer has extended the disease-free surnxial
period. The fact that more than 50%-' of stage Ill and IV epithelial
oxarian cancers are reported to haxe TP53 sequence alterations
(Hainaut et al. 1997). and the recent focus on TP53 status as a
possible determinant of cancer therapy response. raised the ques-
tion of w-hether or not the TP53 gene has an influence on paclitaxel
therapy. Sexveral groups haxe used x-arious cell sy stems to inx esti-
gate the topic (Delia et al. 1996: Hawkins et al. 1996: Wahl et al.
1996: Wu and El-Dierx. 1996). Some authors could demonstrate
an increased paclita.xel sensitixvitx for cells harbouring inactix ated
p53 protein (Hawkins et al. 1996: Wahl et al. 1996). whereas
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Table 1 Relapse-free survival of patients with advanced ovarian cancer in relation to TP53 status in their tumours

Patient Relapse-free
number Relapse survival in months TP53 status

Paciitaxel/cisplatin therapy
ovi
OV2
OV3
OVi 1
OV12
OV15
OV50
OV42
OV40
OVi 0
OV5
OV38
OV39
OV46
OV14
OV44
OV35
OW
OV45
OV13
OV49
OV47
OV6

Cyciophosphamidelcisplatbn therapy
OV26
OV29
OV31
OV32
OV33
OV34
OV16
OV22
OV23
OV25
OV24
OV18
OVi 9
OV28
OV30
OV41
OV37
OV48
OV43
OV21
OV27
OV20

R

R
R
R
R

R
R
R

6.6
23.6 rf
23.2 rf
18.1 rf
17.5 rF
11.1
22.6
13.7
6.1

19.6 rf
22.3 rf
11.7
11.1
9.9

16.3 rf
18.5 rf
7.1

20.6 rf
18.0 rf
17.5 rf
8.9

17.5 rf
22.0 rf

R

R

R
R
R

R
R
R
R
R
R
R
R
R
R
R
R
R
R

R
R

20.3 rf
9.7

13.5
4.3

17.0 rf
10.0
5.5
2.1
5.1
9.9
8.2

14.9
4.9
4.6
8.3
7.5
8.4

13.1
11.8
23.0 rf
2.5

19.7

wt
wt
wt
wt
wt
wt
wt
Ex 5. T-*C. 141. TGC-*CGC. Cys-+Arg
Ex 5. G ins. 141. TGC-*TGGC. Cys-*frame shift
Ex 5. A ins. 166. TCA-*TCAA, Ser-* frame shift
Ex 5, G-+A. 175. CGC-+CAC. Arg-*His
Ex 5. C-*T. 179. CAT--TAT. His-*Tyr
Ex 5. A--G. 179. CAT-*CGT. His-*Arg
Ex 6. T-+G. 218. GTG-*GGG. Val-*Gty
Ex 7. G-*T. 238. TGT-JTT. Cys-*Phe
Ex 7. G-*A. 245. GGC-*AGC. Gty-+Ser
Ex 8. G-oA, 266. GGA-~GAA. Gty-*Glu
Ex 8, C-iT. 282, CGG--TGG. Arg-*Trp
Ex 10. 16-bp ins between 339 and 340-i frame shift
Ex 5. splice mutation 5'. ag-*aa
Ex 9. splice mutation 5'. ag-*gg
Ex 8. mutation detected with TTGE
Ex 9. mutation detected with TTGE

wt
wt
wt
wt
wt
Ex 4. T-*G. 113. TTC-iTGC. Phe-iCys
Ex 5, G--A. 175. CGC-*CAC. Arg-*His
Ex 5, G-*A. 175, CGC-iCAC. Arg-*His
Ex 5. G-iT. 176, TGC-*TTC. Cys-*Phe
Ex 5. C-T. 178. CAC-*TAC. His-*Tyr
Ex 8. G--A. 272. GTG-*ATG. Val-*Met
Ex 8. G-iA. 273. CGT-*CAT. Arg-*His
Ex 8. G--A. 273. CGT-*CAT. Arg-*His
Ex 8, G-+A. 273. CGT-+CAT, Arg-*His
Ex 8. G--A. 273, CGT-+CAT. Arg-*His
Ex 8. C-*G. 278, CCT-*GCT. Pro-*Ala
Ex 8, C-+G. 278, CCT-iCGT. Pro-*Arg
Ex 10, A del. 345. AAT-*AT. Asn-4frame shift
Ex 8. 3-bp ins before start of ex 8
Ex 9. splice mutation 3'. gt-*at
Ex 5. mutation detected with TTGE
Ex 6. mutation detected with TTGE

,wt Wild type. Specific mutations are indicated as follows: Ex (exon), base change, affected codon, codon change and amino acid change. TTGE. temporal
temperature gradient electrophoresis: rf. relapse-free at last contact: bp. base pair; ins, insertion: del. deletion.

others demonstrated that cells became more resistant to treatment
(Wu and El-Dierx. 1996). The contradictorv findings can be
explained by the use of different cell systems. normal primary
cells vs cancer cells. and the fact that. in some experimental
settings. cells with inactixation of one TP53 allele by point muta-
tion wxere used. whereas others used expression of tumour virus
proteins know-n to bind to the p53 protein. These in vitro studies
have pointed out the need to inxestigate TP53 status in tumours
from patients treated wxith paclitaxel. Our first aim xxas to investi-
gate in a clinical material whether or not the TP53 status in
tumours influenced the outcome of paclitaxellcisplatin chemo-
therapy. In the present study. tumours from 45 patients randomized

to treatment x-ith paclitaxel and cisplatin or cyclophosphamide
and cisplatin were analysed for TP53 mutations. Te TP53 status
w as related to the response of therapy and relapse-free survix al.

MATERIAL AND METHODS

Patients and tumour specimens
Forty-five patients with adxvanced epithelial oxanian cancer (FIGO
stage III for all patients except one patient with 11C initially treated
with cvtoreductive surgerv w ere randomized to t-o different
chemotherapy regimens. either paclitaxel ( 175 mg m-' ) and cisplatin
(75 mc m- ) (23 patients) or cvclophosphamide (750 mg m- ) and
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cisplatin (75 mg m) ((22 patients). ix-en exerx 3 w-eeks for six
cvcles. None of the patients had receixed any preoperatixe treat-
ment. Median age at diagnosis >-as 53 years. range 29-73 xears.
Response evaluation w-as performed according to W'HO criteria:
imaging (i.e. radiographN. computerized tomography scan. magnetic
resonance ima cing and ultrasound) w as performed if deemed appro-
priate at baseline and after ex er third cycle. Clinical exvaluation w-as
performed after the third and sixth cycle. Clinical response was
documented w ith the same investigation technique on tw o occasions
not less than 28 day s apart. In cases of progressive disease and
relapse. the patients w-ere crossed ox er to either paclitaxel or doxo-
rubicin regimens. Second-look laparotomxwas performed in 17
patients in the paclitaxel/cisplatin group. and in sexen patients >-ho
receix ed cy clophosphamide/cisplatin.
Tumour specimens from 16 patients were obtained at initial

surgical resection and immediately stored at - 70-C. Total mrRNA
w-as extracted and successfully analy sed from 11 of the samples.
w-hereas genomic DNA w-as isolated from the remaining fixve.
Tumour material from the remaining 29 patients was onix avail-
able as formalin-fixed paraffin-embedded tissue. Haematoxxvlin
and eosin-stained sections wxere used to exaluate the approximate
percentare of tumour tissue. Samples wxith less than 20% tumour
tissue w-ere not used in further analy ses.

Mutation analyses of TP53 using cDNA

Frozen tissue samples stored at - 70-C wxere used for extraction of
mR_NA using the QuickPrep Micro mRNA Purification Kit
(Pharmacia Biotech). The final RNA pellet Awas dissolxed in 20 11
of elution buffer (10 m-M TIns-HCl. pH 7.5. 1 mxm EDTA) and
stored at - 70^C. Rexerse transcription IRT) was performed using
the first-strand cDNA sxrnthesis kit GeneAmp RNA polymerase
chain reaction (PCR) (Perkin Elmer). The reaction contained S mxm
maunesium chloride. 10 nmi Tris-HCl. pH 8.3. 50 mm potassium
chloride. 1 mnm of each d.NTP. 20 U of R.Nase inhibitor. 2.5 msi
random hexamers primer. 50 U of MuLV rexverse transcriptase and
3 pi of RNA sample solution in a final xolume of 20 pi. The
cDNA reaction mixture was incubated at 42 C for 30 min.
followxed bv S min at 95:C before storingr at -20'C.
The TP53 cDNA was amplified usincg the followxing primers

(sense) 5'-GTGACACGCFTCCCTGGATTG-3' and (antisense)
5'-AGTGGGGAACAAGAAGTGGAG-3'. as described prexi-
ously (Frebourg et al. 1992). The PCR contained 1.25 mx¶
maunesium chloride. 60 mm Tris-HCl. pH 8.5. 15 mm ammonium
sulphate. 0.2 ng gl-l boxine serum albumin (BSA). 0.01%7 2-
mercaptoethanol. 160 ms¶ of each dNTP. 60 pmol of each primer.
3.8 U of Pfu DNA polmerase (Stratagene) and 2 gl of RT reac-
tion in a final xolume of 40 11. The PCR reaction mixture wxas
heated for 3 mmn at 95^C followxed by 35 cycles of 94 C for 1 min.

65^C for 1 min 10 s and 78-C for 2 min. followxed bx 2 min at
78'C using a GeneAmp PCR System 2400 (Perkin Elmer). The
PCR products were anal-sed for purity by running 7.5%c PAGE.
followed by staininc xith ethidium bromide. After purification
using MicroSpin Columns (Pharmacia Biotech). TP53 cDNAs
xere submitted to direct sequencing using four internal primers.
coxering the open reading frame. and the Dye Terminator Cycle
Sequencing Ready Reaction DNA Sequencing Kit (Perk-in Elmer).
The sequence analy-sis wxas performed in an automated 373 DNA
Sequencer (Applied Biosy stems). All sequence alterations
reported in Table I wxere confirmed by independent PCR reactions.

Mutation analyses of TP53 using genomic DNA

Genomic DNA was isolated using standard procedures )phenol-
chloroform extraction and ethanol precipitation) in cases for wxhich
frozen specimens were axailable. Extraction of genomic DNA
from paraffin-embedded tissues xxas performed using ten 5-pm
sections from each block. The samples xxere deparaffinized using
txxo rinses x ith xy lene. followxed by one x-ith absolute ethanol. in a
microcentrifuge tube. After the final centrifugation. all ethanol
wxas remoxed and the tissue pellet xxas briefly dried (55-C for
30 min. DNA xxas extracted using the Puregene DNA Isolation
Kit (Gentra Systems). After dissolxing the final DNA pellet in
100 1l (DNA Hydration Solution). the sample wxas stored at 4'C.
PCR primer sequences for analy ses of exons 2. 5-9 and 11 of

the TP53 gene using temporal temperature gradient electro-
phoresis (TTGE) wxere as prexiously described for constant denat-
urant gel electrophoresis (CDGE) analyses (Borresen et al. 1991:
Smith-Sorensen et al. 1993). see Andersen and Borresen 1995 for
modification of primers for exon 2 and 7 ( Andersen and Borresen.
1995). PCR using DNA isolated from paraffin-embedded tissue as
template contained 2.5 U of AmpliTaq Gold (Perkin Elmer) in a
total x olume of 50 gl. When template DNA x as from frozen tissue
extracted with phenol-chloroform. the PCR contained 2.5 U of
AmpliTaq DNA Polymerase (Perkin Elmer). The PCR products
wxere analysed for purity by running 7.5%/e PAGE followed bx
staininc xxith ethidium bromide.
TTGE is a modification of the concept of denaturing gradient

gel electrophoresis (DGGE) described by Fischer and Lerman
(1983) and x as performed using l10%c polvacrxvlamide gels ( acrx 1-
amide bis ratio 37.5:1 ) in 1.25 x TAE buffer (50 mr Tris-acetate.
1.25 m_% EDTA. pH 8.0). The gels contained 31%c denaturant
(100c denaturant corresponds to 7 \t urea and 40%')(Xv/X)
formamide) for analysing exons 6. 9 and 11 fragments. and 37%-c
denaturant for analxsing exons 2. 5. 7 and 8 fragments.
Electrophoresis wxas perfomed in 1.25 x TAE running buffer using
the DCode U'nixersal Mutation Detection System (Bio-Rad). The
temperature x as programmed to increase from 63-C to 68C

Table 2 Therapy response according to treatment group and TP53 tumour status in 38 clinically evaluable patients

Clinical response Paclitaxel/cisplatin Cyclophosphamidelcisplatin

TP53 wild type TP53 mutation TP53 wild type TP53 mutation

Complete 4 10 3 3
Partial 1 2 0 5
Stationary disease 0 1 0 0
Progressive disease 1 1 1 6
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during 3 h run at 130 V. After electrophoresis. the gels were
stained for 4 min using 2 gl of SYBR Green I nucleic acid gel
stain (FMC BioProducts) in 100 ml of 1 x TAE and photographed
using a UV transilluminator. New PCR products were made using
flanking primers from samples showing abnormal migrating bands
after the TTGE analyses. These PCR products were purified and
subjected to direct DNA sequencing as described above.

Statistical method

Relapse-free survival (RFS) was defined as the time interval
between start of treatment and date of relapse or 1 January 1997.
Survival probabilities for RFS were estimated using the
Kaplan-Meier method. and the difference in survival curves for
different subgroups was evaluated using the log-rank method. A
P-value less than 0.05 was considered to have statistical signifi-
cance.

RESULTS

Response to therapy

Out of the 45 patients included in the study. 38 had clinically
evaluable disease (Table 2). Among patients who received pacti-
taxel/cisplatin therapy, clinical response was considered for 20
patients. whereas, in the group of patients treated with cyclophos-
phamide/cisplatin. 18 patients were evaluable. Of 20 patients with
positive clinical response (complete or partial) second-look laparo-
tomy confirmed the response evaluation by pathological review in
17 cases and by macroscopic review in three cases. The positive
response rate to the paclitaxel/cisplatin treatment was 85% (17 out
of 20) 61% (11 out of 18) for the cyclophosphamide/cisplatin
regimen. The median relapse-free period for pacitaxel/cisplatin-
treated patients was 17.5 months (range 6.1-23.6). while patients
who received cyclophosphamide/cisplatin had a median relapse-
free period of 9.9 months (range 5.1-23). RFS was compared for
the two treatment groups, and a significant difference in favour of
paclitaxel/cisplatin chemotherapy was found (P = 0.001).

TP53 gene mutations

In the 45 cases included in this study. the entire open reading
frame was examined for mutations by direct sequencing of TP53
cDNA in 11 specimens. For the other 34 specimens. codons of
exons 2. 5-9 and 11 were screened for TP53 mutations by TTGE
after amplification of genomic DNA. DNA from samples showing
bands with abnormal migration were further analysed by direct
sequencing to describe the sequence alteration in detail. A total of
33 samples (73%) had detectable sequence alterations in the
TP53 gene after TTGE analyses (Table 1). Four of the observed
sequence alterations after TTGE analyses were not detected by
DNA sequencing (samples OV6, OV20, OV27 and OV47). In
three of these cases, the amount of mutated DNA vs wild-type was
less than 20%. which is below the detection level of direct DNA
sequencing methods (Andersen and Borresen. 1995). When
analysing the first half of exon 5 of sample OV27. an abnormal
migrating band appeared with the same intensity as that of the
wild-type band. However. the low quality of the DNA extracted
from this paraffin-embedded tissue did not allow amplification of
the exon 5 fragment used for direct sequencing. The larger size of
the sequencing fragment (288 base pairs) compared with the size
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Figure 1 Relapse-free surival according to treatment group in 33 patients
with TP53 alteratons in their tumours (ower part), and for 12 patients with
tumours with wild-type TP53 (upper part). The differences between patients
with and wihut TP53 tumour alteration within each treatment group had a
P-value of 0.55 for paclitaxceUlcisplatin and 0.15 for cyclophosphamide/
cisplatin (not included in the figure)

of the fragment analysed in the TTGE screen (150 base pairs)
explains the unsuccessful attempt to get this sequence alteration
in detail.
Among the 29 described sequence alterations. missense muta-

tions resulting in amino acid substitutions were detected in 21
cases (Table 1). Insertion and deletion mutations resulting in frame
shift and premature stop codons were observed in four cases.
Splice site mutations were observed in four cases. and these alter-
ations are expected to lead to altered transcripts. resulting in
abnormal proteins. A majority of the described sequence alter-
ations occurred in highly conserved regions encoding motifs
important for the p53 protein structure (Vogelstein and Kinzler.
1994). Two of these regions (codon 163-195 and codon 236-251)
contribute to the binding of a zinc atom. which is important for
stabilizing the protein structure. and 12 of the described sequence
changes affect the zinc binding regions. The TP53 mutation spec-
trum of the present study does not diverge from other reports of
ovarian carcinomas (Hainaut et al. 1997).

TP53 satus in relation to outcome of treatment
Out of the 17 patients with complete or partial response to pacli-
taxel/cisplatin therapy. six relapsed during the observation period.
Four of these tumours harboured TP53 alterations. Among the 11
patients without relapse during the observation time. TP53 muta-
tions in tumours were found in eight cases. In the cyclophos-
phamide/cisplatin treatment group. relapse occurred in 8 of the 11
cases with complete or partial response. Seven of these tumours
had TP53 alterations. In the tumours from the three relapse-free
patients. one was found to contain a TP53 mutation.

After cytotoxic therapy. nine patients had progressive disease
(two in the paclitaxel/cisplatin group and seven in the cyclophos-
phamide/cisplatin group). Tumours with TP53 alterations were
found in seven of these cases. one in the paclitaxel/cisplatin group
and six in the cyclophosphamide/cisplatin group (Table 2).
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Within the group of patients treated with cyclophosphamide and
cisplatin. relapse had taken place more often in patients with TP53
tumour alterations (16 out of 17, 94%) compared with patients
with wild-type TP53 in their tumours (three out of five. 60%). For
the group of patients treated with paclitaxel in combination with
cisplatin. relapse had occurred in 7 out of 16 patients (44%) with
TP53 mutations in their tumours compared with three out of seven
patients (43%) having tumours with wild-type TP53.
When RFS was estimated for patients with TP53 tumour alter-

ations, the paclitaxel/cisplatin group had a significantly better
outcome than the cyclophosphamide/cisplatin group (P = 0.002).
as shown in Figure 1. Specific regions in the TP53 gene, encoding
domains important for binding the zinc atom, have previously
been found to have influence on doxorubicin treatment of breast
carcinomas (Aas et al, 1996). RFS for patients with TP53 alter-
ations affecting the two zinc binding domains L2 and L3 (eight
patients in the paclitaxel/cisplatin group and four patients in the
cyclophosphamide/cisplatin group) showed a significantly better
outcome for the paclitaxel/cisplatin-treated patient group than for
the cyclophosphamide/cisplatin-treated group (P = 0.001).

DISCUSSION

Despite the introduction of combined use of cytoreductive surgery
and chemotherapy in advanced epithelial ovarian cancer patients.
long-term survival has not improved significantly over the last few
years. Prognosis is currently based on clinical and histopatholog-
ical parameters. and identification of new prognostic markers
would be of great importance in identifying individuals who may
benefit from new and more effective therapy. So far, the gene most
frequently reported to be mutated in ovarian cancer is TP53
(Marks et al, 1991; Mazars et al. 1991: Okamoto et al. 1991). The
high frequency of mutations may indicate an important role for
this gene in ovarian carcinogenesis, and TP53 aberrations have
been reported to be associated with advanced stages of the disease
(Buttitta et al. 1997). It has also been observed that patients with
p53 mutations have a significantly shorter RFS than patients with
p53-negative tumours (Levesque et al, 1995; Buttitta et al, 1997).
The treatment in these studies included platinum-based
chemotherapy.

In the present study. TP53 alterations were observed in 73% of
the tumours. All TP53 missense mutations detected affected codons
previously reported to contain sequence alterations in other ovarian
cancer studies. The most frequently mutated TP53 codons in
ovarian carcinomas are 273, 175 and 248. We detected sequence
alterations of codon 273 and 175 in four and three cases, respec-
tively. but none in codon 248. When considering the patients
treated with cyclophosphamide and cisplatin. a tendency toward a
shorter RFS was observed for patients with TP53 mutations
compared with the patients with wild-type TP53 (P = 0.15).
However. with the rather small number of cases studied, this differ-
ence was not statistically significant. Whether or not the TP53
status influences the outcome of paclitaxel trament has previously
been investigated in different cell systems (Delia et al, 1996:
Hawkins et al. 1996: Wahl et al. 1996: Wu and El-Diery. 1996).
Primary embryo fibroblasts from p53-null mice have shown a nine-
fold increased cytotoxicity to paclitaxel compared with corre-
sponding control cells (Wahl et al. 1996). Sensitivity to paclitaxel
was less increased in fibroblasts isolated from heterozygous TP53
(+/-) mouse embryos compared with TP53 (-4-) mouse embryo
cells. A sevenfold increased cytotoxicity to paclitaxel in normal

human fibroblasts after targeted degradation of wild-type p53
through expression of HPV E6 has also been reported (Hawkins et

al, 1996: Wahl et al, 1996). On the other hand. Wu and El-Deiry
(1996) reported that ovarian carcinoma cells became more than 100
times as resistant to paclitaxel after depletion of functional p53 by
E6 expression. Based on these apparently contradictory findings, it
has been suggested that the relation between TP53 status and
chemoresistance may be tissue specific and that the outcome of loss
of wild-type p53 function in nonnal and cancer cells may be
different p53 independent response to pacitaxel in vitro has been
reported for EBV-immortalized lymphoblastoid cells carrying
heterozygous mutations of TP53 (Delia et al, 1996). The in vitro
studies have clearly pointed out the need to investigate the TPS3
status in tumours from ovarian cancer patients treated with pacd-
taxel. Results from a study of 13 patients (treated with carboplatin
and pacitaxel) indicated that pacitaxel-based therapy has a value
in overcoming resistance associated with p53 tumour inactivation
in patients with ovarian cancer (Lavarino et al. 1997). In the present
study, no association was seen between TP53 tumour status and
prognosis within the patient group treated with pacitaxel and
cisplatin. while within the group treated with cyclophosphamide
and cisplatin there seems to be a better prognosis and less relapse
for patients with tumours with wild-type TP53.

In an attempt to answer the central question of whether ovarian
cancer patients with TP53 mutations in their tumours benefit from
pacitaxel-inclusive chemotherapy, we compared the two different
treatment groups in which TPS3 alterations were observed. A
significantly better outcome for the group treated with pacditaxel
and cisplatin was found. The present study is, however, too small
to evaluate whether or not specific TP53 mutations influence treat-
ment response. as recently reported for doxorubicin treatment of
breast carcinomas (Aas et al. 1996).

Several studies have demonstrated that the product of the TP53
tumour-suppressor gene is responsible for the G, checkpoint
(Kastan et al, 1991; Kuerbitz et al. 1992). In response to genotoxic
stress, the level of p53 protein increases and a transient arrest of cell
cycle progression in the G0 phase gives the cells time to repair crit-
ical DNA damage (Kastan et al. 1991; Kuerbitz et al. 1992), if
apoptosis is not induced (Clarke et al. 1993: Lowe et al, 1993b).
The main mechanism of cytotoxicity of the anti-cancer drug
cisplatin is thought to be through induction of DNA damage,
primarily in the form of intrastrand cross-links at the N-7 positions
of adjacent guanine bases (Sherman and Lippard. 1987). The active
from of cyclophosphamide is also known to directly bind to DNA.
Several reports indicate that the TP53 status has influence on the
effect of these DNA-damaging drugs. and many cisplatin-sensitive
tumour types have been found to express wild-type p53. The results
from the patients treated with cyclophosphamide and cisplatin in
the present study are in agreement with these observations.

Recently. it has been suggested that p53 also plays a role in
regulating the G,/M transition (Agarwal et al. 1995; Guillouf et al,
1995: Stewart et al. 1995). However. it has also been documented
that the G,/M transition is regulated independently of p53, as cells
that are p53 null or with mutated p53 show DNA damage-induced
G, arrest (Kastan et al, 1991; Kuerbitz et al, 1992). The anti-cancer
drug paclitaxel promotes assembly of tubulin dimers to form
excessively stable microtubules by preventing depolymerization
(Schiff et al. 1979). Cells incubated with paclitaxel accumulate in
the G,/M phase (Horwitz, 1992). Induction of apoptosis after
pacitaxel treatment both in vitro (Bhalla et al, 1993; Gangemi et
al. 1995) and in vivo (Milas et al. 1995: Milross et al. 1995) has
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been observed. Our results do not reveal any differences in the
outcome of treatment with paclitaxel in combination with cisplatin
between patients with wild-type or mutant TP53 in their tumours.

Paclitaxel has been reported to induce both wild-type p53 and
Waf-l protein (Blagosklonny et al, 1995). Induction of Waf-l has
also been demonstrated in cells lacking p53 expression and there-
fore is assumed to be independent of functional p53. Interestingly,
Blagosklonny et al (1995) demonstrated that depletion of c-raf-l,
an upstream regulator of MAP kinase. significantly abrogated the
ability of pacitaxel to induce both wild-type p53 as well as Waf- 1.
Based on these recent results, we studied Waf- 1 protein expression
in tumours from patients treated with the pacitaxel combination
(data not shown). As for the TP53 status, we could not observe any
association between prognosis and Waf-l status, but Waf-l
expression was more common in wild-type TP53 tumours than in
tumours with TP53 gene alterations.
The results of the study by Haldar et al (1996) have indicated

that pacitaxel may execute some of its anti-cancer action through
phosphorylation of Bcl-2. Bcl-2 is an intracellular integral
membrane protein that resides in the outer mitochondrial
membrane, nuclear envelope and parts of the endoplasmic retic-
ulum. It has been observed that Bcl-2 by dimerizing with the bax
protein protects cells from the apoptotic effect of bax homodimers
(Sato et al, 1994; Ym et al, 1994; Yang et al, 1995). Experiments
have further indicated that phosphorylated Bcl-2 is unable to form
heterodimers with bax, leading to more bax homodimers and cell
death (Haldar et al. 1996). It appears that Bcl-2 phosphorylation is
not always a necessary component of the apoptotic response to
paclitaxel in all cell types. Pacitaxel-induced apoptosis in some
tumour cell lines has been suggested to act through Bcl-2-indepen-
dent pathways (Bhalla et al, 1994). Considering these reports, we
also included Bcl-2 expression analysis of the tumours from
patients treated with paclitaxel in combination with cisplatin (data
not shown). We could not observe any association between Bcl-2
status and prognosis, but expression was less common in wild-type
TP53 tumours than in tumours harbouring TP53 mutations.
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