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Abstract

Mechanical forces play a key role in a wide range of biological processes, from embryogenesis to cancer metastasis, and
there is considerable interest in the intuitive question, ‘‘Can cellular forces be inferred from cell shapes?’’ Although several
groups have posited affirmative answers to this stimulating question, nagging issues remained regarding equation
structure, solution uniqueness and noise sensitivity. Here we show that the mechanical and mathematical factors behind
these issues can be resolved by using curved cell edges rather than straight ones. We present a new package of force-
inference equations and assessment tools and denote this new package CellFIT, the Cellular Force Inference Toolkit. In this
approach, cells in an image are segmented and equilibrium equations are constructed for each triple junction based solely
on edge tensions and the limiting angles at which edges approach each junction. The resulting system of tension equations
is generally overdetermined. As a result, solutions can be obtained even when a modest number of edges need to be
removed from the analysis due to short length, poor definition, image clarity or other factors. Solving these equations yields
a set of relative edge tensions whose scaling must be determined from data external to the image. In cases where
intracellular pressures are also of interest, Laplace equations are constructed to relate the edge tensions, curvatures and
cellular pressure differences. That system is also generally overdetermined and its solution yields a set of pressures whose
offset requires reference to the surrounding medium, an open wound, or information external to the image. We show that
condition numbers, residual analyses and standard errors can provide confidence information about the inferred forces and
pressures. Application of CellFIT to several live and fixed biological tissues reveals considerable force variability within a cell
population, significant differences between populations and elevated tensions along heterotypic boundaries.
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Introduction

The shapes and movements of cells and tissues are crucial to a

wide range of biological processes – including embryogenesis,

wound healing, cancer metastasis and tissue engineering [1–15] –

but relatively little is known about the underlying mechanical

forces. Clearly, knowledge of the forces driving these processes is a

fundamental part of a complete understanding. Without it, we will

not only struggle to correctly figure out the basic mechanics of cell

and tissue reshaping, but we will have little hope of properly

identifying the effects that forces have on mitosis, gene expression

and differentiation [16].

A large number of experimental techniques have been

developed to obtain information about the forces at work in cells.

Some are applicable only to cells that reside on the surface of a

mass or in a monolayer epithelium directly accessible to physical

contact. These techniques, some more historical than others,

include thin glass rods inserted to apply forces or constrain natural

movements [17], atomic force microscopes that exert known forces

and measure associated displacements [18], micropipette aspira-

tions that yield surface tensions [19], and substrate deformation

techniques that measure traction forces [15,20]. Some of these

techniques can be used to obtain force or traction maps, but these

powerful approaches are not applicable to the interiors of cell

masses or to in vivo tissues protected by a requisite layer such as a

vitelline membrane. Thus, several other techniques have been

developed for in vivo measurements, including magnetic cytometry

in which magnetic forces are applied to inserted ferrous particles

[21], morphological techniques based on the shapes of inserted oil

droplets [16], optical tweezers that exert forces on endogenous or

injected particles with different refractive indices [22], FRET

techniques that aim to report deformations and forces [23,24] by

optical means and laser ablation techniques based on recoil rates

[12]. All of these experimental techniques provide force informa-

tion limited to specific locations and times. One could theoretically

construct detailed spatial and temporal force maps by collating

data from multiple specimens, but animal-to-animal variations

make such approaches impractical.

Computational models have also provided a great deal of

information about cell- and tissue-level forces [25–30]. These
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models have typically been used in a forward manner, where a

user specifies the forces at work in a particular aggregate of cells or

other system under study and uses the model to predict the

resulting cell shapes and motions. The time-consuming challenge

of this approach is figuring out the forces needed to produce a

particular morphological outcome. Even when an appropriate set

of forces is found, uniqueness is not guaranteed; other sets of

driving forces might be able to produce the same outcome. We

were able to show that under suitable circumstances and with

appropriate side conditions, model equations that calculate

motions from forces can be inverted and used to directly estimate

forces from shapes and motions [31,32]. This understanding was

the basis of Video Force Microscopy (VFM), a technique that

allowed us to construct detailed maps of the dynamic sub-cellular

forces driving ventral furrow formation in Drosophila.

VFM showed that the initial stages of ventral furrow formation

were driven by apical constrictions that were focused on the

invagination site, that these tensions arose smoothly over time and

that they varied smoothly with medio-lateral position. These

findings were unlike the step functions often assumed explicitly or

tacitly in conceptual and computational models [33]. VFM also

rather unexpectedly showed the presence of moderate and

relatively uniform contractions along the basal surface of the

dorsal and lateral ectoderm – sites well removed from the location

of furrow formation. It further revealed significant tensions along

the cell membranes that run across the thickness of the epithelium

near the ventral midline, especially during the latter stages of

furrow formation. When applied to mutant embryos, VFM

showed that the driving forces were affected in specific ways

consistent with the observed motion and shape irregularities.

Subsequent computational modeling confirmed the validity and

necessity of the various force systems revealed by VFM [34].

Unfortunately, attempts to apply this promising technique to

wound healing and other in-plane motions led to unexpected

challenges such as high sensitivity to noise, including that

produced by image digitization. A number of groups, including

ours, made headway on the in-plane force-inference problem by

using more advanced solvers and modified assumptions about the

forces present. For example, Chiou et al. reduced the number of

unknown parameters by assuming either that all cells had the same

intracellular pressure or that each cell had a single cortical tension

that contributed equally to the edge tension along each of that

cell’s interfaces [35]. The subsequent comprehensive study of

Ishihara and Sugimura showed that a Bayesian solver could

address general stability issues and the shortage of equations that

arises for planar assemblies of cells represented by minimal

polygons [36]. Shortly thereafter, a detailed comparative paper

evaluated a number of different approaches and combinations of

assumptions and provided a summary of the state of the art [37].

The key insight that led to the work reported here, was the

realization that substantially-improved equations could be formu-

lated if cell boundaries were treated as being curved, even if only

slightly. Nearly all prior force-inference studies, with the exception

of some on bubble rafts [38], used a straight edge approximation.

This seemingly subtle difference completely changes the nature of

the governing equations. It overcomes the equation shortage often

encountered in the past, brings redundancy and stability to the

assembled matrix equations and reduces noise sensitivity by at

least an order of magnitude. Here we describe this new approach,

its basic equations and the form of its associated matrices. We

show that the tension equations are solvable independent of the

pressure equations, and we present mathematical tools for

assessing the quality of the resulting solutions.

In this study, we focus on patches of cells extracted from larger

cell sheets (Fig. 1A). Consistent with a number of other groups

[35–37], we assume an underlying model of cell mechanics in

which cell shape is governed solely by interfacial tensions that are

uniform between each pair of adjacent triple junctions and

intracellular pressures that are uniform within each cell. We

further assume that motions are sufficiently slow as to make

viscous forces negligible, a quasi-static approximation. However,

in contrast with previous approaches, we do not approximate cell

edges as straight, but instead allow curvature – connecting each

pair of adjacent triple junctions with an arc. A cell is thus not

represented by a polygon, but by a polyarc. To distinguish this

new approach from VFM, we refer to it and the associated tools

for assessing solution quality as the Cellular Force-Inference

Toolkit or CellFIT. Within this paper, CellFIT by itself implies the

use of a polyarc cell representation and variants, such as polygon

CellFIT, are so indicated. The term triple junction (TJ) is used

widely herein for simplicity and because it is by far the most

common kind of junction, however, many of the comments made

regarding it have obvious parallels that apply equally well to

junctions of different order.

As in VFM, CellFIT begins by determining cell shapes in an

image using a combination of automated segmentation and

manual tracing. A circular arc is then fit to the pixels

corresponding to each cell-cell interface to estimate the edge

curvature and the angles at which the edge approaches its triple

junctions. This information is used to construct the governing

equations. Angles determined by this method may appear only

modestly different from those associated with the straight edges of

minimal polygons, but the differences affect the assembled

equations enough to significantly alter the calculated tensions.

Equation sets for both the edge tensions and for the gauge

pressures are generally overdetermined, even for meshes that are

‘‘open’’ or have ‘‘ragged’’ edges. This allows a limited number of

TJs to be excluded from analysis if one or more of their edge

approach angles is in question, e.g., if an edge is extremely short or

is not well defined in the image. The edge tension equations are

solved first and the solution scaled to actual tensions using data

external to the analyzed image. Then, if intracellular pressures are

also of interest, Laplace equations are written for each cell edge so

as to relate the previously determined edge tensions to the edge

curvatures and pressure differences. These equations are assem-

bled and solved to within a pressure offset. Like the tension scaling

above, this pressure offset must be obtained from external

information. We find that solutions based on the curved edges of

polyarc cells are considerably less sensitive to noise than are those

based on polygonal cells.

We show that all possible combinations of pressures and

tensions consistent with a given image can be built by suitably

combining and scaling a single set of normalized tensions and its

associated zero-mean gauge pressures – so-called Standard

Tensions and Standard Pressures. We also present a number of

tools for assessing solution quality: matrix condition numbers,

residual plots, and uncertainty estimates based on standard errors.

When applied to images of epithelia, CellFIT yields results

consistent with available experimental measurements. However, it

goes beyond these measurements to provide insights into force

variability within single tissues, force differences between adjacent

tissues and elevated tensions along boundaries between tissues.

Equation Formulation

Consider a contiguous planar monolayer (Fig. 1A), whose three-

dimensional form could be produced by extruding its planform

CellFIT: A Cellular Force Inference Toolkit
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normal to the plane of the sheet. The edges of its cells are allowed

to be curvilinear in the plane of the sheet, and tensions along those

edges are assumed to be uniform within each edge, but to vary

from one edge to another. As in other studies, these cell edge

tensions or ‘‘interfacial tensions’’ are assumed to arise from the

combined action of actomyosin contractions, membrane tensions

and cell-cell adhesion systems [27,39]. While the contractions and

tensions tend to shorten the cell edge, the adhesion forces tend to

lengthen it. Here, we report the net contractile force, and call it the

effective edge tension or simply edge tension c. The mechanical

effect of forces transverse to the sheet could also be analyzed [40],

but they are not considered here.

In addition, we assume that isotropic tensions act along the

apical and basal surfaces of the cells, generating further forces in

Figure 1. A synthetic planar aggregate and its analysis by CellFIT. (A) shows a representative region consisting of 50 complete cells, 177
complete edges, and 30 partial cells and corresponding incomplete edges taken from a larger aggregate. Its cells were assigned to one of three types,
as indicated by coloured shading and a finite element model was used to determine its annealed state, as shown. The edge tensions were assigned
the following values according to their type 5:6:7:10:11:12. (B) shows the topological and geometric information provided to the CellFIT algorithms.
The spectra shown in (C) provide legends for the tension and pressure colours used in the remaining parts of the figure. (D) shows the ground truth
Standard Tensions and Pressures as determined by the FE annealing process, and extracted using Equation 16 and its associated text. (E) shows the
values that the standard Polyarc version of CellFIT calculates based solely on the data in (B). (F) shows the results obtained by calculating the angles
at triple junctions using straight edges only. (G) and (H) show CellFIT results when noise levels of 2 or 5 are respectively introduced into the CellFIT
input data. A noise level of x corresponds to x degrees of angle error and x% curvature error. (I) shows CellFIT results obtained after the original mesh
was converted into an image and redigitized before analysis.
doi:10.1371/journal.pone.0099116.g001
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the plane of the sheet [40,41]. Within any given cell, these

contractions would be mechanically analogous, but opposite in

direction to any intracellular pressures that might be present. Here

we consider the net isotropic expansion force as a positive effective

intracellular pressure or simply intracellular pressure. Cell

deformations are assumed to occur sufficiently slowly that viscous

forces are negligible and the cell can be considered quasi-static

[37], a simplification compared to VFM. As a result of this

simplification, the present formulation is not appropriate for

analyzing laser ablation recoil or other rapid motions where

viscous forces may be significant. Cells may also carry tractions,

crawling or friction forces between themselves and a subjacent or

overlying structure [14,42], but these mechanical effects are

beyond the scope of the present study.

Instead, the present analysis deals only with in-plane forces,

motions and shapes, and it considers them to be governed

exclusively by equivalent edge tensions and intracellular pressures.

This approach is consistent with other recent studies of cell sheets

[35–37], and it does not hamper future enhancement or

generalization of the equations presented.

Next, consider the curved cell boundary shown schematically in

Fig. 2A. Cell-cell interfaces like this behave mechanically like a

membrane, in the engineering sense of the word. In contrast to

many other kinds of structural elements, membranes carry no

bending or shear stress [43] and they rely on tensions along their

shape to carry load, typically changing geometry in order to carry

newly-applied loads. The interface shown in Fig. 2A between cells

i and j is assumed to carry a tension cij, and to sustain a pressure

difference

Dpij~pi{pj ð1Þ

that arises from the difference between the intracellular pressures

pi and pj in cells i and j, respectively. The relationship that must

exist between pressure Dpij, radius of curvature rij and tension for a

portion of a membrane to remain in equilibrium is easy to derive,

as shown in Fig 2B and its caption, and the resulting so-called

Laplace equation, is

Dpij~cij=rij ð2Þ

where the radius of curvature rij, the multiplicative inverse of the

membrane curvature, is considered positive when the i-j edge is

convex into cell j.

The cell membrane behaves rather like a sail, which is

necessarily bowed when pressure differences arise between its

sides as a consequence of wind action. The greater the pressure

difference, the greater the tension in the fabric of the sail for a

given geometry. Furthermore, as the rigging is tightened, the force

in the sail increases and its curvature reduces. In the special case

where there is no pressure difference across the sail, the sail would

have negligible curvature but still carry tension because the rigging

is tight. As in a sail, we assume that the tension along any

particular cell edge is sensibly constant. If loads with force

components tangent to the sail or membrane were applied, this

assumption would need to be modified.

Another set of equations can be constructed by noting that the

vector sum of the forces applied to each TJ must add to zero for it

to be in equilibrium (Fig. 2C). Just as a sail attached to a mast pulls

in the direction of the final limiting angle at which the sail cloth

approaches the mast, the vector force cij of a cell edge tension

acting on a TJ must be away from the TJ and tangent to the edge

as it approaches the TJ. For any particular TJ to be in equilibrium,

the adjacent cell edges must satisfy the force balance equation

X
cmn r̂rmnA~0, ð3Þ

where the unit vectors r̂rmnA are constructed tangent to the limiting

angle at which the membrane along the boundary between cells m

and n approaches the Ath triple junction and pointing away from

the junction, and the summation is carried out over all edges that

connect to that TJ. The cmn values are the corresponding unknown

membrane tensions. For illustrative purposes, Fig. 2C shows three

such cell edges, but there could be more, as at ‘‘quad’’ junctions

and rosettes [44].

Equation 3 may seem oversimplified, not taking pressure forces

into proper account. In fact it is complete, as can be argued by

considering Fig 2C to represent a very small region around the TJ

labeled A, as suggested by the small red circle in Fig. 2A. As the

region of interest is made smaller, the length over which pressure

forces normal to any given membrane or sail cloth can act

becomes vanishingly small and since its contribution is equal to

pressure times length, that contribution becomes negligible.

Another way to resolve the seeming paradox is to consider a free

body diagram of increasing size. As the area considered in the

diagram is made larger, the direction of the membrane (or sail) at

the edge of the diagram changes. One can show using a figure

similar to Fig. 2B, that as the boundary of the free body diagram is

expanded, the direction of the tension vector c at the cut edge of

the sail changes in such a way that its contribution to the net force

at the TJ exactly counterbalances the growing effect of the

pressure force as it acts on an increasing area.

If, rather than being curved, cell edges are assumed to be

straight (Fig. 2D), then they must act as beams (rather like the mast

of a sail boat), carrying both bending and shear in order to remain

straight [45]. In that case, pressure loading Dpij gives rise to shear

forces of magnitude Dpij Lij/2 at each end of the beam, as shown.

The beam can also carry tension Tij as shown. In VFM, as in other

studies that assume straight edges [31,35–37], the pressure Dpij and

tension Tij are treated as independent variables and their vector

sum Rij may not be tangent to the membrane at the TJ, although it

should be. One situation where this non-alignment is not a

problem, however, is when the edges of cells are essentially

perpendicular to each other as was the case when VFM was used

to study ventral furrow formation [31]. The inconsistency noted

above is the apparent reason that straight edge-based approaches

tend to encounter computational challenges such as high noise

sensitivity. They also lack pressure equations (Equation 2) and can

thus have more unknowns than equations.

Equation 3 can be written for any single TJ (Fig. 3A), and each

such analysis provides two equations (one in each of the x- and y-

directions) with three unknowns (the three interfacial tensions, cmn).

Although there is not enough information to solve the equations in

the conventional sense, each equation set allows the ratios of the

three tensions that act on it to be determined, but does not allow

their magnitudes to be found. If two triple junctions are adjacent

to each other (Fig. 3B), one could set up equations for each

junction and, as is done here, assume that the tension in each

boundary remains constant along its length. Introducing this

assumption means that each additional simply-connected TJ adds

two more equations and only two more unknown tensions. When

the last TJ needed to complete the perimeter of any particular cell

is added (Fig. 3C), two more equations can be written, but only

one more new edge is added. As more cells are completed, the

equation set becomes increasingly overdetermined. Nonetheless,

CellFIT: A Cellular Force Inference Toolkit
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external information is still needed to scale its solution since the

equation set is homogeneous. The overdetermined nature of the

resulting equations (Figs 3D and 3E) tends to reduce its sensitivity

to any errors in the equilibrium equations from which it is built.

Sometimes, one or more of the cell edges in an image is short,

poorly imaged, crenulated or incomplete, making it difficult or

impossible to confidently ascertain the angle at which those edges

approach one or both of the junctions to which they are attached.

Figure 2. Equilibrium considerations. (A) shows a curved cell edge and the forces acting on it, while (B) shows how edge tension, curvature and
pressure are related. Specifically, the pressure difference Dp generates a force Fy~2Dp dL~2Dp r dh in the y-direction. This force must be just
balanced by the vertical components of the tension c. Thus we have that 2Dp r dh~2 c sin (dh)%2 c dh which, when simplified, gives Dp~c=r, the
Laplace equation. (C) shows the forces that act at a typical triple junction, while (D) shows the forces that act on an edge that is constrained to
remain straight by beam action, as described in the text.
doi:10.1371/journal.pone.0099116.g002

Figure 3. The tension equations are generally overdetermined. Geometric considerations show that the tension equations are, within a scale
factor (see text), adequately determined (A, and B). When a full cell is enclosed (C) and as more cells become fully enclosed, they generally become
increasingly overdetermined (D and E), though scaling information external to the image is still needed.
doi:10.1371/journal.pone.0099116.g003
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The system of tension equations is overdetermined sufficiently to

allow exclusion of a limited number of these problematic edges.

Doing so requires excluding the x- and y-force balances associated

with the endpoint junctions of the excluded edges, as if those

junctions did not exist. The number of useable equilibrium

equations then becomes

NTensionEqns~2NJs{2NJRem, ð4Þ

where NJs is the number of triple, quad or other types of junctions

present before any edges are removed and NJRem is the number

junctions removed because they were associated with one or more

removed edges. For consistency, all of the parameters appearing

on the right hand side of tally Equations 4, 5, 9 and 10 are based

on the pre-removal geometry. The number of boundaries whose

tensions must be found is

NTensions~

1z2NJs{NCompleteCells{NRemEdgeszNExcessEdges{NDJs,
ð5Þ

where NCompleteCells is the number of fully-surrounded cells and

NExcessEdges is the total number of attachments in excess of 3 per

junction over the grid. If there were 4 quad junctions and one

rosette with 6 edges, NExcessEdges would equal 1+1+1+1+3 = 7. The

number of edges removed in NRemEdges. As suggested by Fig. 3, all

triple junctions, including those along the perimeter are included

in the count for NJs, and all of the stub (truncated) edges are

included in NTensions. Cells in contact with the medium may have

only two edges at a given junction and the number of those

junctions is denoted NDJs. Some of the relationships outlined here

may appear inconsistent with Euler’s formula but that is a

consequence of the presented equations allowing for stub edges.

Comparison of Equations 4 and 5 shows that as long as the

numbers of nodes affected by deleted edges NJRem and the number

of extra attachments NExcessEdges are not too large, there will be

more equations than unknowns. The tensions in the stub edges are

calculated because no particular advantage is realized by removing

them and their associated junction equilibrium equations from the

analysis. One of the purposes of Equations 4 and 5 and the other

tally equations reported here is to provide insight into how the

number of equations and unknowns is affected by geometric

details of the area studied, information that could be useful to

manual or automated schemes for choosing such regions

strategically.

To facilitate their solution, the Tension Equations are written in

matrix form,

Gc c~0, ð6Þ

where each of the paired rows in the NTensionEqns by NTensions matrix

Gc contains 3 (or more for quad or rosette junctions, or fewer for

double junctions) cosines or sines, according to whether that row

relates to the equilibrium equation for the x- or y-direction,

respectively. The vector c is a list of length NTensions containing the

surface tension magnitudes cij. Equation 6 is homogeneous and so

as to avoid its natural solution c = 0 and obtain a meaningful

ratio between the tensions, we construct and solve the constrained

least-squares equation system

GT
c Gc CT

1

C1 0

" # c1

..

.

cNTensions

l1

8>>>><
>>>>:

9>>>>=
>>>>;

~

0

..

.

0

NTensions

8>>>><
>>>>:

9>>>>=
>>>>;

, ð7Þ

where

C1~ 1 . . . 1f g, ð8Þ

which imposes the condition �cc~1, where the overbar indicates

taking the mean of the elements in the vector, and l1 is the

Lagrange multiplier associated with this constraint. If a particular

tension in a specific edge is desired, less bias is introduced by

scaling the above solution than by specifying that tension as a

constraint using a modified C1. Singular value decomposition,

least absolute error and logarithmic solvers [46,47] can also be

used to solve Equation 6, and all three approaches appear to

generally give similar results. Bayesian solvers [36] and other kinds

of sophisticated approaches may be more complex than necessary

for solving these simple, well-conditioned equations. The result of

this solution process is a set of tensions for all of the NTensions edges,

that is, for all complete or partial edges in the region of interest less

any purposely removed edges. In order to scale the tensions so that

their magnitudes are correct in a particular application, external

information, such as the tension acting along a particular edge, is

needed.

Once the vector of edge tensions c is known in scaled or

unscaled form, the effective intracellular pressures can be

calculated. For these calculations, the number of available

equations is taken to be

NPr essureEqns~NTensions{NStubs, ð9Þ

where NStubs is the number of stub edges along the perimeter of the

region of interest. The stub edges are not used for pressure

calculations in the present analysis because there are otherwise

ample equations available and because stub edges may not be

sufficiently long to provide reliable curvature information. The

number of unknown pressures is equal to

NPr essures~NCompleteCellszNPartialCells, ð10Þ

where NPartialCells is the number of partial cells along the perimeter

of the patch. If the region of interest is in contact with medium at

one or more locations, that medium is considered a single partial

perimeter cell in calculating NPartialCells. In general, the Pressure

Equations are overdetermined (Fig. 4) and well-conditioned, and

they can be written in the form

Gp p~q: ð11Þ

Each row of Equation 11 represents one pressure difference

equation. The left side of Equation 11 is a calculation of Dpij using

Equation 1, and each row of the NPressureEqns by NPressures matrix Gp

contains two non-zero entries, a 1 and a -1 according to which

pressures are involved in Equation 1 and their respective signs.

The q on the right side of Equation 11 calculates Dpij using

Equation 2, and its entries are a listing of the ratios cij=rij in the

order that corresponds to the matrix equations on the left side.

CellFIT: A Cellular Force Inference Toolkit
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Each of the equations involves a pressure difference and further

information, such as an assumption that the medium or wound

pressure is considered zero, is needed to establish a definitive

pressure offset. A constrained least-squares system

GT
p Gp CT

2

C2 0

" # p1

..

.

pNPr essures

l2

8>>>><
>>>>:

9>>>>=
>>>>;

~

q1

..

.

qNPr essures

0

8>>>><
>>>>:

9>>>>=
>>>>;

ð12Þ

where

C2~ 1 . . . 1f g ð13Þ

and l2 is the Lagrange multiplier associated with the constraint

�pp~0. Although Equations 6 and 11 appear similar in form, they

are actually quite different in character. In general, only the

former is homogeneous and only the latter is rank deficient. As a

result, one might use different kinds of solvers for each. When

Equations 6 and 11 were combined into a single coupled least

squares system and solved together, as part of our study, no

particular advantages were observed.

It is worthwhile to consider the meaning of these equations and

their solutions. In actuality, the tension balances (Equation 3) and

Laplace pressure equations (Equation 2) imply an underlying

conceptual model in which cell shapes are determined exclusively

by edge tensions and intracellular pressures. Under that assump-

tion, a well-defined mapping exists from cell-level forces to cell

shape. The converse relationship is almost as well determined, but

the scaling factor for the tensions and the pressure offset cannot be

determined from an image alone. Indeed, an entire family of

related force sets would produce the same final geometry.

Nonetheless, CellFIT returns valuable spatial and temporal maps

of the relative forces. This situation is somewhat different from that

of VFM, which assumes the presence of non-negligible viscous

forces of known form that provide a non-zero right hand side for

its equivalent of Equation 6 [31]. As a result, the VFM equation

system was non-homogeneous; given an estimate of cell viscosity,

VFM could solve for a unique set of tensions and pressures.

Incorporating viscous forces will thus be an important future

extension of CellFIT.

To better highlight the shape-force relationship that exists when

viscous forces are neglected, we propose a canonical form for the

CellFIT solutions, a so-called General Solution that encompasses

all solutions consistent with a particular image. The General

Solution is constructed from a set of Standard Tensions and

Standard Pressures. We define the Standard Tensions, denoted c*,

as the solution to Equation 6 that is scaled to a mean of one.

Alternative scaling based on the L2 norm is possible, but mean

scaling is a natural consequence of finding Standard Tensions

using Equations 7 and 8. The Standard Pressures p* are found by

solving Equation 11 with the tensions set to c*.

All solutions consistent with a given image are then given by

S a,bð Þ~

c1

..

.

cNTensions

p1

..

.

pNPr essures

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

~
c

p

� �
~

a c�
b 1za p�

� �
ð16Þ

where S a,bð Þ is the so-called General Solution for that image. A

unique solution, corresponding to particular values of the

unknown scaling factors a and b, can be found using two external

pieces of information such as one edge tension and one reference

pressure or two suitable pressures. Physically, the parameter a
corresponds to the average edge tension while b corresponds to the

average intracellular pressure. In constructing these solutions, it

should be noted that the relationship between the Standard

Tensions and Standard Pressures will depend on the image scale

since their units are different. Furthermore, the General Solution,

Standard Tensions and Standard Pressures can be constructed

easily from any mutually consistent pair of tensions and pressures c
and p, respectively, by carrying out operations inverse to those

described by Equation 16.

If groups of cells are connected to each other by at least one

edge, or a chain of edges, then a single Tension Equation

(Equation 6 or 7) can be constructed for all of them and the

Figure 4. The pressure equations are generally overdetermined. As the number of cells increases and cells acquire multiple neighbours, the
Pressure Equations become increasingly well determined (A to E). Even when the system is seemingly overdetermined (D and E), external data still is
needed to ascertain the pressure offset (see text).
doi:10.1371/journal.pone.0099116.g004
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relative edge tensions are knowable across the fully connected

mesh. Otherwise, separate Tension Equations must be solved and

the mechanics of the two regions cannot be linked using

information from the image. Separated regions could arise, for

example, if a band of the image was out of focus or otherwise

marred or if a strip of cells moved out of the imaging plane due to

a process such as furrow formation. Likewise, the criteria for a

single Pressure Equation (Equation 11 or 12) to apply to groups of

cells are (1) that a single Tension Equation is applicable and (2)

that the groups are connected by at least one chain of cells with

known tensions and curvatures between neighbouring cells along

the entire chain. The quality of the relative tension and pressure

estimates between two regions will be better if multiple connecting

chains exist and if the chains are short, interconnected and

multiple cells wide.

If tractions or additional kinds of forces were assumed to act,

more complex equations would be required, but such situations

are beyond the scope of the present study.

Validation and Characterization Using Synthetic
Data

In order to test and validate the algorithms, they were applied to

hundreds of synthetic cell patches for which ground truth values

were known. These model epithelia were generated by creating

Voronoi tesselations, converting them into finite element (FE)

meshes with assigned edge loads and running the FE code until

further movement ceased [48,49]. Unlike many previous FE

models, this one had intermediate nodes along each cell edge so

that the edges could take their natural curved shapes, and an

average of approximately 4 intermediate nodes per edge was

found to be sufficient. The annealing process ensured that the

resulting meshes were in static equilibrium, a condition that would

not be true of raw Voronoi tessellations or arbitrary meshes. In

order to generate a model patch with terraced edge forces so that

the calculated edge tensions could be more readily evaluated

visually, the cells in a large patch were assigned randomly to one of

three cell types (Fig. 1A), giving rise to 6 interface types with their

corresponding discrete edge tensions. The region shown was

extracted from a large patch designed to minimize any boundary

effects on the region of interest and so as to produce ‘‘frayed’’

edges rather than the easier to analyze smooth ones that

characterize isolated clumps of cells that are surrounded by

medium. All force information was stripped from the FE output

and only the mesh geometry (Fig. 1B) was passed to the CellFIT

algorithm.

CellFIT extracts three kinds of information from the image: cell

topology, Young angles and edge curvatures. An algorithm was

written to fit a circular arc to all of the nodes along each edge, and

when this approach was used, the Young angles were based on the

angle of each arc at the point where it made its closest approach to

the triple junction. Figs 1D-I show various solutions, and the

legend spectra in C apply to all of them. The normalized ground

truth tensions and pressures (overlaid on each other in Fig. 1D)

resulting from the FE annealing process are essentially indistin-

guishable from the Standard Solutions found by CellFIT (Fig. 1E).

As shown in Table 1, the RMS tension and pressure differences

are only 0.7% of the mean tension and 12.5% of the RMS

pressure (note that RMS pressure is used because the mean

pressure is arbitrary and set to zero in the Standard Solution).

Eliminating the three short edges that contained no intermediate

nodes reduced both errors to less than 0.3%. In contrast, if the

Young angles were calculated using a multi-segmented line

approximation to each edge and the angles of the edge segments

closest to the TJs were used, the tension and pressure errors

increased to 7.4% and 13.4%, respectively. Note that the relative

size of the tension and pressure errors shown here and elsewhere in

this paper does not necessarily indicate a greater error in the

pressures, since the two values are normalized differently. If the

angles were instead based on a minimal polygon representation

(Fig. 1F) – i.e., one in which the edge from each TJ to the next is

treated as a single straight line – the tension and pressure errors

increase, respectively, to 27.1% and 25.0%. In all cases, CellFIT

performs best when the limiting angles are determined most

accurately.

Using this same data, we also examined the performance of

VFM [31] and a Bayesian force-inference method [36,37], both

using minimal polygon representations. With such a minimal

representation, the VFM system of equations was under-

determined and could not be solved (using ordinary least squares

regression). Bayesian force inference has a similarly under-

determined system of equations, but can find a solution using

two priors: Gaussian-distributed edge tensions with a mean of one

and pressures with a mean of zero [37]. The Bayesian inference

method did not perform as well as CellFIT, yielding errors of

23.8% for the tensions and 92.9% for the pressures (Table 1). The

larger tension error is similar to that found when CellFIT was also

restricted to use triple-junction angles based on minimal polygons.

On the other hand, the magnitude of the pressure error is more

than 3 times any of the CellFIT errors. This is also likely due to the

minimal polygon representation of cells, which lacks any

information about cell edge curvature. If curvature information

is retained by using non-minimal polygons for each cell – i.e.,

keeping all of the non-TJ nodes from the original forward model –

then the system of equations is over-determined and both a

Bayesian appraoch and VFM yield nearly identical high-quality

solutions (tension and pressure errors of just 0.1% and 4.4%).

Although this approach works for an inverse problem in which the

original mesh is known, it requires extra care when applied to real

images as there is an ambiguity in both how many non-TJ nodes

to use and how to distribute them along the cell edges.

To test the response of the algorithms to noise, the angles and

curvatures input to CellFIT were subjected to noise of various

levels (Table 1 and Figs 1G and H). Appropriate noise levels were

determined by having multiple trained users manually digitize

portions of several images using basic digitizing tools. These tests

showed that angles could be obtained by hand within approx-

imately 5 degrees and radii of curvature within approximately 5%

of their true values. We refer to this amount of uncertainty as noise

level 5. Automated digitizing and segmentation tools may in time

do better, so we include similar analyses for noise levels 1 and 2.

To obtain the noise sensitivity values reported in Table 1, noise of

the levels specified in the table was applied to the geometric data

shown in Fig. 1B, as described in the table caption, and the

tensions and pressures calculated by CellFIT were compared

statistically to their corresponding ground truth values (Fig. 1D).

All of the polyarc CellFIT methods performed similarly, with

tension and pressure errors around 17–20% and 23–25% at noise

level 5. Maintaining curvatures for the edges, but calculating the

TJ angles using straight lines between triple junctions significantly

degraded the performance of this hybrid CellFIT, even at the

lowest noise levels. Nonetheless, even with added noise, all of the

CellFIT methods outperformed Bayesian force inference based on

minimal polygon representations. In the example investigated

here, the Bayesian inference errors were already large without

added noise, and only increased slightly with modest amounts of

added noise (noise level 5 corresponds to an error in each vertex

position of approximately 5% of the mean cell radius).
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To test the sensitivity of CellFIT to pixilation and digitization

effects, like those associated with the analysis of real image data,

we subjected the synthetic cell mesh (Fig. 1B) to a rasterization and

re-digitization process. This involved four major steps: (1) draw

each cell-cell boundary as a spline curve onto an image of a given

size; (2) generate a watershed image from the outline array, using a

labeling process to automatically identify separate regions; (3) re-

label the resulting image so the regions match those in the original

mesh; and (4) pass this re-labeled watershed image through a

contour-generating algorithm to create a new mesh [50–52]. In

doing this, the original mesh lines became jagged and the exact

location of mesh points was obscured, similar to the complications

involved in the analysis of real image data. Even when CellFit was

applied to a relatively coarse 6756657-pixel re-digitized image, it

proved robust (Fig. 1I), yielding normalized RMS tension and

pressure errors of 18% and 48%, respectively.

The robustness of CellFIT was further tested by giving it data

from subregions as small as single cells or even single TJs from the

original patch. The quality of any tensions and pressures that

could legitimately be calculated were not decreased, though the

Standard Solutions varied slightly as a result of small-sample

statistical effects.

As a final test, CellFIT was applied to the 2D bubble raft shown

in Fig. 8 of Stein and Gordon [38]. This image was chosen

because it had a range of bubble sizes and shapes and the bubble

edges could be digitized easily. The resulting tensions were within

5% of each other, consistent with the uniformity expected in static

bubble rafts, and since they were not particularly interesting to

examine, are not shown here.

Tools for Assessing Solution Quality

The fact that CellFIT works well on synthetic data is a necessary

condition for its validity as a useful inverse method, but it is not

sufficient. We thus introduce here a number of tools that are useful

for assessing the quality of a set of forces inferred from

experimental images. These tools are standard practice in many

types of statistical analysis, but not yet in force-from-shape

analyses.

Condition numbers are the first of these tools, and the condition

numbers for each of the geometric matrices Gc and Gp is defined

as the ratio of the largest to smallest singular values. If one were

solving two equations in two unknowns, the condition number

would provide an indication of whether the lines representing the

equations were nearly normal to each other – thus yielding robust

solutions, or nearly parallel to each other – yielding solutions that

would be extremely sensitive to the exact positioning of the lines,

noise and solver errors. Low condition numbers indicate a well-

conditioned set of equations while high values indicate an ill-posed

problem [53].

In force inference methods, both the tension and pressure

equations have a rank deficiency of one arising from the unknown

scaling of tensions and the unknown offset of the pressures (which

would yield one singular value equal to zero and thus an infinite

condition number). This rank deficiency is however accommo-

dated by augmenting the geometric matrices with constraints on

the mean tension and pressure (Equations 7 and 12). Nonetheless,

even with such constraints, a number of situations can conspire to

make the augmented matrices nearly singular and the inverse

problem ill-conditioned. For example, cells with straight edges and

certain regular or circle-inscribed geometries can have exactly

compensating pressures and edge tensions [31,37] or the entire cell

patch can have nearly compensating radial gradients in the cell

pressures and edge tensions. Such ill-conditioning is very common
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in force-inference methods that use polygonal cell approximations.

Although problems related to specialized geometries, such as

perfectly circular cells, could theoretically arise even when curved

edges are allowed, we have not encountered them in practice. If

such problems did arise, a high condition number would warn the

user of ill conditioning. Inspection of the vector(s) corresponding to

the zero or near-zero singular value(s) could then identify the

problematic modes. In the experimental examples that follow,

condition numbers for the Tension and Pressure Equations are

indicated in the associated figure captions.

The second tool makes use of the residuals,

RT~Gc c{0 ð17Þ

and

Rp~Gp p{q ð18Þ

of the tension and pressure equations, respectively. These residuals

provide an indication of how well the calculated solutions satisfy

the original equations. In general, the solutions are not exact

because determination of edge curvatures and TJ angles from

images introduces error. The Tension Equation residuals indicate

the degree to which the x- and y-components of the least-squares

or other ‘‘best’’ solution forces are out of equilibrium at individual

TJs. They thus provide a measure of any inconsistencies in the

calculated tensions. The residuals of the Pressure Equations

provide similar information, but for pressures acting across cell-cell

interfaces. In the experimental examples that follow, we visually

report the residuals as thin lines radiating from each TJ (vectorial

tension residuals) or subtending each cell-cell interface (scalar

pressure residuals). The tension residuals are normalized by the

average edge tension �cc and scaled on the image so that a

normalized residual of one has a length equal to the average cell

radius. Pressure residuals are converted into forces by multiplying

each by the chordal length of the edge on which it acts and then

normalizing and scaling them against �cc exactly like the tension

residuals. If small regions of the cell sheet display exceptionally

large tension or pressure residuals, these residuals could suggest

digitizing errors or the presence of local forces such as traction

forces that violate the assumption that shape is determined solely

by edge tensions and intracellular pressures.

Finally, to assess the expected reliability of individual tensions or

pressures, we report the conventional standard errors derived from

the covariance matrix [46]. These standard errors are plotted

below each tension/pressure map as error bars in sorted plots of

the edge tensions and pressures. These plots convey the overall

uncertainty in the tension and pressure estimates. For example, if

one wanted to assess the reliability of a particular inferred force,

such as the tension along an edge that forms part of a tissue

boundary, its individual standard error value could be examined.

Inferring Cellular Forces in Biological Systems

Having validated the CellFIT algorithms using synthetic data

and developed tools for assessing individual analyses, we can now

use CellFIT to learn about the forces at work in several biological

systems. To begin (Fig. 5), we consider the region where

amnioserosa (AS) cells contact surrounding lateral epidermis

(LE, the smaller cells in the upper left corner) during early dorsal

closure in Drosophila embryos (Bownes stage 13). Conventional

wisdom is that the cell edge tensions are modest everywhere except

along the AS/LE boundary, where they are higher.

We collected confocal fluorescent images of these cells in living

embryos that ubiquitously expressed E-Cadherin-GFP [54]. These

cells have been investigated extensively and previous studies have

found evidence for a strong pursestring force along this interface

[55,56]. If the tensions in individual cell edges were known,

however, what additional information might a CellFIT analysis

provide? Figure 5A shows an image of a representative sample of

these cells and 5B shows the corresponding CellFIT Standard

Solution for this image. As the figure caption shows, the Tension

and Pressure Equations had low condition numbers (compared to

the orders-of-magnitude higher values obtained from approaches

based on straight edges), and the solution residuals are so small

that they can be difficult to see in the figure. Both of these classes

of information give reason for confidence in the calculations.

CellFIT reveals a more complex situation than is typically

presented. For example, edge forces in individual cells change

significantly around their perimeters and they vary considerably

from one cell to the next. The intracellular pressures also show a

range of values within each tissue. Although this should not be

very surprising given that substantial variations occur in the

detailed geometries of individual cells, a method like CellFIT is

required to reliably identify, map and study this sort of mechanical

variability. It cannot be obtained from the kinds of pointwise data

that current experimental techniques provide. The edge tension

plots in Figure 5C show that all three classes of cell-cell interfaces –

LE/LE, AS/AS, and AS/LE – vary over the same wide range, but

the median edge tensions differ, highest for AS/LE interfaces (1.6),

lower for AS/AS interfaces (1.1), and lowest for LE/LE interfaces

(0.4). This ordering is qualitatively consistent with previous laser

ablation experiments, and within the low end of their quantitative

estimates [57,58].

A close examination of the AS/LE boundary shows that this low

estimate is warranted because the interface is not consistently

straight (at the cellular scale). Indeed, near the blue arrow, the AS/

LE interface approaches the side of a cell in such a way that a large

tension cannot exist along that interface at that point. The tension

along the AS/LE boundary does, however, build up toward the

right from that point as a consequence of what could be

considered to be shear forces brought about in part by angled

impinging edges. An examination of the standard errors of the

edge tensions in this area shows that they are no higher than the

average values, suggesting that the confidence level on these edges

is high.

In addition, CellFIT shows a roughly 3-fold difference in AS/

AS tensions when compared to LE/LE tensions. This difference is

required if the outward-directed forces in the closely-spaced LE/

LE edges of the ectoderm are to balance the inward forces

produced by the more widely spaced and fewer in number AS/AS

edges. As noted in previous estimates of the force ladders [54],

these tensions are in approximate proportion to their spacing

along the AS/LE boundary.

Even within the amnioserosa, the edge tensions are seen to vary

considerably, and this result is consistent with these cells’ local

dynamic contractions. Examination of the angles and forces at

particular TJs suggests forces that are indeed in balance and a

revealed variability in edge tensions that is real. For example, at

the closely spaced TJs indicated with a green arrow, four

boundaries nearly meet at a quad junction with all angles near

90u. For equilibrium to occur in this special geometry, the tension

along any one edge must be essentially the same as that in its

extension on the other side of the cross. Other specialised

geometries can exist, including ones that require certain edges to

carry zero force, and a discussion of them can be found in

structural analysis texts that discuss the method of joints [59].
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As a second example, we consider imaginal discs in Drosophila

larvae, which have also attracted much attention. Laser ablation

experiments have shown that tension in the edges along the dorsal-

ventral compartment boundary are approximately 2.5 times as

strong as those in other nearby edges [4]. Figure 6 shows a

CellFIT analysis of a wing imaginal disc tissue previously

segmented using straight edges in Fig. 4D of the Dahmann paper

[4]. Again, significant variability is found in the edge tensions.

Intracellular pressures were not calculated as the cells were

approximated by minimal polygons and so the edge curvatures

needed to construct pressure equations were unknown. Although

the magnitudes of the forces vary along the boundary, the ratio of

the in-boundary to out-of-boundary tensions remains sensibly

constant at approximately 2. Considering the errors associated

with the use of straight edges as provided in their figure rather

than curved edges (Table 1), this is consistent with their measured

force ratio.

As a final example, we consider the historical dragonfly wing

image reported by D’Arcy Thompson [60]. A CellFIT analysis

(Fig. 7) reveals the tensions along the wing veins to be 1.6 times

higher than those between other cells, and it shows noticeable

tension variability along the veins and within off-vein groups of

Figure 5. CellFIT analysis of cells near the amnioserosa/lateral epidermis boundary during early dorsal closure in a living Drosophila
embryo, as imaged in (A) and with inferred Standard Tensions and Pressures illustrated in (B) according to the color bars. The
amnioserosa is visible in a wide band from the lower left-hand corner towards the upper right, while the lateral epidermis, identifiable by its smaller
cells, is confined to a large triangle in the upper left corner. The boundary between these two tissues is indicated by the black arrows. The blue and
green arrows point to features discussed in the text. Overall, the CellFIT equations were very well conditioned – having tension and pressure
condition numbers of 30.3 and 15.6, respectively. The tension and pressure residuals are shown in (B) as thin lines emanating from each triple
junction and bisecting each cell edge, respectively. These residuals are scaled so that a residual equal to the mean tension has a length equal to the
mean cell radius. Even at this scaling, the residuals are generally quite small and many are barely discernable. Finally, confidence limits are shown for
individual tensions and pressures, (C) and (D) respectively, by boundary type. The points and bars indicate best estimate +/2 one standard error
(based on the covariance matrix), respectively. These confidence limits are a significant, but modest, fraction of the inferred tensions and pressures.
Prior investigations have suggested the existence of a uniform high-tension purse-string along the edge of the amnioserosa, but CellFIT reveals a
more complex and interesting scenario. See text for details.
doi:10.1371/journal.pone.0099116.g005
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cells, findings consistent with the other two examples reported

here. This example also suggests that if a particular specimen

preparation method does not alter TJ angles and edge curvatures,

CellFIT can used to infer the forces that were acting in the living

state.

Discussion

The last several decades have seen an increasing focus on cell

and tissue mechanics and recognition of the important comple-

mentary role they play to genomic and protein analyses. Two of

the most promising nascent technologies are force-reporting

Figure 6. CellFIT analysis of a wing imaginal disc from a living Drosophila larva. (A) shows the inferred Standard Tensions based on Fig. 4D
of Reference [4]. The tension equations are well conditioned (condition number of 11.1), the confidence limits are acceptable and the force residuals
are a bit larger than for the previous case. The black arrows in (A) indicate the boundary between compartments within the imaginal disc. (B) shows
that the forces along that boundary tend to be higher than those elsewhere (see also text). Pressures were not calculated as boundary curvatures
could not be obtained from the source image.
doi:10.1371/journal.pone.0099116.g006
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Figure 7. CellFIT analysis of an image of a dragonfly wing, published as Fig. 162 in Thompson’s On Growth and Form [60]. (A) shows the
inferred Standard Tensions and Pressures. The CellFIT equations were well conditioned (tension and pressure condition numbers of 16.7 and 13.9
respectively), the residuals are quite small, and the confidence limits for the tensions and pressures are acceptable (B and C). As noted in the text, the
tensions along the veins (indicated with arrows) are significantly higher than those along the other cell edges. This example shows that CellFIT can
extract useful information from historical images or from fixed or otherwise non-living tissues.
doi:10.1371/journal.pone.0099116.g007
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molecules [20] and force-from-image techniques like the one

presented here. Both offer the important prospect of force maps

obtained from single specimens, thus overcoming the challenges

associated with the high natural variability found in biological

specimens (often in the range of 30%). Indeed, only by

constructing such maps can one identify and examine cell-to-cell

tension variations like those reported here. The 2-fold to 20-fold

variation found by CellFIT within a presumptively homogeneous

group of cells may seem high, but individual cells in a group have

been shown to have differences in gene expression and shape

variability of this scale [61]. This degree of variability is also

consistent with the tension variation of 30% found in tissues [11]

and whose bulk properties can be considered to be a kind of

statistical average of their individual cell properties.

Unlike some of the earlier force-from-image approaches

[31,32], CellFIT can be applied to single images, and forgetting

factors and other techniques that involved multi-step data can be

avoided. This advance removes the correspondence problems

previously associated with mitosis, apoptosis and other events that

change the topology of the cellular grid. Another important

consequence is that the viscosity of the cytoplasm is no longer

assumed to provide significant forces, and advanced finite element

methods are no longer required to do the associated calculations.

Also, because the tension and pressure equations are separated in

the formulation presented here, it is possible to find tensions only.

This feature is important when the technique might be applied to

historical images where limited image resolution or other factors

might make curvatures difficult or impossible to determine.

Furthermore, if intracellular pressures are not required in a

certain application, effort need not be expended on determining

edge curvatures, per se, unless they are used to improve TJ angles.

The concept of Standard Solutions makes it clear how tensions

and pressures in any tissue are related to each other and how the

specific solution associated with a particular application can be

determined uniquely as long as the scale factor a and pressure

offset b can be found. One could envision the information needed

to ascertain these values coming from sources such as aspiration

experiments, AFM-like measurements, force-reporting molecules

or one of the other techniques mentioned in the Introduction.

The mathematical tools presented here allow the quality of

CellFIT solutions to be evaluated from a number of perspectives.

For example, the conditioning of the Tension and Pressure

Equations can be assessed by examining their respective condition

numbers. The standard error of individual tensions and pressures

can be ascertained using covariance matrices, and the degree to

which individual TJ equilibrium and pressure differences have

been satisfied can be tested by examining the residuals of their

associated equations.

To ascertain the full range of situations in which the present

equations are appropriate will require research beyond the scope

of the present study. That research may involve finite element

modeling of synthetic tissues subject to a wide range of different

driving forces, and development of CellFIT equations with the

ability to discriminate between a broader range of driving forces,

such as tractions and stress fiber forces. The equations presented

here may also be useful for analyzing other kinds of systems such

as bubble rafts, spider webs and net-like cable systems, and they

could be adapted to 3D applications.

As CellFIT is used with new or expanded conceptual models, it

might be useful to append letters to denote the driving forces

assumed [37]. The present analysis might be called CellFIT-TP

since it assumes the action of tensions and pressures. Models that

include viscosity might have a V appended while others might

assume anisotropic area contractions (A) as from stress fibers,

substrate tractions (S) or various far-field boundary conditions (B),

and three-dimensional analyses might include the number 3. The

more complicated situations encompassed by these approaches

will likely demand that more terms be added to the General

Solution and that more data from outside the images be used to

correctly determine the contributions that each makes to the total

forces present.

One could envision CellFIT being used alongside AFM, laser

ablation or other force-measuring techniques, with each comple-

menting and validating the other. It might also function in

conjunction with studies of ultrastructure and gene expression,

aiding our understanding of how these factors ultimately give rise

to particular patterns of cell and tissue organization in embryos,

normal and diseased tissues, and engineered organs.
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