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Abstract

Motivation: As more and larger genomics studies appear, there is a growing need for comprehen-

sive and queryable cross-study summaries. These enable researchers to leverage vast datasets

that would otherwise be difficult to obtain.

Results: Snaptron is a search engine for summarized RNA sequencing data with a query planner

that leverages R-tree, B-tree and inverted indexing strategies to rapidly execute queries over 146

million exon-exon splice junctions from over 70 000 human RNA-seq samples. Queries can be

tailored by constraining which junctions and samples to consider. Snaptron can score junctions ac-

cording to tissue specificity or other criteria, and can score samples according to the relative fre-

quency of different splicing patterns. We describe the software and outline biological questions

that can be explored with Snaptron queries.

Availability and implementation: Documentation is at http://snaptron.cs.jhu.edu. Source code is at

https://github.com/ChristopherWilks/snaptron and https://github.com/ChristopherWilks/snaptron-

experiments with a CC BY-NC 4.0 license.

Contact: chris.wilks@jhu.edu or langmea@cs.jhu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The Sequence Read Archive (SRA) is a repository of sequencing data

containing over 12 petabases (Leinonen et al., 2011). Archives like

the SRA allow researchers to reproduce past studies, combine data

in new ways, and leverage data that would otherwise be too expen-

sive or difficult to generate. But there is no convenient way to pose

scientific questions against the archives without first downloading

and re-analyzing data.

Snaptron is a search engine for querying splicing patterns in large,

pre-analyzed collections of human RNA sequencing (RNA-seq) sam-

ples. Snaptron lends valuable context and support to hypotheses

related to splicing patterns in human. Snaptron’s query planner com-

bines the strengths of different indexing strategies—R-trees, B-trees

and term-document inverted indices—to rapidly answer queries

(Supplementary Fig. S1). While past efforts have sought to enable

querying of sequencing and expression data (Kolesnikov et al., 2014;

Petryszak et al., 2016; Solomon and Kingsford, 2016), Snaptron is

unique both in the breadth of splicing data it can query and in its

ability to rapidly answer sophisticated questions.

2 Materials and methods

We first used Rail-RNA (Nellore et al., 2015) to analyze archived

human RNA-seq samples, as described previously (Collado-Torres

et al., 2017; Nellore et al., 2016a,b). Rail-RNA outputs is a table

summarizing evidence for exon-exon splice junctions across all sam-

ples. We also created tables detailing metadata for each sample.

This is the source material for Snaptron as well as for the
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intropolis resource (Nellore et al., 2016a). Snaptron also anno-

tates each junction with: (i) gene annotation status (Supplementary

Table S1), (ii) count of samples with one or more reads covering the

junction and (iii) junction coverage statistics, such as sum and mean,

summarized over all samples with evidence for the junction.

Snaptron user may query any of these four compilations of human

RNA-seq samples: SRAv1 contains 43M junctions called from 21 504

public samples from the SRA. SRAv2 contains 81M junctions called

from 44 427 public samples from the SRA. GTEx contains 29M junc-

tions called from 9662 samples from the v6 GTEx data freeze. TCGA

contains 37M junctions called from 11 284 samples from TCGA.

Users query splicing patterns of interest by specifying filters on

genomic region (R), sample metadata (S), or other summaries calcu-

lated over the relevant samples (F). These can be combined, as

denoted by abbreviations like RþF (filtered region query) or

RþFþM (filtered region query with metadata constraint). Snaptron

also distinguishes basic queries from high-level queries. High level

queries combine many basic queries to answer more sophisticated

questions. High level queries include Junction Inclusion Ratio (JIR),

used to rank samples according to the relative prevalence of different

splicing patterns, Percent Spliced In (PSI), a special case of JIR for al-

ternatively spliced cassette exons, Shared Sample Count (SSC) for

determining overall prevalence of a splicing pattern, and Tissue

Specificity (TS). Snaptron can handle groups of queries where the

junctions returned are either the union or intersection of individual

queries. Snaptron’s architecture and user interfaces are detailed in

Supplementary Figure S2 and Supplementary Notes S1 and S2.

Snaptron’s query performance is investigated in Supplementary Note

S3 and Supplementary Figure S3.

3 Results

Supplementary Note 4 points to all software used for these results.

3.1 Assessing putative novel junctions
Snaptron’s junction calls were made without use of gene annotation,

so it can assess prevalence of annotated or unannotated events with-

out bias. We demonstrate this by partly recreating the Goldstein

et al. (2016) study, which searched for unannotated cassette exons

in Illumina RNA-seq data from 16 tissues. A cassette exon was

called novel if neither extreme coincided with an annotated junc-

tion, but the exon was in an annotated gene. Goldstein et al. (2016)

found 249 novel exons and validated 216 in a separate cohort.

To study these 249 exons using Snaptron, we posed shared-

sample-count (SSC) queries that gathered evidence for the exons in

the SRAv2 and GTEx compilations and scored exons according to

the number of samples with evidence for the exon (details in

Supplementary Note S5). Of the 249 putative exons, 236 (94.8%)

occurred in both the SRAv2 and GTEx compilations. We found 204

of the 236 were validated by Goldstein et al. (2016), while the re-

maining 32 failed validation. The validated exons had significantly

higher SSC than the others (Supplementary Fig. S4), indicating the

SSC query is a rapid, in-silico method for measuring prevalence and

reliability of a putative novel event.

Also, though the original study considered the 236 exons to be

unannotaed, Snaptron results showed that 132 were annotated,

most by the more inclusive SIBgenes (https://genome.ucsc.edu/cgi-

bin/hgTrackUi? db¼hg38&g¼sibGene) and ACEview (Thierry-

Mieg and Thierry-Mieg, 2006) tracks. Thus, Snaptron makes it easy

to understand the annotation status of splicing events with respect

to a wide range of annotations.

3.2 Assessing tissue specificity
In a repetitive element locus (REL) exonizaton event, part of the

interspersed repeat is spliced into a surrounding gene as an exon.

Darby et al. (2016) report numerous such events in human, includ-

ing some specific to brain or blood. We used Snaptron to assess tis-

sue specificity of five events where the spliced-in exon was not

annotated. We used an SSC query to confirm the five events occur in

both the SRAv2 and GTEx compilations (more than 39 samples in

both cases). We then used a tissue specificity (TS) query to measure

specificity of the five REL exons with respect to the more compre-

hensive GTEx compilation (details in Supplementary Note S6).

Results showed all five exonization events were tissue-specific

(Kruskal-Wallis P<1�10�2). In this way, Snaptron can measure a

splicing pattern’s tissue specificity, a proxy for biological function.

3.3 Ranking samples according to splicing pattern
We performed an experiment modeled on Nellore et al. (2016a)’s

analysis of the anaplastic lymphoma kinase (ALK) gene’s ALKATI

variant isoform. ALK is mutated or aberrantly expressed in some

cancers, notably in the form of the ALKATI variant, characterized by

an alternative transcription initiation (ATI) site (Wiesner et al.,

2015). We used Snaptron to show the ALKATI variant and related

EML4-ALK fusion can be found in non-cancer samples.

We used a junction inclusion ratio (JIR) query to rank samples

according to how often the excised junctions (missing in ALKATI)

occurred relative to the junctions present in both spliceforms (details

Fig. 1. GUI screen captures related to experiments described in Results.

Green horizontal lines indicate the genome. Arcs indicate exon–exon splice

junctions. Arc colors indicate the number of samples having evidence for the

junction, ranging from black (least support) to red (most). Annotated junc-

tions are above the green line and unannotated junctions below. Blue rect-

angles are annotated exons. (A) Junctions matching Goldstein et al. (2016)’s

prediction of a novel exon in the ABCD3 gene. A1 is the 50 junction, A2 the

novel exon, and A3 the 30 junction; (B) KMT2E gene and unannotated junc-

tions supporting a REL exonization event from Darby et al. (2016). B1 is the 50

junction, B2 the REL exon, and B3 the 30 junction; (C) ALK spliceforms studied

by Wiesner et al. (2015) and Nellore et al. (2016a). C1 encloses the full length

ALK transcript, C2 the ALKATI transcript incorporating only the last 10 exons

(ALK is on the reverse strand, and so is laid out right-to-left), C3 points to the

alternative initiation exon, and C4 points toward the upstream initiation site
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in Supplementary Note 7). The top 10 samples ranked by JIR match

those reported by Nellore et al. (2016a), including unexpected mel-

anocyte and macrophage samples. This shows how Snaptron can

rank samples according to the relative prevalence of a splicing pat-

tern, such as a splicing signature for a disease phenotype. Snaptron

also supports a percent spliced in (PSI) query that adapts JIR to the

common case of an alternatively spliced cassette exon.

3.4 Graphical user interface
We built a graphical user interface (GUI) to demonstrate how

Snaptron queries can enable exploration and visualization of splice

junctions across tens of thousands of samples (Fig. 1). A GUI user

can (i) select a gene or region of interest, (ii) filter and color-code

junctions according to summaries like shared sample count or aver-

age coverage and (iii) distinguish annotated from unannotated junc-

tions. Supplementary Note 8 provides GUI links.

4 Discussion

Snaptron combines multiple indexing and database systems in a way

that allows rapid queries, which can constrain flexible combinations

of both structured interval and numeric data, and less structured

textual metadata. This enables convenient new ways to explore and

visualize splicing patterns over tens of thousands of individuals,

measure the prevalence and reliability of putative novel splicing

events, measure tissue specificity of possibly functional splicing pat-

terns, and find samples with characteristic splicing patterns.
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