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Sometimes the elementary experiment 
can lead to the most surprising result. 

This was recently the case when we had 
to learn that so-called “photosynthetic 
slugs“ survive just fine in the dark and 
with chemically inhibited photosynthe-
sis. Sacoglossan sea slugs feed on large 
siphonaceous, often single-celled algae by 
ingesting their cytosolic content includ-
ing the organelles. A few species of the 
sacoglossan clade fascinate researcher 
from many disciplines, as they can sur-
vive starvation periods of many months 
through the plastids they sequestered, 
but not immediately digested – a process 
known as kleptoplasty. Ever since the 
term “leaves that crawl” was coined in the 
1970s, the course was set in regard to how 
the subject was studied, but the topics of 
how slugs survive starvation and what for 
instance mediates kleptoplast longevity 
have often been conflated. It was gener-
ally assumed that slugs become photoau-
totrophic upon plastid sequestration, but 
most recent results challenge that view 
and the predominant role of the klepto-
plasts in sacoglossan sea slugs.

Our results1 on the 2 slugs Elysia timida 
and Plakobranchus ocellatus came as a sur-
prise to many and as such have generated 
quite some media attention: the article was 
featured in Nature, Scientific American, on 
a blog by Ed Yong at National Geographic, 
and many other sites such as science.org and 
phys.org. First of all, we need to stress that 
our findings do neither “…disprove the idea 
that the slugs somehow derive energy from the 
photosynthesizing cells...“ nor that they are 
not “solar-powered“ at all as some reports 
claim (phys.org and Ed Yong, respectively). 

Our results do, however, question the 
importance of photosynthesis for the so-
called “crawling leaves”2 and their survival 
during starvation. A critical examination of 
the topic generally highlights the impor-
tance to again think about statements such 
as “…, after which plastids are able to support 
continued growth of the animal“ or “...i.e. an 
animal (E. chlorotica) is able to sustain itself 
solely by photoautotrophic CO

2
 fixation, as a 

plant.“ and “…enabling their animal host 
to survive photo-autotrophically.“3-5, respectively 
Juvenile slugs need to feed after hatching 
to establish stable kleptoplasty and adults 
are also observed to continuously feed 
as long as algae are available in the wild, 
demonstrating that, if anything these slugs 
are photoheterotrophic. Furthermore, we 
would argue that currently no single line of 
evidence for a single slug species exists that 
demonstrates the animals are phototrophic 
to a degree that allows the slugs to main-
tain, let alone gain, body mass through 
on-going photosynthesis and CO

2
 fixation 

during prolonged starvation.
Costasiella ocellifera, Elysia viridis, E. 

chlorotica, E. timida and P. ocellatus have 
all been demonstrated to fix CO

2
 in a 

light dependent manner.1,6-8 But for how 
long during starvation, and is the amount 
of fixed CO

2
 sufficient for them to really 

grow? While we currently have good evi-
dence, based on pulse amplitude modu-
lation (PAM) measurements, that the 
“light-dependent” reactions of the photo-
system II continue to work inside the slugs9-

13 – in some cases for months – we lack the 
same kind of evidence for the “light-inde-
pendent” reactions of the Calvin-Benson-
Bassham (CBB-) cycle. In fact, the sparse 
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amount of data available suggests that the 
activity of the CBB-cycle declines rather 
rapidly. Experiments on P. ocellatus, C. 
ocellifera, E. viridis and E. timida show 
the CO

2
 fixation rate decreases during the 

first 5–20 d to a rate comparable to that 
observed for slugs kept in the dark.7,14-16 
While for P. ocellatus the experiment was 
terminated after 27 d, C. ocellifera and E. 
viridis were kept alive for another 50 or 80 
d, respectively, all while apparently not fix-
ing CO

2
. In E. timida the CO

2
 fixation rate 

after 5–10 d of starvation had declined to 
the level measured for Thuridilla hopei for 
comparison, and whose kleptoplasts loose 
their photosynthetic ability over the first 
few days of starvation.16 Should this be 
confirmed, through experiments dedicated 

to investigating CO
2
 fixation rates over 

time, we will need to find an explanation of 
what happens with the ATP and NADPH+ 
generated by the light-dependent reac-
tion. During the early phases of starvation 
CO

2
 fixation is probably advantageous for 

the slugs, but suggesting these animals to 
survive starvation because they are photo-
autotrophic is currently not supported by 
the data available. This would, at the very 
minimum, require evidence for on-going 
CO

2
 fixation and the perpetuation of body 

mass during starvation.
Our results demonstrate that starving 

E. timida and P. ocellatus shrink and loose 
weight in the absence of fresh food (see 
also Fig. 1), whether being able to photo-
synthesize or not.1 This was also observed 
by West,17 who, for E. chlorotica, concluded 
that “Statistical analysis of the growth experi-
ment demonstrated that light intensity is not 
important to the size.” Klochkova and col-
leagues18 questioned the importance of the 
kleptoplasts’ remaining photosynthesis in 
E. nigrocapitata, since under natural light 
conditions they “may not properly function 
in the natural habitat for a long time without 
recruit of new chloroplasts“. This not only 
contradicts the ‘photoautotrophic concept’, 
but also raises the question of the klepto-
plasts true purpose.

Our current working hypothesis is 
that in adult slugs kleptoplasts are pri-
marily stored as a rich nutritional source, 
but it is further noteworthy to mention 
that viewing plastids as organelles that 
fix only CO

2
 to transform it into ‘sugar 

cubes‘, whose energy is then available to 
the host, oversimplifies the biochemis-
try of the organelle. Their biochemical 
properties further include, but are not 
limited to, fatty acid, iron-sulfur clus-
ter and amino acid synthesis.19 Hence, 
the interaction of kleptoplasts and slug 
is more complex than it appears at first 

sight. Photosynthesis might still be ben-
eficial for the animals, but exactly how 
and when remains to be determined. To 
distinguish the importance of light for 
the animals development from photosyn-
thesis presents a further challenge, as the 
slugs likely require light, like most ani-
mals including us humans do, for their 
normal development and living.

The last few years have reminded us 
not to judge a book by its cover, nor a 
slug just by its color. New data forces us 
to become more critical about what we 
think we know, and reconsider the prime 
role of kleptoplasts in greenish sacoglos-
san slugs. In any case, we should not refer 
to these slugs as photoautotrophic ani-
mals, but determine for how long and to 
what degree they are phototrophic dur-
ing starvation. Notwithstanding, the 
most previous results do not belittle the 
phenomenon of kleptoplast longevity and 
recent data suggests that the genomes of 
the plastids being sequestered might hold 
the key after all.20 Their higher genetic 
autonomy in comparison to land plant 
plastids might translate into a better 
servicing of damaged photosystem II, 
hence less leakage of reactive oxygen spe-
cies. In turn this might allow the slugs 
to store their kleptoplasts for longer peri-
ods of time, as their degradation through 
ROS-induced autophagy21 is postponed. 
Sacoglossan slugs and their robust plas-
tids remain a fascinating and rich field to 
study, presenting ever more avenues for 
future research.
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