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Abstract: Brown algae of the Family Dictyotaceae produce an array of structurally diverse terpenoids,
whose biomedical potential in the anti-inflammatory area has been scarcely explored. Herein, the
chemical study of the alga Rugulopteryx okamurae has led to the isolation of ten new diterpenoids:
rugukadiol A (1), rugukamurals A–C (2–4), and ruguloptones A–F (6–10). The structures of the
new compounds were established by spectroscopic means. Compound 1 exhibits an unprecedented
diterpenoid skeleton featuring a bridged tricyclic undecane system. Compounds 2–10 belong to the
secospatane class of diterpenoids and differ by the oxygenated functions that they contain. In anti-
inflammatory assays, the new diterpenoid 1 and the secospatanes 5 and 10 significantly inhibited the
production of the inflammatory mediator NO in LPS-stimulated microglial cells Bv.2 and macrophage
cells RAW 264.7. Moreover, compounds 1 and 5 were found to strongly inhibit the expression of Nos2
and the pro-inflammatory cytokine Il1b in both immune cell lines.

Keywords: diterpenoids; brown algae; Rugulopteryx okamurae; anti-inflammatory; nitric oxide;
cytokine; microglia; macrophages; invasive algae

1. Introduction

Algae of the Family Dictyotaceae are a prolific source of natural products, which
account for almost 40% of the metabolites isolated from brown algae [1]. Most of the
isolated compounds are terpenoids, including sesquiterpenoids, diterpenoids, and meroter-
penoids [1–4]. In particular, species of the genera Dictyota, Canistrocarpus, Stoechospermum,
Spatoglosum and Rugulopteryx, are characterized by producing a wide series of cyclic diter-
penoids. These metabolites display a variety of carbon skeletons, which differ significantly
among genera and may be useful chemotaxonomic markers [2–4]. From the biomedical
point of view, properties such as antimicrobial [5–7] and cytotoxic [8–10] activities of some
diterpenoids were already described during the first studies of this family of algae, and
more recently antiviral [11–13], antileishmaniosis [14], antithrombotic [15], and further
antibacterial [16] and anticancer activities [16,17] have been reported.

Currently, there is a growing interest in the search for new anti-inflammatory agents,
provided the key role that inflammation plays in the development of multiple diseases
such as some types of cancer, rheumatoid arthritis, inflammatory bowel disease or diabetes,
among others [18–21]. In this regard, data on the anti-inflammatory potential of diter-
penoids from Dictyotacean algae are scarce and, only recently, a few metabolites of dolas-
tane and xenicane types, isolated from Dictyota plectens, have shown anti-inflammatory
properties [22,23].
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As a part of our research project aimed to study new anti-inflammatory compounds
from algae, we have examined specimens of the brown alga Rugulopteryx okamurae (Dic-
tyotaceae) collected in the Strait of Gibraltar. R. okamurae, first known as Dilophus okamu-
rae [24], is a species native to the northwestern Pacific Ocean, and can be found widely
distributed along the coasts of China, Japan, Korea, Philippines, and Taiwan [25]. In recent
years, R. okamurae has invaded the southwestern coasts of Europe, in particular the coasts
of the Strait of Gibraltar [26]. The alga has experienced a proliferation so quick and massive
that in a few years it has become a dominant species, which covers large areas of ocean
bottom and produces tons of beach cast material [26,27].

Previous studies of R. okamurae collected at different locations of the Japanese coasts
led to the isolation of more than twenty diterpenoids which display several carbon skele-
tons [28–35]. Recently, the chemical study of R. okamurae from the Spanish coasts has led
to the isolation of six diterpenoids of secospatane, spatane, and prenylcubebane types,
already reported from Japanese specimens of the alga [36]. Bioactivity data on terpenoids
from R. okamurae are mostly focused on their ecological role as feeding deterrents of
predators [29,30,32,35,36]. However, data on the biomedical potential are scarce, and only
antibacterial activity of some secospatanes against Bacillus subtilis has been reported [33].

Herein we describe a reinvestigation of the extract of R. okamurae that has led to the
isolation of ten new diterpenoids: rugukadiol A (1), rugukamurals A–C (2–4), and rugu-
loptones A–F (5–10). The known compounds dilkamural (11) and 12, which are the major
metabolites of the extract, were also obtained. The isolated compounds were tested in anti-
inflammatory assays aimed to detect the inhibition of the production of the inflammatory
mediator nitric oxide (NO) and the expression of Nos2 and pro-inflammatory cytokines.

2. Results and Discussion
2.1. Isolation and Structure Determination

Fresh specimens of R. okamurae were extracted with acetone/methanol (MeOH) and,
after evaporation of the solvent under reduced pressure, the aqueous residue was extracted
with diethyl ether (Et2O). The resulting extract was subjected to column chromatography
(CC) using hexane/Et2O mixtures, then Et2O and finally CHCl3/MeOH mixtures. The
obtained fractions were further separated by CC and HPLC to yield the new diterpenoids
1–10 (Figure 1).
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Figure 1. Chemical structures of the diterpenoids isolated from R. okamurae.

Rugukadiol A (1) possessed the molecular formula C24H36O6, determined by HRESIMS,
which indicated seven unsaturation degrees for the molecule. The presence of two acetoxy
groups was readily inferred from the singlets in the 1H NMR spectrum at δH 2.09 and 2.03
(Table 1). The spectrum showed another four methyl groups, three linked to double bonds
(δH 1.70, 1.67 and 1.64) and another to a methine (δH 0.92, d, J = 7.0 Hz). The 13C NMR
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spectrum exhibited, besides the four signals due to the acetoxy groups, twenty resonances
attributable to a diterpenoid containing two double bonds (δC 138.3, 132.0, 127.2, 124.2)
and four oxygenated carbons (δC 89.3, 82.2, 82.1, 76.3). Since the acetoxy groups and the
double bonds accounted for four unsaturations, the compound must be tricyclic.

Table 1. NMR data of rugukadiol A (1) in CD3OD a,b.

Position δC, Type δH, m (J in Hz) Position δC, Type δH, m (J in Hz)

1 42.7, CH 2.53, m 11 13.4, CH3 0.92, d (7.0)

2 82.2, CH 4.66, ddd (8.6, 8.0, 7.5) 12 39.8, CH2
1.93, dd (12.1, 2.0)

1.49, ddd (12.1, 5.8, 1.9)

3 43.6, CH2
2.91, dd (14.5, 7.5)
1.57, dd (14.5, 8.0) 13 138.3, C

4 82.1, C 14 22.4, CH3 1.70, d (1.2)
5 76.3, CH 5.23, ddd (4.0, 1.9, 1.9) 15 127.2, CH 5.18, br t (7.4)

6 30.6, CH2
2.37, ddd (14.8, 13.4, 4.0)

1.58, m 16 27.7, CH2 2.68, m

7 40.1, CH 2.88, dd (13.4, 4.8) 17 124.2, CH 5.06, br t (7.2)
8 38.3, CH 1.97, br d (5.5) 18 132.0, C
9 53.1, CH 2.41, br d (8.5) 19 25.9, CH3 1.67, d (1.1)

10 89.3, C 20 17.9, CH3 1.64, br s
CH3COO (2) 172.9, C
CH3COO (2) 21.0, CH3 2.03, s
CH3COO (5) 172.8, C
CH3COO (5) 21.5, CH3 2.09, s

a 1H at 500 MHz, 13C at 125 MHz; b assignments aided by COSY, HSQC, HMBC, and NOESY experiments.

The presence of a five-membered ring bearing an acetoxy group, a methyl group,
and a tertiary hydroxy group (1a in Figure 2a) was supported by the HMBC correlations
of the oxymethine proton at δH 4.66 (H-2) with the carbonyl carbon at δC 172.9 (-COO-),
the methyl carbon at δc 13.4 (C-11), and the oxygenated carbon at δC 89.3 (C-10). On
the other hand, the presence of a six-membered ring bearing the second acetoxy group
and another tertiary hydroxy group (1b in Figure 2a), was deduced from the HMBC
correlations of the oxymethine proton at δH 5.23 (H-5) with the acetate carbon at δC 172.9
(-COO-), the oxygenated carbon at δC 82.1 (C-4) and the methylene at δC 39.8 (C-12), which
in turn was correlated with a methine proton at δH 2.88 (H-7); in addition, the COSY
couplings connected this methine (H-7) with the oxymethine proton δH 5.23 (H-5) through
a methylene (H-6). In the 1HNMR spectrum, the two remaining deshielded protons at δH
5.18, br t, J = 7.4 Hz (H-15) and δH 5.06, br t, J = 7.2 Hz (H-17), were assigned to the protons
of two trisubstituted double bonds. These, together with the three allylic methyl groups
mentioned above, were accommodated in a regular isoprenoid chain with the two double
bonds separated by a methylene (1c in Figure 2a).

The three moieties defined for compound 1: a five-membered ring (1a), a six-
membered ring (1b), and an isoprenoid chain (1c), were connected to yield the planar
structure of 1 (Figure 2a). In particular, the HMBC correlations of the methine proton
H-7 with two olefinic carbons (C-13, C-15) allowed the linking of the side chain to C-7 on
the six-membered ring. Finally, C-4 and C-8 on this ring were connected to C-10 and C-9,
respectively, on the five-membered ring to yield a tricyclic system containing a methylene
bridge (C-12). This proposal was supported, among others, by the HMBC correlations
H-12/C-9,C-10, H-8/C-1,C-10 and H-9/C-7. To the best of our knowledge, compound 1
exhibit an unprecedented diterpenoid carbon skeleton.
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The relative configuration of 1 was proposed by analysis of the NOESY spectrum
(Figure 2b). Thus, the correlations H-2/Me-11, H-2/H-12b, and H-7/H-12a, indicated that
H-2, H-7, Me-11, and the methylene bridge were located on the same side of the molecule.
The correlation H-1/H-9 supported the cis-relationship between these protons on the other
side. The NOESY correlations of H-5 with H-6a and H-6b, while H-7 only was correlated
with H-6b, was consistent with an equatorial orientation of H-5 and a trans-relationship
between H-5 and H-7. The Z configuration of the double bond at C-13,C-15 was indicated
by the correlation Me-14/H-15.

Rugukamural A (2) was isolated as an oil whose molecular formula C24H32O6 was
established by HRESIMS. The 13C NMR spectrum exhibited twenty-four carbon atoms,
four of which were due to two acetoxy groups [δC 172.2 (CH3COO−), 172.1 (CH3COO−),
21.0 (CH3COO−) and 20.9 (CH3COO−)] (Table 2). The remaining twenty carbon signals
were attributable to a diterpenoid containing a ketone group (δC 212.8), an aldehyde
group (δC 201.0), three double bonds (δC 170.7, 144.5, 139.0, 132.3, 125.9, 113.2) and two
methine carbons linked to the acetoxy groups mentioned above (δC 78.3, 77.8). Taking into
account these functional groups and the nine unsaturations calculated from the molecular
formula, the compound had to be bicyclic. This datum, together with the presence of
the ketone and the aldehyde groups, suggested that compound 2 could be related to the
known diterpenoids dilkamural (11) and 12, also isolated from the alga. These compounds
feature a bicyclic skeleton known as secospatane, which so far seems exclusive of marine
diterpenes of the Rugulopteryx species [31–34,37].

This proposal was confirmed by analysis of COSY, HSQC, and HMBC spectra (Figure 3a),
which indicated the presence of both a conjugated cyclopentenone moiety bearing a methyl
substituent and a ciclopentanecarbaldehyde moiety bearing one of the acetoxy groups
of the molecule. The linkage of the rings through a single bond was inferred from the
COSY coupling between H-8 and H-9 and the HMBC correlations H-4/C-9, H-8/C-1 and
H-9/C-7. The remaining carbon atoms of the diterpene and the second acetoxy group were
located in an isoprenoid chain linked to C-7, in agreement with the secospatane skeleton of
2. The HMBC correlations of the oxymethine proton at δH 5.12 (H-17) with the carbonyl
carbon at δC 172.1, the olefinic methylene at δC 113.2 (C-19), and an allylic methyl group
(δC 18.7, Me-20), indicated the location of the acetoxy group at C-17 and a terminal double
bond at C-18,C19.
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Table 2. NMR data of rugukamurals A–C (2–4) in CD3OD a,b.

Position
2 3 4

δC, Type δH, m (J in Hz) δC, Type δH, m (J in Hz) δC, Type δH, m (J in Hz)

1 41.5, CH 3.07, m 41.3, CH 3.06, m 43.6, CH 2.51, m
2 170.7, CH 7.73, dd (5.8, 3.0) 170.7, CH 7.68, ddd (5.8, 3.1, 0.6) 73.6, CH 4.11, d (5.8)

3 132.3, CH 5.98, dd (5.8, 1.6) 132.2, CH 5.96, dd (5.8, 1.5) 45.2, CH2
2.42, dd (19.0, 5.7)

2.06, br d (19.0)
4 58.6, CH 3.76, ddd (10.8, 6.8, 1.8) 58.3, CH 3.78, ddd (11.2, 7.3, 1.8) 61.6, CH 3.18, ddd (9.8, 6.6, 2.6)
5 77.8, CH 5.67, ddd (6.8, 6.8, 3.5) 77.8, CH 5.69, ddd (7.3, 6.7, 4.1) 75.9, CH 4.76, ddd (6.2, 6.2, 3.5)

6 37.8, CH2
2.25, ddd (14.6, 6.3, 5.6)

1.93, m 37.2, CH 2.27, ddd (14.7, 6.7, 4.7)
1.95, m 41.0, CH2

2.02, m
1.79, m

7 42.0, CH 3.63, ddd (8.8, 8.6, 5.6) 42.4, CH 3.84, ddd (8.7, 8.7, 4.7) 41.6, CH 3.64, m
8 39.5, CH 3.01, ddd (10.8, 9.1, 8.8) 40.0, CH 3.06, m 38.6, CH 2.97, ddd (9.8, 9.8,9.8)
9 49.6, CH 2.28, dd (9.1, 6.1) 50.1, CH 2.21, dd (10.0, 6.0) 51.6, CH 2.63, dd (9.8, 8.4)
10 212.8, C 212.7, C 220.7, C
11 17.5, CH3 1.19, d (7.2) 17.6, CH3 1.20, d (7.2) 14.5, CH3 0.96, d (7.4)
12 201.0, C 9.60, d (1.8) 200.8, C 9.62, d (1.8) 204.9, CH 9.64, d (2.6)
13 139.0, C 138.8, C 136.4, C
14 22.2, CH3 1.68, br s 22.5, CH3 1.75, d (0.7) 22.4, CH3 1.66, br s
15 125.9, CH 5.29, br t (7.7) 130.9, CH 6.01, br d (11.0) 129.3, CH 5.22, br t (7.0)

16 32.6, CH2
2.59, m
2.35, m 126.1, CH 6.59, dd (15.5, 11.0) 28.1, CH2

2.84, m
2.73, m

17 78.3, CH 5.12, dd (7.6, 5.2) 138.7, CH 5.76, d (15.5) 124.0, CH 5.09, br t (7.1)
18 144.5, C 82.6, C 132.5, C

19 113.2, CH2
4.94, br s

4.91, dq (1.6, 1.6) 24.6, CH3 1.36, s 25.9, CH3 1.69, br s

20 18.7, CH3 1.76, br s 25.3, CH3 1.31, s 17.9, CH3 1.64, br s
CH3COO (5) 172.2 172.2
CH3COO (5) 20.9 1.96, s 20.9 1.96, s
CH3COO (17) 172.1
CH3COO (17) 21.0 2.03, s

a 1H at 500 MHz, 13C at 125 MHz; b assignments aided by COSY, HSQC, HMBC, and NOESY experiments.

The NOESY spectrum of 2 showed the correlations H-4/H-5, H-5/H-6a, H-6b/H-7,
H-7/H-8, and H-1/H-9, which indicated that the relative configuration of carbons on the
rings was identical to that of dilkamural (11) [33], and the correlation Me-14/H-15 defined
the Z configuration of the trisubstituted double bond at C-13,C-15 (Figure 3b). Based on
biogenetic considerations, the stereochemistry of one ring with respect to the other and the
absolute configuration were assumed to be identical to that of compounds 11 and 12 [33].

Rugukamural B (3) possessed the molecular formula C22H30O5, determined by
HRESIMS. The analysis of the NMR spectra (Table 2) indicated that compound 3 displayed
the same bicyclic system as compound 2 and that the side chain contained a tertiary alcohol
and two double bonds with three olefinic protons in total. The HMBC correlations of the
methyl groups at the end of the chain (Me-19 and Me-20) with the oxygenated carbon
(δC 82.6, C-18) and with an olefinic carbon at δC 138.7 (C-17) was consistent with the location
of the tertiary alcohol at C-18 and one of the double bonds at C-16,C-17. The sequence of
COSY couplings among the three olefinic protons indicated that the two double bonds were
conjugated. The 13Z,17E configuration was defined from the NOESY correlation between
H-15 and Me-14, and the coupling constant of 15.5 Hz between H-16 and H-17, respectively.

The NMR data of compound 4 (Table 2) were closely related to those of dilkamural
(11) [36], except for the absence of the signals of the acetyl groups and the significant
shielding of protons H-2 (δH 4.11 vs. δH 5.02 in 11) and H-5 (δH 4.76 vs. δH 5.63 in 11).
These data, together with the molecular formula C20H30O4 established by HRMS and
the correlations observed in the NOESY spectrum, confirmed that compound 4 was the
deacetyl derivative of dilkamural.
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Figure 3. (a) Key COSY (bold bond) and HMBC correlations (arrow) observed for compound 2;
(b) key NOESY correlations observed for compound 2.

Ruguloptone A (5) possessed the molecular formula C26H38O7, determined by HRESIMS.
The presence of three acetoxy groups in the molecule was readily defined from the 1H
NMR signals at δH 2.048 (s, 3H), 2.045 (s, 3H), and 2.04 (s, 3H) (Table 3). The spectrum
showed the signals of another four methyl groups, three of them linked to double bonds
(δH 1.73, 1.68, 1.63) and the remaining one linked to a methine (δH 0.92, d, J = 7.3 Hz).
Differing from rugukamurals A–C (2–4), the 1HNMR spectrum of compound 5 did not
show any aldehyde proton signal. In the 13C NMR spectrum, besides the six signals due
to the acetoxy groups, there were twenty signals attributable to a diterpene containing
a ketone carbonyl, two double bonds and three carbons linked to the acetoxy groups
mentioned above (one methylene at δC 64.0 and two methines at δC 79.8 and 76.8). The
HMBC correlations of the ketone carbonyl (C-10) with one oxymethine proton (δH 5.01, H-2)
and with the methine geminal to methyl (δH 2.77, H-1) were consistent with the presence of
a cyclopentanone ring bearing one methyl and one of the acetoxy groups (Figure 4a). The
remaining two acetoxy groups were accommodated on another five-membered ring. Key
correlations were the sequence of couplings in the COSY spectrum from the oxymethylene
protons at δH 4.09 and 4.03 (H-12a and H-12b) through three methines (H-4, H-8, H-7)
and one methylene (H-6) to reach the oxymethine proton at δH 5.23 (H-5), and the HMBC
correlation of the oxymethylene protons (H-12) with the oxymethine carbon (δC 79.8, C-5).
The two double bonds and the three remaining methyl groups were located on a regular
isoprenoid chain identical to that of compound 4. The HMBC correlations of H-8 with C-9
and C-13 confirmed the linkage of the two rings of 5 and the position of the side chain at
C-7, in agreement with a secospatane framework. The relative configuration of compound
5 was defined from the correlations observed in the NOESY spectrum (Figure 4b). The
correlations H-1/H-9 and H-2/Me-11 indicated that H-1 and H-2 were trans, while H-1 ad
H-9 were cis. For the other ring, the correlations H-5/H-12b, H-5/H-6a, H-4/H-8, H-8/H-7,
and H-7/H-6b were consistent with the location of H-5 and H-12 in the same side of the
ring, and of H-4, H-7, and H-8 on the other side. The correlation Me-14/H-15 indicated the
Z configuration of the double bond at C-13,C-15.

The NMR spectra of ruguloptone B (6) (Table 3) were closely similar to those of
compound 5, except for the presence of only two acetoxy groups and the shielding of H-2
(δH 4.10 vs. 5.01 in 5), which indicated that compound 6 was the 2-deacetyl derivative of 5.

Ruguloptone C (7) possessed the molecular formula C24H35O5, determined by
HRESIMS. Differing from compound 5, the NMR spectra of 7 (Table 3) showed the signals
of two secondary acetoxy groups and lacked the signals of the oxymethylene at C-12,
showing, in turn, those of an exomethylene at δC 113.4 (C-12)/δH 5.27 (H-12a) and 5.03
(H-12b). Therefore, 7 was the analogue of 5 containing a double bond at C-4,C-12.
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Table 3. NMR data of ruguloptones A–C (5–7) in CD3OD a,b.

Position
5 6 7

δC, Type δH, m (J in Hz) δC, Type δH, m (J in Hz) δC, Type δH, m (J in Hz)

1 40.2, CH 2.77, m 42.7, CH 2.67, m 40.3, CH 2.67, m
2 76.8, CH 5.01, d (6.3) 73.4, CH 4.10, d (6.3) 76.7, CH 5.01, d (6.4)

3 41.6, CH2
2.56, dd (19.9, 6.3)

2.31, br d (19.9) 44.2, CH2
2.43, dd (19.4, 5.8)

2.11, br d (19.4) 41.8, CH2
2.57, dd (19.7, 6.4)

2.37, br d (19.7)
4 47.7, CH 3.06, m 47.8, CH 3.06, m 153.8, C
5 79.8, CH 5.23, br d (4.3) 79.8, CH 5.22, br d (4.7) 78.2, CH 5.63, br dd (7.5, 4.8)

6 35.0, CH2
1.96, m
1.76, m 35.2, CH2

1.95 ddd (15.0, 9.2, 4.7)
1.76 m 38.0, CH2

2.09, ddd (14.5, 7.5, 3.7)
1.98, m

7 39.54c, CH 3.65, ddd (11.1, 9.2, 9.2) 39.6, CH2 3.65, ddd (11.0, 9.2, 9.2) 41.4, CH 3.51, m
8 39.52c, CH 2.65, ddd (12.6, 11.1, 7.7) 39.7, CH 2.64, ddd (12.8, 11.0, 7.7) 43.4, CH 2.87, m
9 50.5, CH 2.86, ddd (12.6, 6.9, 0.9) 49.5, CH 2.99, dd (12.8, 7.0, 0.8) 53.1, CH 2.87, m
10 217.2, C 219.7, C 216.0, C
11 13.7, CH3 0.92, d (7.3) 14.3, CH3 0.86, d (7.4) 14.2, CH3 0.99, d (7.3)

12 64.0, CH2
4.09, dd (10.8, 5.0)

4.03, dd (10.8, 10.8) 64.1, CH2
4.09, m

4.04, dd (10.8, 10.8) 113.4, CH2
5.27, br s
5.03, br s

13 135.9, C 136.3, C 137.9, C
14 22.0, CH3 1.73, d (1.2) 22.2, CH3 1.76, d (1.2) 22.4, CH3 1.57, br s
15 130.0, CH 5.23, br t (7.4) 129.6, CH 5.24, br t (7.3) 128.4, CH 5.12, br t (7.2)

16 28.0, CH2
2.81, m
2.70, m 28.0, CH2

2.83, ddd (16.0, 7.3, 7.3)
2.72, m 27.7, CH2

2.76, m
2.67, m

17 123.8, CH 5.05 br t, (7.2) 124.0, CH 5.07, br t (7.1) 123.7, CH 5.05, br t (6.9)
18 132.6, C 132.5, C 132.8, C
19 25.8, CH3 1.68, d (1.1) 25.9, CH3 1.68, d (1.1) 25.8, CH3 1.68, br s
20 17.8, CH3 1.63, br s 17.8, CH3 1.63, d (0.6) 17.9, CH3 1.63, br s

CH3COO (2) 172.2, C 172.1, C
CH3COO (2) 20.8 d 2.04 c, s 21.0 c, CH3 2.03 c, s
CH3COO (5) 172.3, C 172.4, C 172.7, C
CH3COO (5) 21.0 d 2.048 c, s 20.8 c, CH3 2.04 c, (s) 21.3 c, CH3 2.04 c, s
CH3COO (12) 172.9, C 172.9, C
CH3COO (12) 21.3 d 2.045 c, s 21.3 c, CH3 2.05 c, (s)

a 1H at 600 MHz, 13C at 150 MHz; b assignments aided by COSY, HSQC, HMBC, and NOESY experiments; c,d assignments marked with
the same letter in the same column may be interchanged.
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The molecular formula of ruguloptone D (8), C22H32O3, and the NMR spectra
(Table 4) suggested that it was another secospatane diterpenoid related to those described
above, containing a ketone group, a primary acetoxy group and three double bonds. A
diene-containing side chain identical to that of compounds 4–7 was identified in 8. The
third double bond of the molecule was located at C-4,C-5 and the acetoxy group at C-12
from the HMBC correlations of the oxymethylene protons [δH 4.74 (H-12a) and 4.67 (H-12b)]
with the methine carbon C-8 and with the olefinic carbon at δC 130.5 (C-5), which was also
correlated with the methine proton H-7, geminal to the side chain. The remaining carbon
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atoms and the carbonyl group were located in a ciclopentanone ring. The correlations in
the NOESY spectrum indicated that 8 possessed at C-1, C-7, C-8, and C-9, the same relative
configuration as compounds 2–7.

Table 4. NMR data of ruguloptones D–F (8–10) in CD3OD a,b.

Position
8 9 10

δC, Type δH, m (J in Hz) δC, Type δH, m (J in Hz) δC, Type δH, m (J in Hz)

1 34.6 c, CH 2.68, m 34.8, CH 2.64, m 42.3, CH 3.05, m

2 28.6, CH2
2.05, m
1.66, m 28.8, CH2

2.05, m
1.65, m 170.9, CH 7.72, dd (5.8, 2.8)

3 34.5 c, CH2
2.25, m
2.09, m 35.0, CH2

2.22, m
2.11, dd (9.0, 9.0) 133.2, CH 6.06, dd (5.8, 1.9)

4 141.8, C 142.9, C 47.6, CH 2.76, m
5 130.5, CH 5.76, br s 126.6, CH 5.39, br s 77.6, CH 5.44, ddd (5.8, 5.8, 2.5)

6 37.9, CH2
2.57, m
2.05, m 37.9, CH2

2.48, m
2.01, m 36.9, CH2

2.24, ddd (14.0, 9.2, 5.8)
1.81, ddd (14.0, 7.8, 2.5)

7 43.7, CH 3.68, br t (7.3) 44.2, CH 3.57, ddd (7.5, 7.5, 3.0) 42.6, CH 3.48, m
8 45.9, CH 2.97, m 47.4, CH 2.88, m 40.9, CH 2.32, ddd (9.4, 9.4, 4.4)
9 55.5, CH 2.68, m 55.1, CH 2.57, ddd (8.4, 7.0, 1.3) 49.0, CH 2.54, dd (6.1, 4.4)
10 220.9, C 221.0, C 213.2, C
11 15.5, CH3 0.91, d (6.6) 15.8, CH3 0.93, d (7.1) 17.9, CH3 1.13, d (7.4)

12 65.0, CH2
4.74, d (13.7)
4.67, d (13.7) 16.6, CH3 1.68, br s 62.0, CH2

3.46, m
3.42, dd (10.7, 4.7)

13 139.2, C 139.7, C 136.5, C
14 23.1, CH3 1.58, br s 23.0, CH3 1.58, br s 22.0, CH3 1.71, d (1.2)
15 127.4, CH 5.07, br t (7.2) 126.9, CH 5.05, br t (7.6) 129.4, CH 5.35, br t (7.3)

16 27.9, CH2
2.80, m
2.68, m 27.9, CH2

2.78, m
2.68, m 28.0, CH2 2.73, m

17 124.0, CH 5.07, br t (7.2) 124.2, CH 5.07, br t (7.1) 124.0, CH 5.05, br t (7.0)
18 132.5, C 132.3, C 132.5, C
19 25.9, CH3 1.68, br s 25.9, CH3 1.68, br s 25.9, CH3 1.68, d (1.2)
20 17.8, CH3 1.63, br s 17.8, CH3 1.62, br s 17.5, CH3 1.64, br s

CH3COO 172.6, C 172.8, C
CH3COO 20.9, CH3 2.01, s 21.2, CH3 2.05, s
a 1H at 500 MHz, 13C at 125 MHz; b assignments aided by COSY, HSQC, HMBC, and NOESY experiments; c assignments marked with the
same letter in the same column may be interchanged.

Ruguloptone E (9) exhibited NMR spectra (Table 4) closely similar to those of com-
pound 8, except for the absence of the signals due to the acetoxy group. The spectra
showed, in turn, the signals of a methyl linked to a double bond [δC 16.6 (C-12)/δH 1.68
(H-12)] (Table 4), which were consistent with the presence of a methylcyclopentene moiety.

The last compound of this series was ruguloptone F (10), which possessed the molec-
ular formula C22H32O4. The NMR spectra (Table 4) were related to those of the known
compound 12, except for the absence of the aldehyde signals, showing in turn those of an
oxymethylene at δC 62.0 (C-12)/δH 3.46 (H-12a) and 3.42 (H-12b). These, and the remaining
NMR data, supported that compound 10 was the primary alcohol derived from reduction
of the aldehyde of 12. The NOESY correlations indicated that the relative configuration of
10 was identical to that of 12. A compound exhibiting the same planar structure and relative
configuration at C-1, C-7, C-8, and C-9 as 10 was reported from R. marginata (formerly
Dilophus marginatus), while the relative configuration at C-4 and C-5 was not defined [37].
The NMR data of 10 did not match those reported for the compound from of R. marginata,
indicating they must be isomers.

2.2. Anti-Inflammatory Activity

The new compounds 1, 4, 5, 6, 7, 10, and the known compounds 11 and 12 were
tested for their anti-inflammatory activity, in particular as inhibitors of nitric oxide (NO)
production and of classical pro-inflammatory cytokines expression.

Anti-inflammatory assays were performed on immune cells Bv.2 cells (microglia)
and RAW 264.7 cells (macrophages), which are key mediators in inflammatory processes.
The stimulation of these cells by bacterial products such as lipopolysaccharide (LPS)
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promotes the synthesis and release of NO and pro-inflammatory cytokines, which are
intermediaries involved in the inflammatory onset [38,39]. Since high concentrations of NO
are essential for inflammation and related processes, targeting the inducible nitric oxide
synthase (iNOS), which is the enzyme responsible for NO synthesis, has been proposed as
an anti-inflammatory therapeutic strategy [40].

First, the cytotoxicity of different concentrations of the compounds towards Bv.2 and
RAW 264.7 cells was checked. Compounds 1, 4, 5, 6, and 10 at concentrations equal or lower
than 10 µM were not cytotoxic for Bv.2 and RAW 264.7 cells, while compound 4 showed
cytotoxic effects on macrophages and compound 7 on both cell lines (Figures S21 and S22).
Compounds 2 and 8 were not tested because of paucity of material and compound 9 by
solubility issues. Compound 3 was expected to be cytotoxic as it was the close analogue 12
(see below) and was discarded for the assays.

To test the effects of the non-cytotoxic compounds 1, 4, 5, 6, and 10 on the production
of NO, cells were pretreated with the compounds, then stimulated with LPS and, finally, the
concentration of nitrite, which is the major metabolite formed from NO, was measured. The
level of nitrites in both microglial and macrophage cells treated with the compounds but
not further stimulated, did not change with respect to untreated cells. The levels of nitrites
in Bv.2 and RAW 264.7 cells treated with the compounds and further LPS-stimulated are
shown in Figures 5 and 6, respectively.

As shown in Figure 5, upon treatment of control Bv.2 cells (Basal) with LPS, the level
of nitrites was significantly increased (column LPS). However, in cells pretreated for 3 h
with compounds 1, 4, 5, 6, or 10, the LPS-stimulated production of nitrites was significantly
inhibited. Compounds 1, 5, and 10 were highly active, causing, at 10 µM, 68.1%, 70.0%,
and 60.0% inhibition of nitrite production, respectively, with respect to stimulated and
untreated cells. The inhibitory effects of 1 and 5 were higher than those caused by the
reference compound dexamethasone at 2.5 µM. Compounds 4 and 6 were less active,
causing 48.1% and 46.0% inhibition, respectively.
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Figure 5. Effects of compounds 1, 4, 5, 6, or 10 on NO release in microglial cells. Bv.2 microglial cells
were pretreated for 3 h with the compound at 10 µM, followed by stimulation with 200 ng/mL LPS
for 24 h. Nitrite accumulation in the culture media was measured using the Griess method. Results
are expressed as a fold change relative to the LPS condition and are mean ± SD (n ≥ 3 independent
experiments performed in duplicate). Significant differences were determined by two-way ANOVA
followed by Bonferroni t-test; * p ≤ 0.05 vs. LPS; # p ≤ 0.05 vs. Basal.

On the other hand, dilkamural (11) and compound 12 exhibited significant cytotoxicity
at 10 µM (11 cytotoxic even at 1 µM) against Bv.2 cells (Figure S21), and were tested at the
maximum concentration of 0.5 µM. While 11 did not show any significant effect on the NO
production, compound 12 caused 30% of inhibition.

Assays with RAW 264.7 cells showed a similar outcome (Figure 6). Treatment of cells
with LPS significantly increased the level of nitrites. The pretreatment with compounds
1, 5, and 10 at 10 µM inhibited the LPS-stimulated production of nitrites by 63.2%, 69.2%,
and 64.9%, respectively. These effects were slightly lower than those caused by dexam-
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ethasone at 2.5 µM. Compound 6 was again the less active, causing 56.6% inhibition of
nitrite production.
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Figure 6. Effects of compounds 1, 5, 6, or 10 on NO release in macrophage cells. RAW 264.7
macrophage cells were pretreated for 3 h with the selected compound at 10 µM, followed by stimula-
tion with 200 ng/mL LPS for 24 h. Nitrite accumulation in the culture media was measured using the
Griess method. Results are expressed as fold change relative to the LPS condition and are mean ± SD
(n ≥ 3 independent experiments performed in duplicate). Significant differences were determined by
two-way ANOVA followed by Bonferroni t-test; * p ≤ 0.05 vs. LPS; # p ≤ 0.05 vs. Basal.

These results show the anti-inflammatory potential of the new diterpenoids ruguka-
diol A (1), ruguloptone A (5), and ruguloptone F (10), which are capable of counteracting
almost completely the effects of the LPS stimulation on cells, maintaining NO concentra-
tions close to basal levels (non-stimulated cells). Moreover, among the tested secospatanes,
it seems that the presence of a primary hydroxy or acetoxy group at C-12 correlates with
the anti-inflammatory activity.

In order to obtain further data on the anti-inflammatory effects, compounds 1 and 5,
which showed a potent inhibitory activity of NO secretion, were selected to analyze the
inhibition of Nos2 and pro-inflammatory cytokines expression.

As shown in Figure 7A, significant increases in the mRNA expression of Nos2 and Il1b
in Bv.2 cells were detected after LPS stimulus (column LPS). However, the pretreatment of
cells with compounds 1 and 5 at 10 µM decreased Nos2 mRNA levels by 82.6% and 83.9%,
respectively, as well as Il1b mRNA levels by 66.2% and 59.5%, respectively. Similarly, the
LPS-stimulated expression of Nos2 and Il1b in RAW 264.7 cells was significantly inhibited by
compounds 1 and 5 (Figure 7B). The inhibition of mRNA Nos2 caused by both compounds
in macrophages was similar to that observed in Bv.2 cells (80–85% inhibition of mRNA
levels), but the effects were much stronger on Il1b, which was inhibited by compounds 1 and
5 up to 87.1% and 90.4%, respectively. On the other hand, no inhibition of Tnfa expression
was detected in any of the cells. This differential response of cytokines expression to the
anti-inflammatory effects of compounds 1 and 5 could be involved in the complex signaling
network that modulate the inflammatory response.

The overproduction of NO that causes inflammatory tissue damage may be suppressed
through inhibition of the L-arginine/nitric oxide pathway by different mechanisms, which
include the inhibition of iNOS or the competition with arginine [41]. In this study, the
decreased levels of NO production in Bv.2 and RAW 264.7 cells treated with compounds 1
and 5 were associated with the inhibition of Nos2 expression. Some marine diterpenoids
have been shown to exert anti-inflammatory effects by inhibiting the NFκB signaling path-
way at different levels [42]. NFκB is a transcription factor that regulates the transcription of
pro-inflammatory cytokine genes [43]. In this regard, the effects observed on Il1b expression
while mRNA levels of Tnfa were not affected suggested that the anti-inflammatory activity
of compounds 1 and 5 could be related to the modulation of inflammasome complex
activation [44,45].
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Figure 7. Inhibitory effects of compounds 1 and 5 on mRNA pro-inflammatory cytokines expres-

sion. (A) Nos2, Il1b, and Actin-b mRNA levels in Bv.2 microglial cells were determined by qRT-PCR. 

(B) Nos2, Il1b, and Actin-b mRNA levels in RAW 264.7 macrophage cells were determined by qRT-

PCR. Results are expressed as fold change relative to the LPS condition and are mean ± SD (n ≥ 3 

independent experiments performed in duplicate). Significant differences were determined by two-

way ANOVA followed by Bonferroni t-test; * p ≤ 0.05 vs. LPS; # p ≤ 0.05 vs. Basal. 

The overproduction of NO that causes inflammatory tissue damage may be sup-

pressed through inhibition of the L-arginine/nitric oxide pathway by different mecha-

nisms, which include the inhibition of iNOS or the competition with arginine [41]. In this 

study, the decreased levels of NO production in Bv.2 and RAW 264.7 cells treated with 

compounds 1 and 5 were associated with the inhibition of Nos2 expression. Some marine 

diterpenoids have been shown to exert anti-inflammatory effects by inhibiting the NFκB 

signaling pathway at different levels [42]. NFκB is a transcription factor that regulates the 

transcription of pro-inflammatory cytokine genes [43]. In this regard, the effects observed 

Figure 7. Inhibitory effects of compounds 1 and 5 on mRNA pro-inflammatory cytokines expression.
(A) Nos2, Il1b, and Actin-b mRNA levels in Bv.2 microglial cells were determined by qRT-PCR. (B)
Nos2, Il1b, and Actin-b mRNA levels in RAW 264.7 macrophage cells were determined by qRT-
PCR. Results are expressed as fold change relative to the LPS condition and are mean ± SD (n ≥ 3
independent experiments performed in duplicate). Significant differences were determined by
two-way ANOVA followed by Bonferroni t-test; * p ≤ 0.05 vs. LPS; # p ≤ 0.05 vs. Basal.

The pro-inflammatory response of immune cells (macrophages and microglia cells)
to LPS, known as M1 or classical activation, functions predominantly in situations of
tissue damage [46]. This complex signaling network is working by the generation of
different inflammatory mediators such as tumor necrosis factor α (TNFα), interleukins
1β and 6 (IL1β, IL6) and NO [47], that contribute to enhance the pro-inflammatory re-
sponse. However, the immunomodulatory properties that compounds 1 and 5 exert on
specific signaling pathways invite to analyze the mechanisms involved in the induced
anti-inflammatory response.

Most of the marine diterpenoids with anti-inflammatory properties have been ob-
tained from octocorals, and belong to the eunicellane, briarane, cembrane, serrulatane,
amphilectane, lobane, verticillane and pseudopterane skeletal classes [42]. This study on
algal diterpenoids is the first account of anti-inflammatory activity within the secospatane
class of metabolites, and also adds a new structural class represented by compound 1, thus
extending the range of biological sources and structural variety of marine diterpenoids
with anti-inflammatory potential.

From the point of view of marine organisms as sources of bioactive compounds,
macroalgae may be advantageous over other marine macroorganisms, because of the
possibility of obtaining biomass through sustainable wild-harvest or culture [48,49]. Cur-
rently, the alga R. okamurae that invades the Strait of Gibraltar produces huge amounts
of biomass that causes highly detrimental effects in the region, both environmental and
economic [26,27]. This has led to the search of strategies aimed to control the spread of
the alga or to diminish its negative effects. In this line, recent reports have highlighted the
opportunities offered by invasive macroalgae to obtain valuable products [50–53]. Our
results have shown that R. okamurae contains an array of compounds, some which could
be of interest for pharmacological purposes in the anti-inflammatory area. It is also worth
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noting that R. okamurae from the Strait of Gibraltar contains high concentrations of the diter-
pene dilkamural (11) and of its elimination product 12. Although these compounds may be
disregarded for further anti-inflammatory studies, they could exhibit suitable properties in
other therapeutic areas. In addition, 11 and 12 may be highly valuable starting materials
to synthesize more active but less abundant compounds and other analogues. Thus, in
this study we performed a reduction reaction of 12 with NaBH4 that allowed obtaining
additional amounts of compound 10 for biological testing. Currently, further biological
activities of 11 and 12, as well as other chemical transformations of these compounds, are
under study.

3. Materials and Methods
3.1. General Experimental Procedures

Optical rotations were measured on a Jasco P-2000 polarimeter (Jasco, Easton, MD,
USA). IR spectra were recorded on a Perkin-Elmer FT-IR Spectrum Two spectrometer
(Perkin Elmer, Boston, MA, USA). 1H and 13C NMR spectra were recorded on an Agilent
500 (Agilent Technologies, Santa Clara, CA, USA) or on a Bruker 500 spectrometer (Bruker,
Billerica, MA, USA) using CD3OD as solvent. Chemical shifts were referenced using the
solvent signals at δH 3.30 and δC 49.0. COSY, HSQC, HMBC, and NOESY experiments were
performed using standard Agilent or Bruker pulse sequences. High resolution mass spectra
(HRESIMS) were obtained on a Waters XEVO G2-S Mass spectrometer (Waters, Milford,
MA, USA). Column chromatography was carried out on Merck Silica gel 60 (70–230 mesh)
(Merck, Darmstadt, Germany). SPE separations were performed on Supelco DSC18 car-
tridges (500 mg/3 mL or 1 g/6 mL) (Supelco, Bellefonte, PA, USA). HPLC separations
were performed on a LaChrom-Hitachi apparatus (Merck, Darmstadt, Germany) using a
differential refractometer RI-71. Luna Si (2) (250 × 4.6 mm, 5 µm) (Phenomenex, Torrance,
CA, USA) and Luna Si (2) (250× 10 mm, 5 µm) (Phenomenex, Torrance, CA, USA) columns
were used for separations in normal phase. All solvents were of HPLC grade.

3.2. Algae Collection

Specimens of R. okamurae (E.Y. Dawson) I. K. Hwang, W. J. Lee and H. S. Kim (Class
Phaeophyceae, Order Dictyotales, Family Dictyotaceae) were collected at Punta Carnero
(Cádiz, Spain, 36◦04′38.6′′ N; 5◦25′31.1′′ W) and transported to the laboratory in a thermal
refrigerator. Algae were washed with fresh water to remove epiphytes and organic and
inorganic debris and immediately extracted. A voucher specimen (RO-1019) is deposited
at the Marine Natural Products Laboratory, Faculty of Marine and Environmental Sciences,
University of Cadiz, Spain.

3.3. Extraction and Isolation

Fresh samples of R. okamurae (500 g) were extracted with acetone/MeOH (1:1, v/v,
1.5 L) at room temperature. The solvent was evaporated under reduced pressure and the
aqueous residue was extracted with Et2O (4 × 100 mL). The Et2O layers were combined,
dried over MgSO4, and evaporated under reduced pressure to yield 8.2 g of extract. The
Et2O extract was subjected to silica gel column chromatography (28 × 5.5 cm) using as
eluents hexanes/Et2O (9:1, v/v, 0.8 L), hexanes/Et2O (8:2, v/v, 1.0 L), hexanes/Et2O (7:3,
v/v, 2.0 L), hexanes/Et2O (1:1, v/v, 1.5 L), hexanes/Et2O (3:7, v/v, 1.0 L), Et2O (1.5 L),
CHCl3/MeOH (8:2, v/v, 1.0 L) and finally MeOH (0.7 L). The fraction that eluted with
hexanes/Et2O (9:1, v/v) was separated over a silica gel column using n-hexane/Et2O
mixtures (99:1 to 9:1 v/v) and Et2O. The subfractions that in their respective 1H NMR
spectra showed signals attributable to diterpenes were purified by HPLC (n-hexane/EtOAc,
99:1, v/v) yielding compound 9. The fraction that eluted with hexanes/Et2O (7:3, v/v)
was separated by silica gel column chromatography using n-hexane/Et2O mixtures (95:5
to 6:4, v/v) and AcOEt. The subfractions that in their 1H NMR spectra showed signals
attributable to terpenoids were subjected to repeated purifications by normal-phase HPLC
(n-hexane/EtOAc, 95:5 and 85:15, v/v), yielding compounds 8, 7, and 12. The fraction
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that eluted with hexanes/Et2O (1:1, v/v) was suspended in MeOH/H2O (9:1, v/v, 6 mL)
and transferred onto six SPE-C18 cartridges preconditioned with MeOH/H2O (9:1, v/v,
1 mL each cartridge). Each cartridge was eluted with 10 mL of MeOH/H2O (9:1, v/v).
The resulting solution was evaporated under reduced pressure yielding a mixture (2.3 g)
that was subjected to HPLC separation (n-hexane/EtOAc (7:3, v/v) to yield compounds 5,
11, and additional amounts of 12. The fraction that eluted with hexanes/Et2O (3:7, v/v)
was subjected to silica gel column chromatography using n-hexane/Et2O mixtures (8:2
to 1:1, v/v) and MeOH. The subfractions that in their 1H NMR spectra showed signals
attributable to terpenoids were further purified by HPLC (n-hexane/EtOAc, 8:2, 7:3 and
6:4, v/v) yielding compounds 2 and 10 and further amounts of 11 and 12. The fraction that
eluted with Et2O was suspended in MeOH/H2O (9:1, v/v, 2 mL) and transferred onto two
SPE-C18 cartridges preconditioned with MeOH/H2O (9:1, v/v, 1 mL). Each cartridge was
eluted with 10 mL of MeOH/H2O (9:1, v/v). The resulting solution was evaporated under
reduced pressure yielding a mixture (457.5 mg) that was separated over a silica gel column
using n-hexane/Et2O mixtures (75:25 to 1:1, v/v) and AcOEt. The subfractions that in their
respective 1H NMR spectra showed signals attributable to terpenoids were purified by
HPLC (n-hexane/EtOAc, 7:3 and 6:4, v/v) to yield compounds 1, 3, and 6. The fraction that
eluted with CHCl3/MeOH was separated over a silica gel column using n-hexane/Et2O
mixtures (6:4 to 4:6, v/v), AcOEt and MeOH. Selected fractions were purified by HPLC
(n-hexane/EtOAc, 7:3 and 6:4, v/v) yielding compound 4 and further amounts of 1. The
total amounts obtained of each compound were 1 (54.5 mg), 2 (3.5 mg), 3 (10.0 mg), 4 (12.7
mg), 5 (80.0 mg), 6 (20.1 mg), 7 (7.1 mg), 8 (4.7 mg), 9 (14.5 mg), 10 (2.0 mg), 11 (964.8 mg),
and 12 (781.7 mg).

3.4. Characterization of Compounds

Rugukadiol A (1): colorless oil; [α]25
D +30.5 (c 0.09, MeOH); IR (film) υmax 3431, 2964,

1736, 1240 cm−1; 1H NMR (CD3OD, 500 MHz) Table 1; 13C NMR (CD3OD, 125 MHz)
Table 1; HRESIMS m/z 443.2421 [M + Na]+ (calcd. for C24H36O6Na 443.2410).

Rugukamural A (2): colorless oil; [α]25
D +58.4 (c 0.11, MeOH); IR (film) υmax 3357,

2931, 1736, 1248 cm−1; 1H NMR (CD3OD, 500 MHz) Table 2; 13C NMR (CD3OD, 125 MHz)
Table 1; HRESIMS m/z 439.2102 [M + Na]+ (calcd. for C24H32O6Na, 439.2097).

Rugukamural B (3): colorless oil; [α]25
D +20.7 (c 0.08, MeOH); IR (film) υmax 3357,

2931, 1732, 1240 cm−1; 1H NMR (CD3OD, 500 MHz) Table 2; 13C NMR (CD3OD, 125 MHz)
Table 1; HRESIMS m/z 397.1996 [M + Na]+ (calcd. for C22H30O5Na 397.1991).

Rugukamural C (4): colorless oil; [α]25
D +12.9 (c 0.13, MeOH); IR (film) υmax 3357,

2931, 1732, 1375 cm−1; 1H NMR (CD3OD, 500 MHz) Table 2; 13C NMR (CD3OD, 125 MHz)
Table 1; HRESIMS m/z 357.2053 [M + Na]+ (calcd. for C20H30O4Na 357.2042).

Ruguloptone A (5): colorless oil; [α]25
D +9.6 (c 0.12, MeOH); IR (film) υmax 2967, 1735,

1237 cm−1; 1H NMR (CD3OD, 500 MHz) Table 3; 13C NMR (CD3OD, 125 MHz) Table 3;
HRESIMS m/z 485.2527 [M + Na]+ (calcd. for C26H38O7Na 485.2515).

Ruguloptone B (6): colorless oil; [α]25
D +13.7 (c 0.09, MeOH); IR (film) υmax 3426, 2966,

1733, 1241 cm−1; 1H NMR (CD3OD, 500 MHz) Table 3; 13C NMR (CD3OD, 125 MHz)
Table 1; HRESIMS m/z 443.2432 [M + Na]+ (calcd. for C24H36O6Na 443.2410).

Ruguloptone C (7): colorless oil; [α]25
D +24.4 (c 0.19, MeOH); IR (film) υmax 2965, 1734,

1234, cm−1; 1H NMR (CD3OD, 500 MHz) Table 3; 13C NMR (CD3OD, 125 MHz) Table 3;
HRESIMS m/z 425.2304 [M + Na]+ (calcd. for C24H34O5Na 425.2304).

Ruguloptone D (8): colorless oil; [α]25
D +38.6 (c 0.14, MeOH); IR (film) υmax 2962,

1260 cm−1; 1H NMR (CD3OD, 500 MHz) Table 4; 13C NMR (CD3OD, 125 MHz) Table 4;
HRESIMS m/z 367.2258 [M + Na]+ (calcd. for C22H32O3Na 367.2249).

Ruguloptone E (9): colorless oil; [α]25
D +54.9 (c 0.08, MeOH); IR (film) υmax 2962,

1742 cm−1; 1H NMR (CD3OD, 500 MHz) Table 4; 13C NMR (CD3OD, 125 MHz) Table 4;
HRESIMS m/z 309.2195 [M + Na]+ (calcd. for C20H30ONa 309.2194).
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Ruguloptone F (10): colorless oil; [α]25
D −70.8 (c 0.1, MeOH); IR (film) υmax 3433, 2967,

1733, 1696, 1242 cm−1; 1H NMR (CD3OD, 500 MHz) Table 4; 13C NMR (CD3OD, 125 MHz)
Table 4; HRESIMS m/z 383.2200 [M + Na]+ (calcd. for C22H32O4Na 383.2198).

3.5. Cell Culture

Mouse microglia Bv.2 cell line was supplied by Dr. M. L. Nieto (IBGM, Spain). Mouse
macrophages RAW 264.7 cell line was supplied by Dr. A. M. Valverde (IIBm “Alberto
Sols” UAM-CSIC-Madrid, Spain). An amount of 1.5 × 105 cells/well were seeded in a
6-multiwell plate (Sarstedt, Germany). The culture conditions were 37 ◦C in a humidified
atmosphere with 5% CO2 in RPMI supplemented with 10% (v/v) heat-inactivated fetal
bovine serum (FBS), 1% (v/v) penicillin/streptomycin (Sigma), and 2 mM L-glutamine
(Gibco, Carlsbad, CA, USA). All experimental cell approaches were performed in complete
medium without FBS.

3.6. Analysis of the Cellular Viability by Crystal Violeta Staining

Cells were cultured in 24-well plates and grown up to 70% confluence. The cells were
treated with solutions of the diterpenes to reach final concentrations of 0.1, 1.0, 10.0, 25.0,
and 50.0 µM, and incubated in serum-free medium. After 24 h, the medium was discarded
and cells were fixed by adding 0.5 mL of glutaraldehyde 1% (v/v) for 30 min. Then, the
plates were rinsed with phosphate buffer saline (PBS) and the remaining viable adherent
cells were stained with crystal violet 0.1% (w/v) for 30 min. After rinsing plates with water
and drying for 24 h, 0.5 mL of acetic acid 10% (v/v) were added. The absorbance of each
plate was read spectrophotometrically at 590 nm in a microplate reader (Versamax Tunable
Microplate reader, Molecular Devices, Sunnyvale, CA, USA).

3.7. Analysis of Nitrites (NO2
−)

Cells were cultured in 6-well plates and grown up to 70% confluence. The cells were
pre-treated for 3 h with the diterpenes at 10 µM in serum-free medium and then stimulated
with lipopolysaccharide (LPS, 200 ng/mL) for another 24 h. Dexamethasone (Dx) was
used as positive reference compound at 2.5 µM. After cell treatments, levels of NO2 were
measured by using the Griess method [54]. Briefly, cell cultured medium was treated with
an acid solution containing 1% sulphanilamide and 0.1% N-(1-naphthyl) ethylenediamine
(NEDA) and read spectrophotometrically at 548 nm in a microplate reader.

3.8. Quantitative Real-Time PCR (qPCR) Analysis

Total RNA was extracted with TRIzol® reagent (Invitrogen, Madrid, Spain) and
reverse-transcribed using the iScript gDNA Clear cDNA Synthesis Kit from BioRad
(Madrid, Spain). qPCR was performed with the iTaq Universal Probes Supermix from
BioRad (Madrid, Spain) in a CFX Connect Real-Time System from BioRad (Madrid, Spain).
Analysis of relative gene expression data were performed using the 2−∆∆CT method. Primer–
probe sets for mouse Nos2, Il1b, Tnfa, and actin were purchased as predesigned TaqMan
gene expression assays (Applied Biosystems, Foster City, CA, USA).

3.9. Statistical Analysis

Data are presented as mean ± standard deviation (SD), and were compared by using
the Bonferroni ANOVA test. All statistical analyses were performed using GraphPad Prism
8.0 software (GraphPad Software Inc., San Diego, CA, USA) with 2-sided tests. Differences
were considered statistically significant at p ≤ 0.05.

4. Conclusions

The brown alga R. okamurae contains a new compound, rugukadiol A (1), which
exhibits an unprecedented diterpenoid skeleton and displays significant anti-inflammatory
activity in immune cells, as inhibitor of the production of NO and of the expression of
Nos2 and the cytokine Il1b. Nine new diterpenoids of the secospatane class (2–10) have
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also been isolated from this alga. Among them, ruguloptones A (5) and F (10), exhibiting a
primary oxygenated function at C-12, possess significant anti-inflammatory activity. The
effects caused by 1 and 5 on specific signaling pathways of inflammation suggest that these
compounds and analogues deserve to be further explored in advanced biological assays.
In this regard, the abundant biomass of R. okamurae that accumulates on the coasts of the
Strait of Gibraltar could be a resource for providing these bioactive compounds.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/md19120677/s1: 1H and 13C NMR spectra of compounds 1–10 (Figures S1–S20); and the
results of cytotoxicity assays on Bv.2 cells (Figure S21) and RAW 264.7 cells (Figure S22).
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