
RESEARCH ARTICLE

A feature transferring workflow between

data-poor compounds in various tasks

Xiaofei Sun1,2, Jingyuan Zhu4, Bin ChenID
2,3*, Hengzhi You4*, Huiqing Xu5

1 Chengdu Institute of Computer Application, Chinese Academy of Sciences, Chengdu, Sichuan, China,

2 University of Chinese Academy of Sciences, Beijing, China, 3 IRIAI, Harbin Institute of Technology,

Shenzhen, Guangdong, China, 4 School of science, Harbin Institute of Technology, Shenzhen, Guangdong,

China, 5 Guangdong Energy Group Science and Technology Research Institute Co., Ltd., Guangzhou,

Guangdong, China

* chenbin2020@hit.edu.cn (BC); youhengzhi@hit.edu.cn (HY)

Abstract

Compound screening by in silico approaches has advantages in identifying high-activity

leading compounds and can predict the safety of the drug. A key challenge is that the num-

ber of observations of drug activity and toxicity accumulation varies by target in different

datasets, some of which are more understudied than others. Owing to an overall insuffi-

ciency and imbalance of drug data, it is hard to accurately predict drug activity and toxicity of

multiple tasks by the existing models. To solve this problem, this paper proposed a two-

stage transfer learning workflow to develop a novel prediction model, which can accurately

predict drug activity and toxicity of the targets with insufficient observations. We built a bal-

anced dataset based on the Tox21 dataset and developed a drug activity and toxicity predic-

tion model based on Siamese networks and graph convolution to produce multitasking

output. We also took advantage of transfer learning from data-rich targets to data-poor tar-

gets. We showed greater accuracy in predicting the activity and toxicity of compounds to tar-

gets with rich data and poor data. In Tox21, a relatively rich dataset, the prediction model

accuracy for classification tasks was 0.877 AUROC. In the other five unbalanced datasets,

we also found that transfer learning strategies brought the accuracy of models to a higher

level in understudied targets. Our models can overcome the imbalance in target data and

predict the compound activity and toxicity of understudied targets to help prioritize upcoming

biological experiments.

Introduction

Determining the intricate meanings of the information in chemical molecular systems from

chemical structures is important for finding chemicals with favorable pharmacological, toxico-

logical, and pharmacokinetic properties [1–5]. Existing studies show that screening potential

drugs by predicting activity and toxicity in leading compounds can be of great help [6–11]. A

considerable number of drug activity prediction methods based on machine learning have

been investigated, including naive Bayes [6, 12, 13], logistic regression [7, 8], k-nearest
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neighbors [9], support vector machines [10, 11, 14–16], random forests [11, 17, 18], and artifi-

cial neural networks [16]. These methods have contributed significantly to the development of

drug activity and toxicity prediction, but the problem of scarcity and imbalance of target data

has not received sufficient attention. Recently, the advent of deep learning approaches has

shown a significant impact on this traditional cheminformatics task due to their enormous

capacity to learn the structure and properties of compounds [19–27]. These studies used

descriptor-based or graph-based methods to predict the activity and toxicity of compounds to

targets on publicly available datasets. The emergence of these latest approaches has further

enhanced the effectiveness of drug activity and toxicity prediction, but the scarcity and imbal-

ance of target data remain a challenge.

A key challenge in the development of generalizable drug virtual screening models is the

imbalance in target/task data, wherein the accumulated number of drug activities varies from

target to target and the number of positive drugs is very rare [28]. In the Tox21 dataset [29],

for example, targets such as GPCRs (G protein-coupled receptors), nuclear receptors, ion

channels, and kinases have rich data on drug toxicity, while other targets have less data. Sur-

prisingly, the imbalance in target data is more pronounced in many other datasets (Fig 1).

Existing methods use original target and drug data without balancing or augmentation due to

an ‘activity cliff’, which is a pair of compounds with high structural similarity but unexpectedly

high activity differences [6–26]. In this work, we attempt to address the challenge of data

imbalance and data scarcity to accurately predict drug activity and toxicity.

There are a large number of understudied targets in clinical and scientific research (Fig 1),

such as ADRB2, OPRK1, and PPARRG. Many obstacles hinder drug activity and toxicity studies

at these targets. For example, due to the difficulty of obtaining tumor tissue fragments of bone

metastasis, the scarcity of sarcomatous-type tumors, and the difficulty in culturing bone tissue

into cell lines, the number of cell models is insufficient [30, 31]. Due to the shortage of these cell

line models, corresponding high-throughput screening is difficult to carry out, and target studies

Fig 1. Summary of the Siamese graph convolutional network-based transfer learning workflow (SGT).

https://doi.org/10.1371/journal.pone.0266088.g001
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are also greatly restricted. Therefore, there is an urgent need to develop a generalizable drug

activity and toxicity prediction tool to promote the understanding of understudied targets.

We are trying to develop a generalizable drug activity and toxicity prediction model to

address the challenge of data scarcity for understudied targets. The training data for under-

studied targets were insufficient: in addition to the small total number of their experimental

observations, the positive rate of drug activity was also very low. The potential solution to this

data scarcity problem is to take advantage of information from data-rich targets to data-poor

targets. Because these different targets have biological commonality, the drugs have similar

activity and toxicity to them to some extent [31–33]. Therefore, we proposed utilizing the drug

activity and toxicity of data-rich targets through transfer learning to help improve the perfor-

mance of the model on data-poor targets. Transfer learning is the recognition of knowledge

and skills learned from previous domains/tasks and their application to new domains/tasks.

To learn about the generalizable expression of drug activity and toxicity to targets, we selected

Tox21, which is relatively data-rich (high number of experimental observations and high

drug-positive rates), to produce a balanced dataset. We used the drugs and targets in our bal-

anced Tox21 dataset to train the Siamese graph convolutional neural network model and veri-

fied our model in five datasets: ToxCast, HIV, MUV, PCBA, and FreeSolv after transfer

learning (Fig 1).

Materials

A balanced dataset

Our balanced dataset is based on the Tox21 dataset, which is designed to help scientists under-

stand the potential of the chemicals and compounds being tested through the Toxicology in

the 21st Century initiative to disrupt biological pathways in ways that may result in toxic

effects [2, 7–9, 14, 19–24, 29]. The numbers of targets and unique compounds were 12 and

7831, respectively. There were a total of 93972 compound toxicity experimental observations

(i.e., a pair of compounds and targets), of which the number of drugs and the positive rate of

drugs varied from target to target. For a target in the Tox21 dataset, we first took a pair of posi-

tive compounds, then a pair of negative compounds, and then a positive compound and a neg-

ative compound. We repeatedly obtained pairs of data until a new balanced dataset for the

Siamese network was built. The dataset contains 23,493 toxicity experimental data. We com-

pared the model using this balanced dataset with the baseline study using Tox21 [34].

We used five other datasets for verification (Fig 2): (i) ToxCast: another dataset from the

same initiative as Tox21 that uses virtual high-throughput screening to provide toxicology

data. It contains qualitative results from more than 600 experiments on 8615 compounds [29].

(ii) MUV: a dataset designed for virtual screening technology that contains approximately

90,000 compounds involving 17 tasks, and the positive compounds in this dataset are structur-

ally distinct from each other [34, 35]. (iii) PCBA: PubChem BioAssay [35–38] is a dataset of

small-molecule biological activity produced by high-throughput screening. We used a subset

of PubChem in MoleculeNet containing 400,000 compounds and 128 biological assays. (iv)

HIV: The HIV dataset [34, 37], an AIDS antiviral screening dataset introduced by the Drug

Treatment Program (DTP), tested the ability of 41,913 compounds to suppress HIV. (v) Free-

Solv: The Free Solvation Database [35], used in the SAMCL Blind Prediction Challenge, con-

tains the hydration free energy of 643 compound molecules.

Compound features

SMILES is a linear representation of molecular structures that uniquely describes a molecule

with an ASCII string. SMILES uses atomic symbols to represent the atoms themselves and
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special characters to represent the relationships between atoms. We used Rdkit (http://www.

rdkit.org) to process SMILES into rich atomic features such as degree, implicit valence, formal

charge, number of radical electrons, and adjacency list and then input these features into the

compound encoder. The molecular features of the compound were extracted by the com-

pound encoder detailed in a later section.

Methods

Method overview

Our transfer learning method for enhancing drug activity and toxicity prediction with scarce

data is to transfer parameters of models pretrained using a balanced training set to a prediction

model for the specific targets. We first trained the toxicity prediction model of data-rich targets

from a balanced dataset containing the drug toxicity of 12 different targets. The Siamese net-

work facilitates the integration of two network structures in a parameter-sharing manner,

benefiting the learning of data-poor targets, so we used the Siamese network in pretraining the

model. In addition, the graph convolutional neural network has obvious advantages in obtain-

ing molecular representation, which we took as a feature extractor in the Siamese network. We

initialized the prediction model of data-poor targets using the parameters of the pretrained

model and retrained it with the corresponding data.

Method overview

Our Siamese graph convolutional neural network (Fig 3a) determines whether a pair of com-

pounds belongs to the same class by the distance between them and produces a corresponding

probability distribution through the decision layer. We formulated this prediction problem.

Given an input block x≔ {Ci, CJ} of compound Ci and compound Cj, the prediction model f is

Fig 2. Data distribution of the drug datasets. The first graph in the first row is an overview of the proportions of positive drug samples of the targets in datasets a

Tox21, b MUV, c PCBA, and d Toxcast, and other graphs show in detail the distribution of positive samples in each dataset.

https://doi.org/10.1371/journal.pone.0266088.g002
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a function such that

yij � f ðCi;CjÞ ð1Þ

where yij is the similarity score of two compounds. We used two compound encoders that

share parameters to form a Siamese network and trained it on a balanced dataset to generate a

pretrained Siamese graph model that can be used for subsequent transfer learning.

Compound encoder

We used graph convolutional networks (Fig 3b) to encode SMILES sequences because the lat-

est studies [35–38] suggest that graph convolutional networks have an advantage in processing

molecular structures. The compound encoder learns the molecular representation of each

compound. Considering that the number of atoms in a molecule changes widely and the value

of degree is relatively limited, the compound encoder stores and calculates atoms by degree.

Each atomic feature, such as implicit valence, is first represented as a one-hot vector, and then

the one-hot vectors of all atomic features are combined and fed into the compound encoder.

A compound could be considered a graph, its nodes representing atoms, and the edges that

connect them together are bonds. In graph convolution [36], for a node, we feed its features

and neighbors into two dense layers and then add the output of the dense layers as the new fea-

tures of the node. The calculations of the new features of nodes with the same degree share

weights. In a compound, if an atom a has a total of n neighbors, its new features after graph

Fig 3. A graphical representation of the network described in this article. a Siamese graph convolutional neural network with shared weights, b graph

convolution operation, c graph pooling operation, and d graph gathering operation in the network.

https://doi.org/10.1371/journal.pone.0266088.g003
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convolution can be formulated as

a0 ¼ sðWaaþ
Xn

j¼1

Wrri þ bÞ ð2Þ

where Wa is the weight of node a; Wr is the weight of the neighboring nodes; b is bias, and σ is

the activation function ReLU. The yellow arrows represent the dense layers of atomic a and its

neighbors, with weights of Wa and Wr, respectively.

Similar to the convolutional neural network, the graph pooling layer (Fig 3c) is used in the

compound encoder. Graph pooling is the operation of returning the largest or average feature

among an atom and its neighbors. Graph pooling increases the receptive field without adding

additional parameters:

apool ¼ maxfa; rig; i ¼ 1; . . . ; n ð3Þ

In graph convolution and graph pooling, each atom has a descriptor vector. However, to make

a final prediction, a fixed-size vector descriptor for the entire graph will be required. The

graph gather layer (Fig 3d) sums all the feature vectors of all atoms in the compound molecule

to obtain the molecular feature vector:

mgather ¼
X

a2A

a ð4Þ

Tox21 prediction model

Our goal is to predict the activity and toxicity of unobserved compounds at a given target and

to prioritize compounds that can be used in experiments. To achieve this, we used transfer

learning in addition to Siamese graph convolutional neural networks and data balancing. We

transferred the parameters of the drug encoder in the Siamese graph model to a new prediction

model, which we call the Tox21 prediction model, and retrained it using the Tox21 dataset.

Our Tox21 prediction model consists of a drug encoder and a decision network (Fig 4) for tox-

icity prediction in an end-to-end manner.

Fig 4. The transfer learning workflow for data-poor targets. Two stages are used to transfer model parameters from data-rich targets to data-poor targets in

specific datasets.

https://doi.org/10.1371/journal.pone.0266088.g004
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Fine-tuning to data-poor targets

We focused on transfer learning from data-rich targets in a balanced dataset to targets whose

data are scarce in other unbalanced datasets (Fig 4). In the transfer learning experiments, we

selected the ToxCast, HIV, MUV, PCBA, and FreeSolv datasets (Fig 2) because most of their

targets had fewer observations and low positive rates, but the total number of observations was

sufficient to build a prediction model for comparative experiments. The drug toxicity predic-

tion model in the first stage, which is pretrained with data-rich Tox21 targets, learns the

underlying mechanism between compounds and targets, and then the prediction model for

specific data-insufficient targets transfers the pretrained model parameters from the Tox21

model and fine-tunes the parameters. Optional fine-tuning strategies include (i) retraining all

parameters, (ii) fixing the compound encoder, retraining the decision layer, and (iii) not

retraining at all. By comparing the performance of these three different strategies in unbal-

anced datasets, the first strategy was found to be optimal, so we used the first fine-tuning strat-

egy in subsequent experiments.

Training loss

Our Siamese graph convolutional neural network learns multiple tasks on a balanced dataset,

and the training loss is the contrastive loss:

LwðY;X1

� !

;X2

� !

Þ ¼ ð1 � YÞðDwÞ
2
þ Yfmaxð0;m � DwÞg

2 ð5Þ

where Y is the label of whether two compounds are the same class; m is the threshold, and Dw
represents the Euclidean distance of the two compound features X1

� !

and X2

� !

:

DwðX1

� !

;X2

� !

Þ ¼ kf ðX1

� !

Þ � f ðX2

� !

Þk
2

ð6Þ

The training loss for the Tox21 model and fine-tuning were similarly defined:

L ¼ �
XT

j¼1

yjlogSj ð7Þ

where Sj is a softmax function:

Sj ¼
eaj

PT
k¼1

eak
ð8Þ

We first minimized Lw loss with all training batches in the balanced dataset and then switched

to L in fine-tuning for training. Optimizer was Adam in TensorFlow 1.6.0.

Evaluation

Training and test set

We evaluated the prediction models with external validation on unbalanced datasets with

data-poor targets. For datasets with scarce target data such as ToxCast, HIV, MUV, PCBA,

and FreeSolv, we set aside some of the data as independent test sets (20%) and the rest as train-

ing sets (80%). The drugs in the test set do not overlap with the training set. Each data-poor

target had a small number of distinct drugs, and different targets sometimes shared drugs.

Note that each training or test set of the Siamese graph convolutional network was a tuple {di,
dj} of drug pairs for certain targets, while each training or test set in fine-tuning was a drug.
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Accuracy measures

We used different criteria to measure the accuracy of regression and classification tasks. The

classification accuracy measure was the area under the ROC curve (AUC); the regression accu-

racy measures were R2, RMSE, and MAE.

Baselines

We compared the accuracy of our classification tasks with five baseline methods: (i) Attentive

FP, which is a new graph neural network architecture for molecular representation and uses

graph attention mechanisms to learn from a drug discovery dataset [37]. (ii) Neural FP is a

kind of circular fingerprint that can be generated differentiably by a neural network, which

allows end-to-end learning of molecules of any size and shape [37]. (iii) GraphConv directly

uses the molecular connectivity graph as input and provides a learnable featurization process

that extracts meaningful representations of molecules [34, 39]. (iv) ECFP+LR that utilizes lin-

ear regression using molecular extended-connectivity fingerprints (ECFPs) on specific tasks

[34]. (v) SVM that maps input vectors to a high-dimensional feature space through nonlinear

mapping, where an optimal separating hyperplane is constructed to separate the samples [34].

The benchmark accuracy values of various methods (including Attentive FP, Neural FP,

GraphConv, ECFP-LR, and SVM) are listed in the referenced papers [34, 37].

Results

Prediction accuracy of data-rich targets

We used three split methods, index, random, and scaffold, to split the dataset into a training

set, validation set, and test set. We first evaluated the accuracy of the model trained and tested

using data-rich targets in Tox21 (Fig 5a). We achieved better performance on these datasets

than the baseline approaches. On the test sets generated using these three split methods, we

achieved AUROCs of 0.833, 0.877, and 0.761, while Neural FP, Attentive FP, and ECFP-LR

achieved AUROCs of 0.829, 0.858, and 0.755 on the test set generated using the random

method. We found that our Siamese graph convolutional neural network has significant

AUROC improvements over GraphConv in the training, validation, and test sets. This proves

the advantages of data balancing and Siamese graph convolutional neural networks.

Prediction accuracy of a specific model with transfer learning

We then experimented with poor data targets in the FreeSolv (Fig 5b), MUV, PCBA (Fig 6),

and ToxCast, HIV (Fig 7) datasets. We found that proper transfer learning can improve the

accuracy of drug activity and toxicity prediction at targets with poor data. In the classification

tasks of the PCBA, MUV, ToxCast, and HIV datasets, we achieved AUROCs of 0.858, 0.715,

0.655, 0.804, 0.851, 0.747, 0.725, 0.715, 0.655, and 0.772, 0.856, 0.805 using the index, random,

and scaffold split methods, respectively. In the regression task of FreeSolv datasets, we achieved

0.953 R2, 0.778 RMSE, 0.539 MAE, 0.936 R2, 0.899 RMSE, 0.585 MAE, and 0.755 R2, 1.85

RMSE, 1.519 MAE, respectively (Figs 5b and 8). This method can also make the prediction of

each task consistent with the observed value, and improve the unbalanced performance of the

model between tasks (Figs 9–11). The area under the ROC curve (AUC) of various models in

the Tox21, ToxCast, MUV, and HIV datasets is shown in Table 1. In addition to R2, RMSE

and MAE (kcal/mol) are also provided to perfectly reflect the performance of the models in

FreeSolv data set (Table 2).
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Fig 5. Performance comparison between our model and the baseline model in multitask classification and

regression tasks. The area under the curve (AUC) of the ROC curve of various models in the a Tox21 and b Freesolv

datasets.

https://doi.org/10.1371/journal.pone.0266088.g005
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Fig 6. Performance comparison between our model and the baseline model in multitask classification tasks. The

area under the curve (AUC) of the ROC curve of various models in the a PCBA and b MUV datasets.

https://doi.org/10.1371/journal.pone.0266088.g006
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Fig 7. Performance comparison between our model and the baseline model in multitask classification tasks. The

area under the curve (AUC) of the ROC curve of various models in the a HIV and b Toxcast datasets.

https://doi.org/10.1371/journal.pone.0266088.g007
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Fig 8. Performance comparison between our model and the baseline model in the regression task. a RMSE and b

MAE (kcal/mol) are provided to perfectly reflect the performance of the models in the regression task of the Freesolv

dataset.

https://doi.org/10.1371/journal.pone.0266088.g008
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Discussion

The purpose of this study was to develop drug activity and toxicity prediction models that can

even be used for targets with poor data. To this end, we (i) created a balanced dataset from the

Tox21 dataset, which is relatively data-rich for the targets, (ii) integrated the graph convolu-

tion and Siamese network and used it to train a model of the toxicity of compounds to targets

using the physical and chemical features of compounds in the balanced dataset, and (iii) trans-

ferred the toxicity prediction model from data-rich targets to data-poor targets. Finally, the

Fig 9. The correlation between predictions and observations of our model on different tasks in tox21 data set (index split).

https://doi.org/10.1371/journal.pone.0266088.g009
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proposed models more accurately predicted the activity and toxicity of compounds in the

other five datasets than existing methods using an appropriate transfer learning strategy.

Our main contribution is that we approached understudied targets for drug activity and

toxicity prediction. Balanced target data are the strongest support for estimating drug activity

and toxicity but are only available when sufficient study is done. Inadequate research on these

targets leads to an imbalance in the corresponding drug activity and toxicity data, which con-

sequently becomes an obstacle to the development of drugs for these targets. Our drug activity

and toxicity prediction models successfully address the lack and imbalance of target data while

achieving competitive accuracy.

Fig 10. The correlation between predictions and observations of our model on different tasks in tox21 data set (random split).

https://doi.org/10.1371/journal.pone.0266088.g010
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Although our study focused on predicting the activity and toxicity of understudied targets,

our models showed greater accuracy than baseline models, even in general data-rich targets.

This improved accuracy is due to the use of data balancing and the Siamese graph network in

the first stage of our transfer learning. We created a balanced dataset from the Tox21 dataset,

which is relatively rich in target data, for a pretrained model that combines graph convolution

and the Siamese network. Balanced data allow us to maximize the few-shot learning capabili-

ties of Siamese graph networks. In addition, this model has a good ability to indicate the corre-

lation between molecular substructure and toxicity or activity (Fig 12).

Fig 11. The correlation between predictions and observations of our model on different tasks in tox21 data set (scaffold split).

https://doi.org/10.1371/journal.pone.0266088.g011
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Table 1. The area under curve (AUC) of the ROC curve of various models in Tox21, ToxCast, MUV and HIV data sets.

Data Set Model Split Method Train Valid Test

Tox21 ECFP+LR Index 0.903 0.704 0.738

Random 0.901 0.742 0.755

Scaffold 0.905 0.651 0.697

GraphConv Index 0.945 0.829 0.820

Random 0.938 0.833 0.846

Scaffold 0.955 0.778 0.752

Neural FP Random - - 0.829

Attentive FP Random - - 0.858

Our (general model) Index 0.978 0.826 0.833

Random 0.972 0.837 0.877

Scaffold 0.978 0.780 0.761

ToxCast ECFP+LR Index 0.727 0.578 0.464

Random 0.713 0.538 0.557

Scaffold 0.717 0.496 0.496

GraphConv Index 0.904 0.723 0.708

Random 0.901 0.734 0.754

Scaffold 0.914 0.662 0.640

Our (Transfer learning) Index 0.940 0.731 0.725

Random 0.966 0.735 0.715

Scaffold 0.946 0.683 0.655

PCBA ECFP+LR Index 0.809 0.776 0.781

Random 0.808 0.772 0.773

Scaffold 0.811 0.746 0.757

GraphConv Index 0.895 0.855 0.851

Random 0.896 0.854 0.855

Scaffold 0.900 0.829 0.829

Our (Transfer learning) Index 0.908 0.852 0.858

Random 0.909 0.855 0.861

Scaffold 0.902 0.833 0.842

MUV ECFP+LR Index 0.960 0.773 0.717

Random 0.954 0.780 0.740

Scaffold 0.956 0.702 0.712

GraphConv Index 0.951 0.816 0.792

Random 0.949 0.787 0.836

Scaffold 0.979 0.779 0.735

Attentive FP Random - - 0.843

Our (Transfer learning) Index 0.979 0.826 0.804

Random 0.988 0.790 0.851

Scaffold 0.985 0.786 0.747

HIV ECFP+LR Index 0.864 0.739 0.741

Random 0.860 0.806 0.809

Scaffold 0.858 0.798 0.738

SVM Scaffold - - 0.792

GraphConv Index 0.945 0.779 0.728

Random 0.939 0.835 0.822

Scaffold 0.938 0.795 0.769

Attentive FP Scaffold - - 0.832

Our (Transfer learning) Index 0.965 0.806 0.772

Random 0.974 0.846 0.856

Scaffold 0.969 0.807 0.805

https://doi.org/10.1371/journal.pone.0266088.t001
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The limitation of this study is that the model cannot achieve high accuracy (no more than

80%) in the ToxCast dataset. A possible explanation for this might be that the ToxCast dataset

has the largest number of targets (617), the largest imbalance, and low drug positive rates (with

positive rates ranging from 0–19% between targets), so the presence of a large number of

understudied targets may result in discrepancies in model predictions and observations.

Conclusion

In summary, our model is an end-to-end prediction model of drug activity and toxicity, learn-

ing the interaction between drugs and targets. Based on the fact that similar gene expression is

shared by different target tissues and therefore drugs exhibit activity and toxicity to the targets

in a similar manner, we used a siamese graph convolutional neural network and transfer learn-

ing from data-rich targets to data-poor targets to enable prediction models to play a role in

data-poor targets. For future work, our drug activity and toxicity prediction models can reveal

the underlying mechanisms of interaction between other potential targets and drugs and pro-

vide new methods for efficient and low-cost drug discovery. In order to make the model pro-

posed in this paper can be used in common situation, it is essential to establish massive multi-

task datasets for pretraining, which is also an interesting attempt for our future research work.
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chez A, et al. Tox_RCNN: Deep learning-based nuclei profiling tool for drug toxicity screening. Plos

Comput Biol. 2018; 14(11):e1006238. https://doi.org/10.1371/journal.pcbi.1006238 PMID: 30500821

28. Jiang DJ, Wu ZX, Hsieh CY, Chen GY, Liao B, Wang Z, et al. Could graph neural networks learn better

molecular representation for drug discovery? A comparison study of descriptor-based and graph-based

models. J Cheminform. 2021; 13(1):1–23. https://doi.org/10.1186/s13321-020-00479-8 PMID:

33597034

29. Tran-Nguyen VK, Jacquemard C, Rognan D. Deep Learning for Drug-Induced Liver Injury. J Chem Inf

Model. 2020; 60(9):4263–4273. https://doi.org/10.1021/acs.jcim.5b00238

30. Tox21 Challenge [Internet]. Bethesda (MD): National Center for Advancing Translational Sciences.

c2014—[cited 2021 Dec 8]. Available from: https://tripod.nih.gov/tox21/challenge/

31. Cortini M, Baldini N, Avnet S. New Advances in the Study of Bone Tumors: A Lesson From the 3D Envi-

ronment. Front Physiol. 2019; 814(10):1–8. https://doi.org/10.3389/fphys.2019.00814

32. Kim Y, Zheng SY, Tang J, Zheng WJ, Li Z, Jiang XQ. Anticancer Drug Synergy Prediction in Understud-

ied Tissues Using Transfer Learning. JAMIA. 2021; 28(1):42–51. https://doi.org/10.1093/jamia/

ocaa212 PMID: 33040150

33. Dhruba SR, Rahman R, Matlock K, Ghosh S, Pal R. Application of Transfer Learning for Cancer Drug

Sensitivity Prediction. BMC Bioinformatics. 2018; 19(S17):51–63. https://doi.org/10.1186/s12859-018-

2465-y PMID: 30591023

34. Turki T, Wei Z, Wang JTL. Transfer Learning Approach via Procrustes Analysis and Mean Shift for Can-

cer Drug Sensitivity Prediction. J Bioinform Comput Biol. 2018; 16(03):1–31. https://doi.org/10.1142/

S0219720018400140 PMID: 29945499

35. Li JY, Cai D, He XF. Learning Graph-Level Representation for Drug Discovery. arXiv preprint. 2017;

arXiv:1709.03741v2.

PLOS ONE A feature transferring workflow between data-poor compounds in various tasks

PLOS ONE | https://doi.org/10.1371/journal.pone.0266088 March 30, 2022 19 / 20

https://doi.org/10.1186/s13321-016-0151-5
https://doi.org/10.1186/s13321-016-0151-5
http://www.ncbi.nlm.nih.gov/pubmed/27516811
https://doi.org/10.1021/ci7002076
https://doi.org/10.1021/ci7002076
http://www.ncbi.nlm.nih.gov/pubmed/17929911
https://doi.org/10.1021/ci300400a
http://www.ncbi.nlm.nih.gov/pubmed/23030379
https://doi.org/10.1021/jm050200r
http://www.ncbi.nlm.nih.gov/pubmed/16570922
https://doi.org/10.1021/ci034160g
http://www.ncbi.nlm.nih.gov/pubmed/14632445
https://doi.org/10.1002/minf.201501008
https://doi.org/10.1002/minf.201501008
http://www.ncbi.nlm.nih.gov/pubmed/27491648
https://doi.org/10.1016/j.drudis.2018.01.039
http://www.ncbi.nlm.nih.gov/pubmed/29366762
https://doi.org/10.1093/bib/bbz042
https://doi.org/10.1093/bib/bbz042
http://www.ncbi.nlm.nih.gov/pubmed/31155636
https://doi.org/10.1038/s41563-019-0332-5
https://doi.org/10.1038/s41563-019-0332-5
http://www.ncbi.nlm.nih.gov/pubmed/31000801
https://doi.org/10.1016/j.drudis.2017.08.010
https://doi.org/10.1016/j.drudis.2017.08.010
http://www.ncbi.nlm.nih.gov/pubmed/28881183
https://doi.org/10.1021/acs.molpharmaceut.8b00110
https://doi.org/10.1021/acs.molpharmaceut.8b00110
http://www.ncbi.nlm.nih.gov/pubmed/29775322
https://doi.org/10.1021/acs.jcim.5b00238
https://doi.org/10.1371/journal.pcbi.1006238
http://www.ncbi.nlm.nih.gov/pubmed/30500821
https://doi.org/10.1186/s13321-020-00479-8
http://www.ncbi.nlm.nih.gov/pubmed/33597034
https://doi.org/10.1021/acs.jcim.5b00238
https://tripod.nih.gov/tox21/challenge/
https://doi.org/10.3389/fphys.2019.00814
https://doi.org/10.1093/jamia/ocaa212
https://doi.org/10.1093/jamia/ocaa212
http://www.ncbi.nlm.nih.gov/pubmed/33040150
https://doi.org/10.1186/s12859-018-2465-y
https://doi.org/10.1186/s12859-018-2465-y
http://www.ncbi.nlm.nih.gov/pubmed/30591023
https://doi.org/10.1142/S0219720018400140
https://doi.org/10.1142/S0219720018400140
http://www.ncbi.nlm.nih.gov/pubmed/29945499
https://doi.org/10.1371/journal.pone.0266088


36. Wu ZQ, Ramsundar B, Feinberg EN, Gomes J, Geniesse C, Pappu AS, et al. MoleculeNet: A Bench-

mark for Molecular Machine Learning. Chem Sci. 2018; 9(2):513–530. https://doi.org/10.1039/

c7sc02664a PMID: 29629118

37. Altae-Tran H, Ramsundar B, Pappu OA, Pande V. Low Data Drug Discovery with One-Shot Learning.

ACS Cent Sci. 2017; 3(4):283–293. https://doi.org/10.1021/acscentsci.6b00367 PMID: 28470045

38. Xiong ZP, Wang DY, Liu XH, Zhong FS, Wan XZ, Li XT, et al. Pushing the Boundaries of Molecular

Representation for Drug Discovery with the Graph Attention Mechanism. J Med Chem. 2020; 63

(16):8749–8760. https://doi.org/10.1021/acs.jmedchem.9b00959 PMID: 31408336

39. Duvenaud D, Maclaurin D, Aguilera-Iparraguirre J, Gómez-Bombarelli R, Hirzel T, Aspuru-Guzik A,
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