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The dorsal anterior cingulate cortex (dACC) is a key node in the human salience
network. It has been ascribed motor, pain-processing and affective functions. However,
the dynamics of information flow in this complex region and how it responds to
inputs remain unclear and are difficult to study using non-invasive electrophysiology.
The area is targeted by neurosurgery to treat neuropathic pain. During deep brain
stimulation surgery, we recorded local field potentials from this region in humans
during a decision-making task requiring motor output. We investigated the spatial and
temporal distribution of information flow within the dACC. We demonstrate the existence
of a distributed network within the anterior cingulate cortex where discrete nodes
demonstrate directed communication following inputs. We show that this network
anticipates and responds to the valence of feedback to actions. We further show that
these network dynamics adapt following learning. Our results provide evidence for the
integration of learning and the response to feedback in a key cognitive region.

Keywords: human cortex, electrophysiology, decision making, information theory, error

INTRODUCTION

The dorsal anterior cingulate cortex (dACC) is located in the medial prefrontal cortex. It is a key
node in the human salience network (Seeley et al., 2007; Uddin, 2015). A variety of specific functions
have been ascribed to the dACC based on human stimulation studies. These include internally
generated movement, affective and pain-processing (Misra and Coombes, 2015; Oane et al., 2020),
error detection (Holroyd and Coles, 2002; Hyman et al., 2013) and reward-based decision-making
(Walton et al., 2003; Behrens et al., 2007). The dACC demonstrates important motor functions,
distinguishing it from the more ventral ACC (Hoffstaedter et al., 2014). This region is sometimes
referred to as the anterior midcingulate cortex. In this work, we follow the convention of the
neurosurgical pain literature in using the dACC (Boccard et al., 2015).

Our group has previously reported on the laterality of cognitive function in the human dACC
during decision making requiring a motor output (Weiss et al., 2018). The location of the dACC
makes lateralization of dACC activity difficult to study in humans as it is not accessible to
standard EEG recordings and the timescale of activity is too short to investigate using fMRI. Using
local field potentials recorded using electrodes implanted in the human dACC, we demonstrated
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that the left (dominant) dACC responded to outcome valence
following voluntary movement (i.e., whether feedback
was positive or negative) whereas the right dACC (non-
dominant) was predominantly active around the time
of stimulus presentation, which we proposed to represent
prediction formation.

Despite this insight into the laterality of function in
the dACC, the dynamics of information processing in this
important cognitive region remain unclear. Functional MRI
evidence suggests the existence of asymmetries in the human
salience network (Cauda et al., 2011; Zhang et al., 2019). This
asymmetrical information flow appears to be contingent on
outcome valence signaled by the left dACC and to influence
prediction formation dynamics in the right dACC (Seo and
Lee, 2007; Lütcke and Frahm, 2008; Hyman et al., 2017; Weiss
et al., 2018). This is in line with action-outcome predictor
models of ACC function (Alexander and Brown, 2011). Further,
information transfer between hemispheres has been proposed
to be important for adjusting behavioral strategies to optimize
action-outcome in uncertain environments (Kennerley et al.,
2006; Womelsdorf and Everling, 2015).

We hypothesized that the dACC contains a distributed
network of regions that are responsible for information
processing and integration in this motor and cognitive region.
We further hypothesized that these discrete nodes communicate
following inputs to the dACC to facilitate response integration
and that these network dynamics would respond to learning
strategies as the dACC adapted to task requirements.

Using electrodes implanted in the dACC bilaterally, we
recorded local field potentials while human participants
performed a cognitive task. We demonstrate that discrete regions
respond to motor-related activity, anticipation, outcome valence
and prediction error. We show that these regions communicate
with fixed dynamics following inputs and that these dynamics
vary as a function of task variables, providing evidence for a
distributed network that processes and integrates cognitive and
motor information. Further, we demonstrate that the dynamics
of this network adapt over time as learning occurs, suggesting the
existence of a distributed network in the dACC that dynamically
responds to inputs and adapts its response.

MATERIALS AND METHODS

The collection of the dataset analyzed here was described in detail
in Weiss et al. (2018). This study was carried out in accordance
with the recommendations and approval of Oxfordshire Research
Ethics Committee A (Ref 11/SC/0229). All subjects gave written
informed consent in accordance with the Declaration of Helsinki.

Electrode Positioning
Three right-handed subjects with medically and surgically
refractory neuropathic pain (two male, one female; 42± 4.9 years
old) underwent bilateral electrode implantation in the dACC
based on MRI targets. Electrode tips were targeted 20 mm
posterior to the frontal horn and 8 mm lateral to the
midline. Diffusion tensor imaging and tractography confirmed

connectivity predominantly to the supplementary motor area
bilaterally in all three subjects.

Each lead contained four 1.5 mm circumferential electrodes,
each separated by 1.5 mm. Bipolar recordings were made from
adjacent electrode pairs. Supplementary Figure 1 indicates
electrode positions in subject native space. Data were high-pass
filtered at 0.5 Hz and digitized at 2,048 Hz. Data were notch
filtered at 50, 100, and 150 Hz using zero-phase shift Bessel filters.

Behavioral Task
The subjects had performed an Intra-Extra Dimensional Set
Shifting task, a variation of the Wisconsin Card Sorting Test. This
is described in detail in Weiss et al. (2018). It is a test of rule
acquisition and reversal. It tests visual discrimination, attentional
set formation maintenance, set shifting and flexibility of attention
(Cambridge Cognition, Cambridge, United Kingdom).

Briefly, subjects must learn nine rules governing correct
object selection that vary during the task from a choice of two
abstract solid filled objects or object pairs (solid filled object plus
white line object). These vary in their spatial and morphological
arrangements. Blank squares appear on screen at the start of a
trial. This is followed by object presentation. Participants must
then make a selection based on the current rule. Object selection
elicits audio-visual feedback which indicates if the choice was
correct or incorrect.

Once a rule is learned, evidenced by 6 correct object choices
in a row, the rule changes without any cue to the participant. The
subject passes the task if they successfully learn all nine rules. If
the subject fails to learn an individual rule, evidenced by failure
to attain six correct in a row within 50 attempts, the task is
failed. Supplementary Figure 2 demonstrates the task workflow
and how fixed timepoints in the task can be time-locked to the
electrophysiological data.

Data Pre-processing
Recordings were divided into trials. Feedback and stimulus
presentation epochs were extracted for each trial.

Two second epochs were extracted, time-locked to the event
(feedback or stimulus presentation). One second of data before
and one second after the event were included in each epoch. All
individual epochs were then baseline corrected and normalized
to unit variance in order to standardize across individuals and
across sessions. This was performed by subtracting the trial mean
from each timepoint and dividing by the trial standard deviation,
i.e., x̂t =

xt−µ
σ
∀ t ∈ T.

All feedback event-related potential epochs were labeled
depending on the valence of the feedback (correct or incorrect).
Stimulus presentation epochs were labeled according to the
feedback valence of the preceding trial, whether the rule was
learned or unlearned, and whether the trial occurred early
or late in the current rule sequence in order to investigate
the factors influencing the response to stimulus presentation
as outlined below.

All data was manually inspected to ensure appropriate
recording quality and epochs with significant artifact were
manually rejected.
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A semi-automated artifact rejection method was then used,
based on a statistical time-domain threshold. Of 4842 recordings
(six electrodes in 807 trials), 131 feedback epochs and 148
stimulus presentation epochs were rejected. Discarded epochs
were replaced with the mean of remaining recordings on that
electrode in order to maintain a balanced number of trials
between conditions for within-subjects comparisons.

Waveform Analysis
The electrophysiological response to events was characterized by
determining the intervals in which the time-domain signal was
statistically significant across trials or between conditions, based
on a significance threshold of p < 0.0001, Bonferroni corrected
for the number of samples tested (e.g., for analysis of a full two-
second epoch recorded at 2048 Hz, a threshold of 0.0001 ÷
4097 = 2× 10−8 was used. This represents a p < 0.01% chance of
a type I error, corrected for the number of comparisons made).

Source Decomposition
Electrode recordings were decomposed into statistically
independent sources of activity using independent component
analysis (Hyvärinen and Oja, 2000). This allows us to separate the
signals recorded on each electrode, which represent a mixture of
local neuronal subpopulations with varying contributions, into
individual signals which best represent independent activities,
possibly representing the underlying neuronal populations. This
allows us to investigate the behavior of neural subpopulations
within the dACC in much greater detail and to characterize the
network producing event-related activity.

Network Communication
Communication between components of the dACC network was
investigated. Coherence is formally defined as:

Cxy
(
f
)
=

∣∣Gxy
(
f
)∣∣2

Gxx
(
f
)

Gyy(f )

where Gxy
(
f
)

is the cross-spectral density between x and y and
Gxx(f ) and

Gyy(f ) represent the autospectral densities of x and y.
A directional coherence estimate was calculated between

signals, over a range of time lags to investigate the directionality
and temporal dynamics of communication within the dACC
network – i.e., for assessing network communication during a
range spanning {t0 . . . tn}, the second signal was tested over
{t0 + τ . . . tn + τ} for a range of τ in order to identify the
time range in which communication between populations was
greatest. This was repeated in both directions in order to assess
directionality of communication.

The overall pattern of network communication within the
network was compared between conditions by performing
principal component analysis on the pairwise coherence
measures. By identifying the component that accounts for most
of the variance in the network communication data within the
high dimensional space of pairwise connectivity measures, we can
compare the overall network pattern directly while maintaining
the structure of the underlying data (Keogh et al., 2019). The

pairwise measures of connectivity define a high-dimensional
space; the high covariance between pairwise measure indicates
that network activity in this space is structured. By taking
advantage of this structure using principal component analysis,
we can compare the effect of task variables on the overall
pattern of network communication, rather than as a large
number of individual pairwise comparisons. This provides
a more global picture of the impact of task events on
network dynamics. The weights of the first three principal
components, comprising most of the variability in network
activity, over the pairwise connectivity metrics can be visualized
in Supplementary Figure 3.

To investigate the effects of learning on network dynamics,
we calculated the non-directional coherence between signals for
low (30–60 Hz) and high (60–100 Hz) gamma, beta (12.5–
30 Hz) and theta (4–8 Hz) frequency bands. This provides greater
insight into the nature of the changes in network dynamics
induced by learning.

The dynamics of directional communication within the
network were further characterized using Granger causality
(Granger, 1988) of the source-space representation. This allows
us to test whether knowledge of the past values of one of our
signals increases our ability to predict future values of another
signal; if this is the case, we infer that there is directional
transfer of information between neuronal populations within the
network. Formally, this is tested by determining whether the
predictions given by the autoregression of y:

yt = a0 + a1yt−1 + . . .+ anyt−n + εt

are improved by inclusion of lagged values of x:

yt = a0 + a1yt−1 + . . .+ anyt−n + bpxt−p + . . . bqxt−q + εt

Due to the event-related nature of the feedback-locked signal,
the signals were first-differenced (i.e., y

′

t = yt − yt−1) prior to
analysis to improve stationarity. This was repeated over a range of
lags in both directions in order to characterize the direction and
temporal dynamics of communication within the dACC network.

Analysis was performed using signals isolated within specific
windows of interest (–200 to 0 ms and 100 to 500 ms) and
lags from 0 to 50 ms were included. This allowed for analysis
of directed communication in the windows of interest while
avoiding the potential confounding effects of including lagged
data from previous trials that may have artificially increased the
apparent predictability of responses.

A parametric estimate of Granger is often difficult to calculate
due to overfitting. We therefore assessed if our results were
consistent for a variety of model orders over multiple iterations
(deployed to determine the best data fit). Since the values of the
parametric and non-parametric model order are inversely related
to prediction error, we ensured that values were positive for all
acceptable iterations (model order 20, 30, 40, and 50).

We supported our Granger causality analysis by examining
information dynamics within the dACC network using a
multivariate implementation of transfer entropy (Novelli et al.,
2019). This quantifies the directional information flow within
the network by examining the reduction in uncertainty of the
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future values of one source’s activity using previous values of all
other sources. Formally, this assesses the reduction in entropy, a
measure of uncertainty:

H (X) =

n∑
i=1

P (xi) log2 P(xi)

where P(xi) is the probability of xi, when we have knowledge of
the past information of another signal:

TX→Y = H(Yt | Yt−1:t−L)−H(Yt | Yt−1:t−L, Xt−1:t−L)

This approach offers a number of advantages: particularly, it is
a multivariate metric, allowing us to make use of the structure
of our data, and it is model free, i.e., it does not require
us to assume that the underlying model is linear, overcoming
some of the limitations of Granger causality (noting also that
transfer entropy reduces to Granger causality in the case of auto-
regressive signals). Analyzing the multivariate transfer entropy of
the independent sources of our data allows us to take advantage of
the structure of our data to quantify the dynamics of information
flow between neuronal populations in the dACC.

Statistical Analysis
All statistical significance tests of feedback epochs were
performed with a strict significance threshold of p < 0.0001.
Where multiple comparisons were made, significance thresholds
were Bonferroni corrected, i.e., the threshold for a statistically
significant result was adjusted to p < 0:0001/n, where n is
the number of comparisons made. Analyses were restricted
to the broadband signal unless otherwise stated. Where data
was high-dimensional with a high degree of covariance, as in
the pairwise coherence measures, pairwise statistical tests were
avoided; dimensionality was reduced using principal component
analysis and the components that accounted for the greatest
degree of variance compared.

For statistical comparisons of connectivity differences between
rule learned and unlearned epochs at stimulus presentation, we
used a two-sample t-test to compare values between areas and
trial groups (statistical significance at 0.05 level). All p-values of
these analyses were then corrected for their respective number of
multiple comparisons by Bonferroni correction. This method was
deemed appropriate since the type 1 error rate was controlled at
5% given all groups’ sample size.

All analyses were carried out in MATLAB and Python
using bespoke in-house scripts, incorporating the FieldTrip
(Oostenveld et al., 2011) and SciPy signal analysis toolboxes.

RESULTS

The Dorsal Anterior Cingulate Cortex
Network Anticipates and Responds to
Feedback
Averaged traces from all channels from left and right dACC
showed a multi-phasic response during object selection and
feedback (Figure 1A).

There is a negative-going response starting approximately
500ms before feedback. This corresponds to the period in which
movement is occurring in the right hand to touch the screen. At –
200 ms, there is a reduction in variance across all channels and a
phase reset indicating increased coherence in the dACC network
immediately prior to feedback (Figure 1B).

After feedback there is a double-peaked response,
corresponding to the early and late response described in
Weiss et al. (2018). We know from our previous analysis
that the left dACC responds to valence of feedback, showing
significantly greater activity in response to incorrect feedback.
We decomposed the averaged peri-feedback signal into its
component parts to study the distribution of responses to
events peri-feedback. An analysis of these sources show that
the first independent component represents a source with most
marked activity at –200 ms. Independent components, 2 and 6,
are related to the earlier portion of the feedback window with
peaks of activity around –500 ms when movement is occurring.
Independent components 2, 3, 4, 5, and 6 all show responses at
200 ms post-feedback, while 3, 4, and 6 all show a second peak of
activity at 400 ms post-feedback (Figure 1C).

Dorsal Anterior Cingulate Cortex
Functions Are Mediated by a Distributed
Network Between Right and Left Dorsal
Anterior Cingulate Cortex
We further analyzed the spatial distribution of independent
sources of activity in the dACC in the peri-feedback epoch
(Figure 2). We compared the averaged responses of right and
left dACC. Activity in the left significantly varies from right from
approximately –500 ms before feedback to –200 ms. At –200 ms
before feedback, activity synchronizes between right and left
dACC. In response to feedback, we confirmed the double-peaked
nature of the response on both sides.

The different responses in left and right dACC suggest
a lateralization of function in the peri-feedback period. We
decomposed the averaged feedback-locked signals from the left
and right dACC into distinct sources to assess the relative
contributions on each side to the overall dACC network
response (Figure 2).

On the left side, the second source has a double-peaked
structure post-feedback, and likely relates to the feedback
response seen in the average signal. Similarly, the third source
shows a response at +200 to +500 ms post-feedback, again
suggesting that this left-sided source is related to feedback. The
first left-sided source shows a peak in the –500 to 0 ms interval
and a trough at roughly 250 ms post-feedback, suggesting that
this may be related to movement of the right hand and to the
immediate feedback response.

On the right, the first source appears to be related to the
feedback response, with a sharp first peak and a damped
double-peak structure. The second and third sources show
activity primarily in the pre-feedback period, with the second
source showing a distinction between the response at 500 ms
pre-feedback and at 200 ms pre-feedback, supporting earlier
suggestions that within the anticipation period there are different

Frontiers in Human Neuroscience | www.frontiersin.org 4 March 2022 | Volume 16 | Article 780047

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-16-780047 March 18, 2022 Time: 12:57 # 5

Keogh et al. Information Flow in Human dACC

FIGURE 1 | The dACC responds to feedback. (A) The average feedback-locked response across all channels; shading represents the variance between electrodes.
The highlighted regions demonstrate where the response is statistically significant at p < 0.0001, Bonferroni corrected. This identifies a movement correlated and
anticipatory window beginning at 528 ms before feedback and a response window from +100 ms to +500 ms post-feedback. (B) Power spectral density and phase
spectrum across all channels, time-locked to feedback. The time-domain response is associated with activity in the 10–20 Hz range. The pre-feedback window is
marked by a phase reset at roughly –200 ms, corresponding with a reduction in variance in the average signal. (C) Source decomposition of all channels,
representing the activity of statistically independent populations. The activity of these populations correspond to the components of the overall signal, including
pre-feedback and early and late post-feedback responses.

components. The third component shows a prolonged trough
during the 500 ms prediction window.

We compared the average signal for each bipolar electrode in
the left and right dACC (Figure 3). Highlighted regions show
the areas where the signals recorded on each electrode on each
side differ to a statistically significant degree, based on analysis
of variance. We confirmed that the independent components in
the averaged signal were spatially distributed within the dACC,
evidenced by the morphological and statistical differences in
the peri-feedback period in the ERPs from the left and right
dACC. Response to feedback and motor-correlated activity were
localized to deep areas of the dACC on both sides. All areas
synchronized –200 ms before feedback and all areas showed an
early response to feedback.

Network Nodes Communicate at Key
Intervals Prior to Feedback and in
Response to Feedback Valence
We analyzed communication between right and left in the peri-
feedback epoch in light of the laterality of activity between
right and left dACC. Coherence analysis and Granger causality
indicated bidirectional communication between and within left

and right in the –200 ms pre-feedback period in both the
alpha/low beta (10–20 Hz) and gamma bands (30–60 Hz), left
sided activity preceding right by 20 ms. The dynamics of this
communication are not affected by subsequent outcome valence
of the trial, agreeing with the decoder accuracy results of Weiss
et al. (2018; Figure 4).

Post feedback, coherence analysis indicates flow of
information from left to right (Figure 5), but the dynamics
of this were altered by feedback valence (Figure 6). Granger
causality between left dACC and right dACC populations
following source decomposition for correct and incorrect trials
were compared. For incorrect trials, there was a persistently
greater test statistic throughout the lags, indicating greater
left-to-right information flow following negative feedback. This
indicates that the overall high left to right communication seen
in Figure 5E is largely driven by the response to incorrect trials,
where a high left-to-right information flow is present. This then
gradually drops off, although there is a clear step in the test
statistic; this occurs at 21 ms (F = 5.83; p < 0.0001 ÷ 100). This
is consistent with the lag at which we have previously shown
communication within the dACC network above (Figure 4).
Notably, this is still present, though at a lower amplitude,
during correct trials.
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FIGURE 2 | The dACC response is lateralized. (A) Response of left and right dACC. Highlighted regions show where activity is statistically significant. Left dACC
prefeedback interval begins earlier corresponding to when movement is occurring. (B) Response of left and right superimposed. Highlighted regions show
statistically significant differences between left and right. There is an interval from 106 to 135 ms representing the peak lag between sides. The 242–566 ms interval
shows differences in the response to feedback between left and right. (C) Source decomposition of signals from left (blue) and right (orange) dACC. Independent
sources within the left and right dACC respond differently, with a stronger feedback response in the left ACC and more predictive activity in the right ACC.

Figure 6 indicates graphically the pair-wise connectivity
between electrodes in following correct and incorrect feedback.
This indicates the contribution of spatial nodes to the network
response to outcome valence. This was statistically compared
by decomposing the matrix of pairwise coherence measures
into its principal components, identifying the component that
accounts for the majority of the variance in network architecture
and comparing this. There is a statistically significant overall
difference in network connectivity based on outcome valence
(p < 0.0001).

Multivariate transfer entropy offers another method of
analyzing network dynamics that is inherently multivariate
and avoids assumptions about the nature of the underlying
network dynamics. Figure 7 demonstrates the network inferred
from analyses of transfer entropy between the source-space
representations of the overall signal. This represents the temporal
dynamics of information flow between the neuronal populations
within the dACC network.

Figure 7A shows that activity sources form directional
networks with time lags that are physiologically plausible and
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FIGURE 3 | The dACC response is distributed spatially. (A) The signals at each electrode plotted together. Highlighted regions demonstrate where differences
between electrodes are statistically significant at p < 0:0001, Bonferroni corrected. All electrodes show coordinated activity during the –200 ms preparatory window.
There are significant differences between individual electrodes in response recorded suggesting different response time courses in discrete populations. (B) Average
response at left (blue) and right (orange) dACC. Highlighted regions are where the signal on electrodes within that side differ to a statistically significant degree.
Individual regions differ in their response to feedback within the intervals we have identified, suggesting a spatial distribution in activity.

within the range described above, supporting the hypothesis that
the dACC contains an interacting network of populations that
predict and respond to outcomes. Figure 7B shows the inferred
network for correct (above) and incorrect (below) trials. Network
dynamics within the dACC differ based on outcome valence,
indicating that information flow within the dACC predictive
network is modulated by outcome valence.

Left and Right Dorsal Anterior Cingulate
Cortex Response to New Stimulus Is Not
Influenced by Outcome Valence of the
Previous Trial
Having established the dynamics of the response to feedback of
the preceding trial, we investigated how the network responds
at new stimulus presentation in the subsequent trial (Figure 8).
We again saw a difference between left and right dACC. Left
dACC anticipated a new stimulus between blank boxes appearing
on screen at the start of the trial and presentation of the
actual stimulus (–200 ms to stimulus presentation at 0 ms).
Both hemispheres responded with a simultaneous event related
potential (0 to +250 ms) followed by the feedback anticipation
signal described above in the left dACC (Figure 8). However,
we did not detect a significant difference between right or
left dACC response between positive and negative feedback
(Supplementary Figure 4).

We compared response of right and left dACC to factors
we suspected might influence the dACC response to stimuli
presentation after a previous error: familiarity with the stimulus

and whether empirically the subject had learned the underlying
rule governing object choice in the task. We found no significant
differences between right and left dACC in unlearned rule trials
compared to learned rule trials nor trials early in a rule compare
to late in a rule (Supplementary Figure 4).

Learning Modifies Communication
Between Left and Right Dorsal Anterior
Cingulate Cortex
To compare the behavior of the dACC network in trials when our
subjects had learned versus had not learned the underlying rule,
we analyzed both directional and functional connectivity in low
(30–60 Hz) and high (60–100 Hz) gamma, beta (12.5–30 Hz) and
theta (4–8 Hz) frequency ranges.

We calculated the difference in directional connectivity
between the recording contacts within the left and right dACC
as well as across hemispheres. The latter was done to assess
evidence of interhemispheric cross-talk and investigate further
any prior observations pointing toward asymmetry/laterality in
information processing.

With regards to coherence, the analysis of the entire
connectivity matrix revealed a significant difference only in the
low gamma (30–60 Hz) range – with a decrease in coherence
between the left and right dACC in the learned trials (p = 0.0413
CI: [–0.0364 –0.0007]) (Table 1). When the average left-to-
right dACC cross-talk was evaluated separately, an increase in
coherence between the left and right dACC in the beta range was
also revealed (p = 1.7697× 10-13, CI [0.0062 0.0107]) (Table 1).
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FIGURE 4 | The left dACC signals to the right during the –200 ms preparatory window. (A) Averaged responses of the left and right dACC during the –200 ms
window. There is a uniform reduction in variance and phase reset across all electrodes here, suggesting coordinated activity. (B) Coherence between left and right
dACC signals over a range of time lags. Peak coherence occurs between left and right dACC 22 ms later, suggesting left to right communication. (C) Coherence
spectrum at 22 ms lag. The greatest coherence is seen in the 24–32 Hz range. (D) Pairwise coherence for all electrodes at 24–32 Hz with a 22 ms lag. Each area is
represented by a labeled part of the external circle (L on the left, R on the right; the numbers indicate the specific electrodes used on the implanted system). The
lines joining sections indicate coherence between the joined regions. The darker the color of the connection the greater the coherence between the joined regions.
There is widespread coherence during this interval, suggesting coordinated activity. (E) Granger causality of signals in this interval. There is a jump in the test statistic
at 21 ms, suggesting left to right communication in this interval.

Learning was also associated with statistically significant
increases in directional connectivity in the theta, beta and
gamma range. This was true for both the connectivity matrix
of all recording contact combinations (local activity and cross-
talk), as well as for cross-talk between left and right dACC
(Supplementary Table 1). These levels of significance persisted
for changes in model order.

DISCUSSION

We demonstrate a temporally and spatially distributed cognitive
network between dominant (left) and non-dominant (right)
hemispheres in the dACC that anticipates and responds
contingently to feedback within an area associated with internally
generated movement and pain function (Misra and Coombes,
2015; Oane et al., 2020). The functional network information flow
is mainly asymmetric since information flows predominantly
from left (dominant) to right (non-dominant) after feedback
signaling the outcome of the voluntary movement in these right-
handed subjects. This information flow is altered by outcome
valence and is modified by learning.

The functional heterogeneity of the ACC is well described
(Behrens et al., 2007), but this data provides evidence that
cognitive functions including anticipation, prediction error and
learning are embedded spatially with pain and motor functions in
humans. Our results further elucidate the functional-anatomical
arrangement of the human dACC and the asymmetric dynamics
of right-left information flow during real-time behavior within
the human dACC network.

Early Anticipation
We show here a negative going potential in the left dACC
preceding feedback by 500 ms. This was temporally associated
with right arm movement to the touch screen hosting the task
but not present in the right dACC. On the basis of fMRI
and stimulation studies the dACC has been ascribed a motor
function in humans (Hoffstaedter et al., 2014; Oane et al.,
2020), specifically for internally generated movements, including
contralateral upper limb reaching and grasping movements that
are relevant in this task (Caruana et al., 2018). The movement-
associated activity in the left dACC shown here may potentially
represent its participation in internally generated movement,
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FIGURE 5 | The left signals to the right dACC during the feedback response. (A) Averaged responses of left and right dACC during the 100–500 ms feedback
response. The right dACC shows a lagged, blunted response, suggesting it is responding to signals from the left ACC rather than inputs directly. (B) Coherence
between left and right dACC signals over a range of time lags. Peak coherence occurs between left dACC and right 15 ms later, suggesting communication from left
to right. (C) Coherence spectrum at 15 ms lag. Most of the coherence is accounted for by the sub-16 Hz band. (D) Pairwise coherence for all electrodes at 8–16 Hz
with a 15 ms lag. There is widespread coherence during this interval, suggesting coordinated activity. (E) Granger causality of signals in this interval. There is a jump
in the test statistic at 20 ms, suggesting left to right communication in this interval.

which is supported by its strong diffusion tensor MR imaging
connectivity with the supplementary motor area (Weiss et al.,
2018). Indeed, subpopulations of dACC neurons are active
during the motor execution phase of the task, particularly when
behavioral flexibility is required (Procyk et al., 2000). In addition
to action selection, the dACC participates in the initiation of
movements more generally (Srinivasan et al., 2013), which may
explain why this pre-feedback phase was invariant to subsequent
feedback valence. Alternatively, there may be a non-motor
contribution to this anticipatory potential, such as has been
reported in the human EEG literature (Kotani et al., 2015). While
difficult to disentangle with the present experimental paradigm,
the laterality of our finding may be more suggestive of motor
activity. However, future work systematically varying the motor
element of the task is warranted to further explore this task phase.

Late Anticipation
We demonstrate a reliable anticipatory response evident in both
the right and left dACC 200ms before the onset of feedback. All
electrodes synchronize their activity bilaterally. The dynamics of
communication in this phase are the same whether the feedback
subsequently signals correct or incorrect choice. A similar pre-
stimulus activity was seen in the left dACC before new stimulus

presentation. In the case of predictable, rhythmic visual (Lakatos
et al., 2008) and auditory (Stefanics et al., 2010) cues it has
been suggested that anticipatory phase-entrainment responses
improve performance. Such phase entrainment provides greater
sensitivity to incoming stimuli, and allows the system to react
rapidly for the optimal processing of information (Schroeder
and Lakatos, 2009). Anticipatory phase-entrainment responses
are also potentiated by selective attention toward attributes of
the predicted stimulus, such as its spatial location (Zareian et al.,
2020). Our finding of a coordinated phase reset before feedback
likely suggests the dACC is making or participating in a network
that predicts the occurrence of sensory feedback in response to
movement, but not the valence of the feedback.

Response to Feedback
The dACC network exhibits a spatially and temporally
distributed response to feedback, contingent on the valence of the
feedback. Incorrect feedback results in a statistically significantly
greater response at 200–500 ms in the left dACC, confirming
(Weiss et al., 2018). The timing and overall response profile of
these components were generally consistent with the prediction
error responses that have been reported in human EEG studies
using a similar reward-learning task (Philiastides et al., 2010;
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FIGURE 6 | Outcome valence alters information flow in the dACC prediction network. (A) Granger causality of activity sources for left to right communication in the
100–500 ms post-feedback window. The test statistic is consistently higher following incorrect trials, suggestive of greater left-to right communication following an
error. There is a jump in the test statistic at 20 ms. This suggests transmission of an error-related signal from left to right following incorrect trials with a lag of 20 ms,
consistent with other results. The overall high left to right communication seems to be largely driven by incorrect trials. (B) Pairwise coherence for all electrodes at
8–16 Hz with a 15 ms lag for correct and incorrect trials. This lag was selected based on the analysis of coherence data across all trials (see Figures 5B,D). The
overall patterns of communication are visibly different between trials, as confirmed by principal component analysis (p < 0.0001), suggesting different network
dynamics based on the nature of the outcome observed.

Fouragnan et al., 2015, 2017). The timing of the early and late
components corresponded to a single theta oscillation period,
supporting a large body of evidence implicating frontal theta
in feedback-mediated behavioral adjustment (Klimesch, 1999;
Womelsdorf et al., 2010a; Cavanagh and Frank, 2014).

Our results complement prior evidence from EEG-informed
fMRI (Hauser et al., 2014) and invasive recordings in non-human
primates localizing frontal midline theta to the dACC. Results
from the latter have shown associations between increased theta
power and phasic coupling of single neuronal spikes within the
theta range, suggesting the creation of a temporal window role
to allow information transfer leading to behavioral adjustment
(Womelsdorf et al., 2010a). This window has been suggested to
reflect the co-ordination of inputs across cortical areas, allowing
integration of choice-relevant information such as stimulus-
response mapping rules, context, and reward in order to facilitate
action selection (Womelsdorf et al., 2010b).

Our findings are complementary to these results, showing the
generation of a theta oscillation when the task rule needs to
be updated and an adjustment to action selection is required.
This task-related information transfer through theta-band phase
synchrony has been observed between the dACC and a variety of
cortical sites (reviewed in Cavanagh and Frank, 2014). While the
above studies have communicated trial outcomes with auditory
or visual feedback, it is notable that human microelectrode
recordings have suggested similar dACC responses to self-
detected error (Wang et al., 2005). Additionally, studies
systematically manipulating feedback have shown increased
(negative valence) feedback reliability is associated with greater
frontal midline theta power and behavioral adjustment (Li et al.,
2018). While the task in the current study presented auditory
feedback at regular intervals, it is important for future work to
explore the variations in dACC response to differing sensory
modalities, reliability and magnitude of feedback.
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FIGURE 7 | Network dynamics are affected by outcome valence. (A) Network inferred from multivariate transfer entropy of independent activity sources for all trials.
Nodes represent sources within the dACC network. Arrows represent the direction of information transfer between populations. Numbers indicate the lag (in samples
at 2048 Hz) at which communication occurs between network nodes. This allows us to visualize dynamics within the dACC prediction network. Nodes 0, 1, and 2
are located in the left ACC with nodes 3, 4, and 5 on the right. Nodes 1, 3, and 4 consistently interact, as do nodes 2 and 5, but these subnetworks do not
consistently communicate. (B) Network inference using multivariate transfer entropy of independent sources during correct and incorrect trials. Outcome valence
results in an alteration in network dynamics through alterations in the temporal characteristics of information flow within the dACC prediction network. The top graph
shows the network inferred from correct trials, while the bottom graph shows the network inferred from incorrect trials. The pattern of network communication differs
based on outcome valence.

Learning Affects Interhemispheric
Gamma Synchrony Between Left and
Right Dorsal Anterior Cingulate Cortex
Our categories learned/unlearned and early/late trials were
attempts to examine the effect of different cognitive dimensions
on dACC function. We were not able to investigate the
electrophysiological correlates of other cognitive dimensions of
reward-based decision making as we were unable to collect
information on this during this real time task. This fact is
of particular importance when taking into consideration our
finding with regards to decrease in low-gamma coherence, since
reward probability is also reportedly encoded in dACC activity
at this frequency, based on recent work in rodents (Boroujeni
et al., 2021). Based on other prior published evidence, gamma
synchrony has been shown to be required when reappraisal of
behavioral salience of familiar external cues is required – and is
the result of the activity of discrete interneuronal populations in
the dACC and prefrontal cortex.

Functional connectivity analyses and recording parameters
used here cannot be presumed to be a direct reflection of
discrete anatomical networks or compared to the level of accuracy

of micro-electrode or single-cell recordings. In addition, a
high level of cytoarchitectural differentiation has been reported
in the dACC using such methods (Vogt and Paxinos, 2014;
Boroujeni et al., 2021)– it would be reasonable to assume that
our recording samples different equivalent sub-regions with a
variety of cellular populations. However, our results that gamma
coherence (30–60 Hz) decreases in learned trials in comparison
to unlearned (where cue reappraisal is required) seems to be
a direct translation of recent rodent model findings where
parvalbumin interneuron activity was predominantly noted in
similar scenarios. With regards to directional underpinnings
of this relationship, our results are less clear – involving a
wider range of frequencies, which could reflect the population
heterogeneity sampled during our experiments (Cho et al., 2020).

Dorsal Anterior Cingulate Cortex
Network Responds to Task Performance
We show that dACC network dynamics respond to outcome
valence. We further show that network dynamics are affected by
rule learning. We observed that learning a rule was associated
with greater connectivity between right and left dACC at
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FIGURE 8 | The peri-stimulus response is not modified by task variables. (A) Response of left and right ACC time-locked to stimulus presentation. Highlighted
regions show where activity differs between sides. There is event of peri-stimulus activity in the ACC. Differences in activity between sides indicates lateralization of
the stimulus response. (B) The peri-stimulus response of the ACC when the previous trial was correct and incorrect. The outcome of the previous trial does not
appear to influence the stimulus response on subsequent trials. (C) The peri-stimulus response of the ACC when the task has been learned or unlearned. Whether
the present task has been learned does not appear to influence the stimulus response. (D) The peri-stimulus response of the ACC for early and late trials. The
peri-stimulus response does not appear to differ between early and late trials.

physiologically relevant frequencies (Cohen, 2016; Adams et al.,
2017). This suggests outcome valence information of actions over
repeated trials directly or indirectly influences information flow
in the dACC network. This may represent an electrophysiological
manifestation of working memory, although whether memory is
represented locally or projected from other regions is not clear
from our data (Miller et al., 2018). This may shed light on how
reinforcement learning occurs at cellular level in human subjects:
the representation of predictions concerning actions likely to
yield positive outcomes in relation to the rule, in this case correct
object selection (Akam et al., 2021).

TABLE 1 | Inter- and intra-hemispheric functional connectivity, as measured by
magnitude-squared coherence.

Frequency range Mean
learned

Mean
unlearned

p-value Conf. interval

Coherence –cross-talk between hemispheres

Low gamma 0.0553 0.0723 0.0000 [–0.0238 –0.0101]

High gamma 0.0448 0.0514 0.0854 [–0.0139 0.0009]

Beta 0.0444 0.0360 0.0000 [0.0062 0.0107]

Theta 0.0921 0.0975 0.2771 [–0.0152 0.0044]

Coherence – all contact combinations

Low gamma 0.2404 0.2589 0.0413 [–0.0364 –0.0007]

High gamma 0.2802 0.2677 0.1274 [–0.0036 0.0285]

Beta 0.2571 0.2477 0.4341 [–0.0142 0.0331]

Theta 0.3219 0.3107 0.6459 [–0.0365 0.0588]

However, despite a robust response to error demonstrated at
feedback, we did not detect in our recordings an influence of
error on response to new stimulus. This is in contrast to findings
in the macaque that indicate a role for the ACC in stimulus
response mapping at object presentation after error (Womelsdorf
et al., 2010a). This may be due to the relative size of the macaque
and human anterior cingulate cortex compared to the volume
of tissue recorded by DBS electrodes (Lempka and McIntyre,
2013) resulting in recordings from functionally distinct regions.
Parcelation of the ACC in humans and macaques is well described
suggesting distinct spatially localized functional areas of the ACC
(Sallet et al., 2013; Jin et al., 2018; Margulies and Uddin, 2019;
Palomero-Gallagher et al., 2019).

Moreover our independent component analysis appeared to
reveal components of the dACC response could be spatially
localized to individual bipolar recordings. Our recordings
represent the activity of a small localized area of a few mm3 within
the dorsal ACC which may not reflect the proportionately larger
area recorded in Womelsdorf, which could represent the activity
of more than one parcelation or group of functional nodes of the
ACC (Womelsdorf et al., 2010b; Lempka and McIntyre, 2013).

Alternative explanations include that the event-related activity
of the right dACC has a variable latency, unlike the feedback
ERPs of right and left or the new stimulus ERP of the left
dACC (Ouyang et al., 2015). Signal averaging such an ERP may
potentially mask information, although we did not see an effect of
previous error on timing of the right dACC stimulus ERP when
analyzed individually (Supplementary Figure 4).
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These conflicting results may also be due to differences in the
nature of the tasks used. Factors that could be related to dACC
function in decision-making include the influence of surprise
outcomes (Fouragnan et al., 2017), salience of feedback or stimuli
(Raver and Lin, 2015) or degree of uncertainty/confidence in
decision-making (Stolyarova et al., 2019). This would be a key
element of future work in these subjects to elucidate the nature
of the right dACC stimulus presentation event related potential
reported in Weiss et al. (2018).

Limitations
The present work relies on the application of statistical measures
of the relationship between activity levels in brain regions
to identify patterns of functional connectivity and how these
dynamics are altered by a cognitive task. However, as with
any work that examines network dynamics using functional
connectivity measures, it must be borne in mind that a statistical
relationship between activity levels in two regions does not imply
the existence of any anatomical connection between the two.
The present study aims to use a set of undirected and directed
measures of the relationships between activity measures which
are valid under different assumptions; these measures converge
on a model where nodes within the ACC communicate with
each other with a specific spatial and temporal pattern and
that these dynamics are altered by factors such as response
salience, implying that these factors affect task-related processing.
We cannot, however, make any claims about the underlying
structural connections producing this functional relationship.

Furthermore, the possibility that some of these effects are
influenced by residual volume conduction from closely adjacent
anatomical structures still exists. Further investigations using
the imaginary component of coherence could provide more
conservative estimates to that extent.

Recordings were normalized within trials in order to facilitate
comparisons between individuals and within individuals across
recording sessions (Supplementary Figure 5). This reduced the
effect of variability in the impedance of the electrode-tissue
interface on the amplitude of the recorded local field potential
signal and allows consistency across recording sessions. However,
where there is event-related activity, this can result in reduction
of small event-related changes as larger activity increases the
variance of the signal. While this approach allows identification
of significant event-related activity as shown here, more subtle
event-related changes may not be detected. There may, therefore,
be additional feedback-related dynamics within the ACC to those
identified in the present work.

Our analysis of the neural response to task variables used
independent component analysis to identify independent sources
in the data. This allowed us to characterize the response
to task events by decomposing it into a set of independent
responses. This is a commonly used approach to identify
neural populations, or individual neurons in the context
of spike sorting, based on the assumption that individual
populations mediate a single, characteristic response. However,
it is important to note that this is not necessarily true. It
is possible for a single neural population to mediate two
statistically independent responses. Some apparent networks

effects may, therefore, involve multiple responses mediated by
the same multi-functional anatomical population. This further
underlines the importance of interpreting functional connectivity
relationships as purely functional, and not necessarily reflective of
the underlying anatomical connections.

Excluded trials were replaced with the mean of all other
trials in order to maintain a balanced dataset for within-subjects
comparisons between conditions. This is a relatively conservative
method for interpolation of excluded trials as it tends to reduce
inter-group differences by replacing trials in each condition with
the mean over all conditions. In this sense, it is unlikely to bias the
results of between-groups comparisons. However, this approach
also reduces the variance in the overall dataset. In order to ensure
that this interpolation strategy did not influence the results, all
analyses were repeated without interpolation of excluded trials.
Some of these results are shown in Supplementary Figure 6.
There were no differences in any of the measures investigated
between the data with and without interpolated trials, indicating
that this did not introduce bias, while also allowing balanced
between-group comparisons to be performed.

The results presented are all at the population level,
representing average network dynamics across subjects. Weiss
et al. (2018) have previously demonstrated the consistency
of ACC responses across individuals. Further, the features of
ACC network dynamics and their responses to task variables
demonstrated are also valid at the level of individual subjects.
All individual subjects demonstrate consistent ACC dynamics.
Supplementary Figure 5 shows the pattern of information
transfer from left to right following feedback at the individual
subject level, with each participant demonstrating the same
dynamics that were evident at the group level. Further analysis
shows that this response is driven by a valence-dependent
effect, where there is a large left-to-right information flow
following incorrect feedback, as is evident at the population level.
Our group-level analysis is therefore firmly supported by the
individual-level network dynamics. However, the small sample
size present here means that despite these results, a larger sample
size and further tasks will be required to further elucidate the
task-dependent dynamics of the ACC in general.

CONCLUSION

These results suggest that cognition is embedded in the dACC,
temporally and spatially distributed between nodes located
within and between the two hemispheres. Information flow
between right and left dACC is predominantly asymmetric:
the left dACC responds to movement; both right and left
anticipate the receipt of sensory feedback triggered by the
movement; and left dACC signals error to right dACC
with a time delay of 15–20 ms. Learning of a rule alters
the connectivity of the network, potentially in a manner
relevant to uncertainty resolution reflected in gamma-synchrony.
Unexpectedly, however, we did not observe an effect of
previous error on new stimulus presentation response. We
show that these cognitive functions are spatially distributed
within the area of the dACC that is targeted by deep brain
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stimulation to treat the affective component of neuropathic pain
and that participates in generating internally driven voluntary
movement with the supplementary motor area. Our findings
suggest that cognitive function is both temporally and spatially
distributed and embedded with both pain perception and motor
function in the dACC.
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Supplementary Figure 1 | Deep brain stimulation electrode contact locations in
the subject space. Postoperative computed tomography (CT) scans were
registered to preoperative structural T2-weighted MRI images using FLIRT1,
allowing electrode positions to be plotted in each subject’s structural space.
Panels A-C show sequential 1 mm T2 axial slices representing patients 1–3,
respectively, with superimposed electrode contact positions. C0 (red) represents
the ventral-most contact, and C3 (yellow) the dorsal-most contact, with C1 (cyan)
and C2 (green) the middle two contacts. Electrodes were satisfactorily placed in
the dorsal anterior cingulate cortices, corroborating MNI-space
registrations in Weiss et al. (2018).

Supplementary Figure 2 | Intra- extradimensional set shift task. (A) Schematic of
the task from the Cambridge Neurophysiological Test Automated Battery
(CANTAB) displaying rule order during a given recording. Green rectangles indicate
the correct choice. The rule progresses after six consecutive trials with correct
responses. The test terminates if six consecutive correct trials cannot be made
over a period of 50 attempts. Copyright 2018 Cambridge Cognition, Ltd. All rights
reserved. (B) Schematic representation of sensory and motor events within a
given trial. A trial begins with the presentation of two visual, abstract objects. After
a variable-length decision-making phase, the subject then makes a movement to
touch the CANTAB test screen with their dominant hand. A screen press elicits
auditory and visual feedback indicating whether the subject has chosen the
correct or incorrect figure for the current rule. After an interval of 1.5 s, the screen
turns blank and then begins the next trial. Reproduced with permission from
Figure 1 of Gillies et al. (2017), under the open access Creative Commons
Attribution 4.0 International License.

Supplementary Figure 3 | Principal component weights. Visualizations of the
weights of the first three principal components of network communication over the
pairwise connectivity metrics. The first component appears to indicate global
network activity; the second and third components appear to show some
selectivity for particular patterns of activity. These components are used to provide
a global assessment of patterns of network communication and how these differ
with task variables.

Supplementary Figure 4 | The peri-stimulus response within each side is not
modified by task variables. (A) There is no difference in the stimulus response
within the right ACC when the previous trial was correct or incorrect. (B) There is
no difference in the stimulus response within the right ACC when the current task
is learned or unlearned. (C) There is no difference in the stimulus response within
the right ACC when the current trial is early or late. (D) There is no difference in the
stimulus response within the left ACC when the previous trial was correct or
incorrect. (E) There is no difference in the stimulus response within the left ACC
when the current task is learned or unlearned. (F) There is no difference in the
stimulus response within the left ACC when the current trial is early or late.

Supplementary Figure 5 | Individual-level information transfer. Granger causality
measures for left-to-right and right-to-left information flow following feedback for
each individual participant. The directionality of information flow following feedback
observed on the group is level is consistently present within each individual. There
is a greater level of left-to-right information flow with a jump in the test statistic at
roughly 20 ms following feedback. Results observed at the group level are
consistent across subjects at the individual level.

Supplementary Figure 6 | Interpolation of excluded trials does not bias results.
(A) The average feedback-locked response across all channels; highlighted
regions demonstrates where the response is statistically significant. There are no
changes compared to the analysis in Figure 1A. (B) Power spectral density and
phase spectrum across all channels, time-locked to feedback. There are no
changes compared to the analysis in Figure 1B. (C) Response of left and right
dACC. Highlighted regions show where activity is significantly different between
sides. There are no changes compared to the analysis in Figure 2A. (D) Averaged
responses, coherence and coherence spectrum between right and left ACC
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during the –200 ms preparatory window. There are no changes compared to the
analyses in Figures 4A–C. (E) Pairwise coherence for all electrodes at 24–32 Hz
with a 22 ms lag. Each area is represented by a labeled part of the external circle
(L on the left, R on the right; the numbers indicate the specific electrodes used on
the implanted system). The lines joining sections indicate coherence between the
joined regions. The darker the color of the connection the greater the coherence

between the joined regions. There are no changes compared to the analysis in
Figure 4D. (F) Averaged responses, coherence and coherence spectrum
between right and left ACC during the 100–500 ms feedback window. There are
no changes compared to the analyses in Figures 5A–C. (G) Pairwise coherence
for all electrodes at 8–16 Hz with a 15 ms lag. There are no changes compared to
the analysis in Figure 5D.
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