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In recent decades, the incidence of invasive fungal infections has increased notably.

Candida albicans (C. albicans), a common opportunistic fungal pathogen that

dwells on human mucosal surfaces, can cause fungal infections, especially in

immunocompromised and high-risk surgical patients. In addition, the wide use of

antifungal agents has likely contributed to resistance of C. albicans to traditional

antifungal drugs, increasing the difficulty of treatment. Thus, it is urgent to identify novel

antifungal drugs to cope with C. albicans infections. Heat shock proteins (Hsps) exist in

most organisms and are expressed in response to thermal stress. In C. albicans, Hsps

control basic physiological activities or virulence via interaction with a variety of diverse

regulators of cellular signaling pathways. Moreover, it has been demonstrated that Hsps

confer drug resistance to C. albicans. Many studies have shown that disrupting the

normal functions of C. albicans Hsps inhibits fungal growth or reverses the tolerance of

C. albicans to traditional antifungal drugs. Here, we review known functions of the diverse

Hsp family, Hsp-associated intracellular signaling pathways and potential antifungal

targets based on these pathways in C. albicans. We hope this review will aid in revealing

potential new roles of C. albicans Hsps in addition to canonical heat stress adaptions

and provide more insight into identifying potential novel antifungal targets.
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INTRODUCTION

C. albicans causes superficial and potentially life-threatening systemic infections, especially in
immunocompromised and high-risk surgical patients (Dimopoulos et al., 2007). Traditional
antifungal drugs, such as azoles, polyenes, and echinocandins, mostly target C. albicans’ cell
envelopes, e.g., ergosterol on the plasma membrane or glucan on the cell wall (Odds et al., 2003).
These antifungal drugs are extensively used in the clinic because of their high efficacy. However,
traditional antifungal drugs have become increasingly ineffective against C. albicans infections
due to multiple factors and resistance of C. albicans to these drugs has emerged more frequently
(Kriengkauykiat et al., 2011;Wirk, 2011). Thus, it is urgent to develop novel antifungal agents based
on identified potential targets in C. albicans (Wirk, 2011; Cuenca-Estrella, 2014).
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The Hsp family was first identified inDrosophila melanogaster
in response to thermal stress (Tissières et al., 1974; Brown et al.,
2014). Subsequently, it was shown that Hsps are evolutionarily
conserved in most organisms and are activated by additional,
non-thermal stressors, e.g., heavy metals and oxidative stress
(Burnie et al., 2006; Soo et al., 2008; Wirk, 2011; Cuéllar-
Cruz et al., 2014). Furthermore, many studies have revealed
important roles for Hsps in the growth and virulence of C.
albicans (Leach et al., 2012b; Becherelli et al., 2013; O’meara and
Cowen, 2014). Hsps are widely distributed in C. albicans and
involved in many cellular pathways, such as calcium-calcineurin,
MAPK, Ras1-cAMP-PKA, and cell cycle control signaling. Many
signaling molecules in these pathways are client proteins of Hsps.
Moreover, many studies have demonstrated that Hsps confer
C. albicans resistance to antifungal drugs by regulating these
signaling pathways. Therefore, targeting Hsps pharmacologically
or genetically could enhance the sensitivity of C. albicans to
traditional antifungal drugs and reduce its pathogenicity (Fiori
et al., 2012; Mayer et al., 2013; Li and Sun, 2016). Thus,
Hsps and other signaling molecules of Hsps-associated pathways
are potential novel antifungal targets against candidiasis. Hsp-
associated signaling pathways and potential antifungal targets
based on these signaling pathways in C. albicans are illustrated
in Figure 1. The research identifying antifungal agents that target
Hsps and Hsp-associated signaling pathways is summarized in
Table 1.

In this article, we will review the functions of Hsps in C.
albicans, the roles of Hsps in various intracellular signaling
pathways and potential antifungal targets based on Hsp-
associated signaling pathways. Several elements of the Hsp
family may represent novel antifungal targets against C. albicans
infections.

FUNCTIONS OF HSPS IN C. ALBICANS

As a class of molecular chaperones, Hsps have multiple broad
functions within organisms. Generally, Hsps are classified
according to their molecular size (Powers and Workman, 2007).
In C. albicans, six kinds of Hsps with varying molecular sizes
have been identified. Four of them, Hsp104, Hsp90, Hsp70,
and Hsp60, are adenosine triphosphate (ATP)-dependent high
molecular mass Hsps. The other two, Hsp12 and Hsp21, are ATP-
independent lowmolecular mass Hsps with sizes ranging from 12
to 42 kDa (Jaya et al., 2009). Most of these Hsps play significant
roles in the growth and virulence of C. albicans.

Hsp104
As a kind of heat-induced molecular disaggregase, Hsp104
was first discovered in Saccharomyces cerevisiae (S. cerevisiae)
(Sanchez and Lindquist, 1990; Glover and Lindquist, 1998; Jaya
et al., 2009). In C. albicans, Hsp104 expression increases after
transient exposure of cells to high temperature. Hsp104 is a
pro-survival mediator in response to increasing temperature,
suggesting an important role for this protein in thermotolerance
(Sanchez and Lindquist, 1990). In addition, hyphae formed in
biofilms by wild-type and Hsp104-reconstituted strains grow
in an intertwined appearance. In contrast, hyphae formed by

hsp1041/1 mutants show structural defects, appearing patchy
and loose. These mutants also show attenuated pathogenicity
in Caenorhabditis elegans infection models. These results
demonstrate that Hsp104 is required for efficient biofilm
formation and contributes to the virulence of C. albicans (Fiori
et al., 2012). Hsp104 represents a prospective antifungal target
against C. albicans because of the absence of a cytosolic Hsp104
equivalent in human.

Hsp90
Hsp90 augments virulence factors and confers antifungal
drug resistance to common pathogenic fungi, C. albicans,
Aspergillus fumigatus, and Cryptococcus neoformans (Cordeiro
Rde et al., 2016; Lamoth et al., 2016; Chatterjee and Tatu,
2017). The functions of Hsp90 are modulated by post-
transcriptional modifications, mainly including phosphorylation,
S-nitrosylation, and acetylation in yeast. Soroka et al. determined
10 major phosphorylation sites regulated by the dedicated
phosphatase Ppt1 in the middle or the C-terminal domain of
yeast Hsp90. Phosphorylation allows conformational switching
and facilitates communication of remote regions within Hsp90
(Soroka et al., 2012). Besides, a cysteine residue located in the
C-terminal domains is proved to be conserved in yeast and
human Hsp90 family. S-nitrosylation of this residue regulates
the functions of Hsp90 fast and efficiently (Martínez-Ruiz
et al., 2005; Retzlaff et al., 2009). Moreover, the process
of histone acetylation regulated by histone acetyltransferases
(HATs) and histone deacetylases (HDACs), also known as lysine
deacetylases (KDACs), plays a causative role in regulating gene
expression (Trojer et al., 2003). Recent studies showed that
Hsp90 acetylation has a profound impact on Hsp90 function.
Li et al. verified that the key acetylation sites on C. albicans
Hsp90 are lysine 30 and 271 and substitutions at these residues
phenocopy inhibition of Hsp90 (Li et al., 2017). Furthermore,
HDAC inhibitors, such as trichostatin A (TSA) and MGCD290,
a Hos2 HDAC inhibitor, have been shown to abrogate Hsp90-
dependent azole resistance in C. albicans. These results illustrate
that acetylation regulates Hsp90 function and then governs
antifungal drug resistance with broad therapeutic prospects
(Smith and Edlind, 2002; Pfaller et al., 2009; Robbins et al., 2012).
The challenge of successfully targeting HDACs in the treatment
of candidiasis is to develop stable and specific inhibitors capable
of distinguishing pathogens from host.

Hsp90 is one of the most intensely studied Hsps in C. albicans.
Many studies demonstrate that Hsp90 plays an important role in
thermal stability, morphogensis, cell cycle regulation, apoptosis,
and drug resistance in C. albicans (Leach et al., 2012b; O’meara
and Cowen, 2014). During evolution, C. albicans retained the
conserved protein Hsp90, enabling C. albicans to adapt to
thermal stress upon colonization of warm-blooded animals or
thermally buffered niches (Leach et al., 2012a). Hsp90 governs
cellular circuitry required for crucial morphogenetic transitions
from yeast to filament (Shapiro et al., 2009, 2012b). Genetically
or pharmacologically inhibiting the functions of Hsp90 blocks
the growth, maturation, and dispersal of C. albicans biofilms in
vitro (Robbins et al., 2011). In addition, the filaments generated
by compromised Hsp90 are similar to those seen during cell
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FIGURE 1 | A schematic diagram depicting Hsp-associated signaling pathways and potential antifungal targets based on these pathways in C. albicans. Solid and

dashed arrow lines indicate known pathways and putative pathways, respectively, which are predicted in the present study.

cycle arrest. Further studies illustrate that C. albicans Hsp90
regulates the progression of yeast-form growth via interaction
with diverse control elements of the cell cycle (Berman, 2006;
Senn et al., 2012). In addition, Léger et al. demonstrated that in
C. albicans the metacaspase Mca1p appears to degrade several
major Hsps, including Hsp90, which weakens cellular defenses
and leads to apoptosis (Léger et al., 2015). Hence, Hsp90 is tightly
related by apoptosis, and inhibiting Hsp90 reduces apoptosis in
C. albicans (Dai et al., 2012). Furthermore, Hsp90 contributes to
the appearance and maintenance of antifungal drug resistance
in C. albicans. Impairing the function of Hsp90 in vitro could
enhance the efficacy of azoles against C. albicans planktonic
cells and biofilms (Cowen and Lindquist, 2005; Cowen et al.,
2009; Shapiro et al., 2009; Robbins et al., 2011). Hsp90 inhibitors
have been shown to have synergistic effects in combination with
fluconazole (FLC) against FLC-resistantC. albicans (Cowen et al.,
2009; Li et al., 2015), so it follows that interfering with the
physiological activity of Hsp90 could be a promising strategy to
treat candidiasis (Veri and Cowen, 2014).

The currently available agents that pharmacologically
target Hsp90 are primarily Hsp90 inhibitors and anti-Hsp90
antibodies. As mentioned above, high-molecular-mass Hsps
are ATP-dependent and the N-terminal domain of Hsp90 is
an ATP binding site. This domain is highly conserved across
species and is essential for the function of Hsp90 (Jackson,

2013). Currently available Hsp90 inhibitors include radicicol
(RAD), geldanamycin (GdA), analogs of GdA, including
17-allylamino-17-dimethoxygeldanamycin(17-AAG) and
17-dimethylaminoethylamino-17-demethoxygeldanamycin(17-
DMAG) and non-GdA Hsp90 inhibitors, e.g., NVP-HSP990
(HSP990). Each of these binds with the same site in the N-
terminus of Hsp90 (Singh et al., 2009; Wirk, 2011; Li et al.,
2015). Singh et al. reported that both RAD and GdA reduce
the tolerance of C. albicans to echinocandins and that each of
them exerts synergistic antifungal effects in combination with
echinocandins (Singh et al., 2009). Additionally, Cowen et al.
found that GdA analogs have synergistic effects in combination
with FLC against C. albicans (Cowen et al., 2009). However, GdA
and its derivatives have not been fully developed for clinical use
because of their limited physiochemical properties and severe
renal and gastrointestinal cytotoxicity (Kim et al., 2009). This
makes non-GdAHsp90 inhibitors more attractive for therapeutic
development. Li et al. demonstrated that HSP990, a non-GdA
Hsp90 inhibitor, synergistically combines with FLC against
FLC-resistant C. albicans and C. albicans biofilms both in vitro
and in vivo. HSP990 was also shown to exhibit low cytotoxicity
in human umbilical vein endothelial cells (Li et al., 2015). This
finding is a promising prospect for the clinical application
of non-GdA Hsp90 inhibitors to treat C. albicans infections.
Although the highly conserved structure of eukaryotic Hsp90
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has hindered the development of Hsp90 inhibitors for clinical
application, it is promising to find drugs with low cytotoxicity,
like HSP990, and there is future potential to find specific targets
of C. albicansHsp90.

Another way to inhibit Hsp90 is via stimulation of the host
immune response (Bugli et al., 2013). Efungumab (Mycograb),
a well-known recombinant monoclonal anti-Hsp90 antibody,
binds to the middle domain of Hsp90, effectively inhibiting
communication between the terminal regions of Hsp90 and
preventing necessary conformational changes (Karwa and
Wargo, 2009). The discovery of efungumab against C. albicans
stemmed from the observation that the presence of anti-Hsp90
antibody is associated with recovery in patients with invasive
candidiasis treated with amphotericin B (AMB) (Matthews
et al., 1984, 1987). Subsequently, Matthews et al. identified that
efungumab exerts antifungal effects alone and synergistically
when combined with FLC, AMB, and caspofungin against C.
albicans in vitro and in vivo (Matthews et al., 2003; Hodgetts
et al., 2008). Meanwhile, the in-vivo pharmacodynamics of
efungumab have been confirmed in a murine model. After
intravenous administration, it is rapidly distributed into tissues
and cleared from the circulation (Matthews et al., 2003; Louie
et al., 2011). A blinded and randomized clinical trial further
explained the effects of efungumab. The use of efungumab plus
lipid-associated AMB produces significant clinical improvement
compared to the use of amphotericin B plus placebo for patients
with invasive candidiasis (Pachl et al., 2006). In consideration
of quality concerns, such as heterogeneity in molecular weight
and conformational structure, and safety concerns about adverse
effects, such as cytokine release syndrome and hypertension,
efungumab was not accredited by the Committee for Medicinal
Products for HumanUse (CHMP) (Bugli et al., 2013). In response
to circumvent these problems for more stability, Louie et al.
designed a new compound Mycograb C28Y and identified its
synergistic effect in combination with AMB against C. albicans
in vitro. It is worth noting that Mycograb C28Y lacks efficacy
in a murine model with invasive candidiasis (Louie et al., 2011).
Besides, the synergistic effect of Mycograb C28Y combined with
AMB against C. albicans can be reproduced by a wide range of
unrelated proteins, indicating that Mycograb C28Y has multiple
targets in C. albicans (Richie et al., 2012). These findings suggest
that complex mechanisms of Mycograb C28Y acting on C.
albicans need to be further explored. Development of anti-Hsp90
antibodies as novel antifungal agents is a promising therapeutic
approach for candidiasis in view of their excellent antifungal
effects and clinical efficacy. Certainly, animal experiments and
clinical trials are required to confirm the safety and efficacy before
anti-Hsp90 antibodies could be contemplated for a clinical use in
the future.

Hsp70
Hsp70 is highly conserved among most species from bacteria to
mammals. Hsp70 from different sources has similar biochemical
properties because of a high degree of conservation of N-terminal
domains; each has a high-affinity ATP-binding site and a peptide-
binding site (Craig et al., 1993). Cell surface Ssa1 and Ssa2 are the
major members of the Hsp70 family in C. albicans (López-Ribot

et al., 1996; Eroles et al., 1997). It has been suggested that Ssa1 and
Ssa2 exert both positive and negative effects on the growth and
virulence of C. albicans. On the one hand, Ssa1 and Ssa2 induce
host cell endocytosis leading to C. albicans mediated pathogenic
host cell interactions and increased virulence (Sun et al., 2010).
C. albicans Ssa1/1 mutants exhibit attenuated virulence both
in vitro and in vivo. On the other hand, Ssa1 and Ssa2 are
receptors of some antimicrobial peptides that exert antifungal
effects. For instance, salivary histatin5 (Hst5) has a high affinity
for Ssa proteins on the cell wall of C. albicans, facilitating the
import of Hst5 (Li et al., 2006; Vylkova et al., 2006, 2007),
which is required for Hst5 to exert fungicidal activity against C.
albicans.Moreover, Maneu et al. discovered that C. albicans Ssb1
encoded by SSB1 has 85% amino acid identity as Ssb1 and Ssb2
of S. cerevisiae Hsp70 family (Maneu et al., 1997). Expression
of C. albicans SSB1 complements S. cerevisiae SSB1 SSB2 double
mutant phenotype, indicating that C. albicans Ssb1 probably act
as a molecular chaperone on the translating ribosomes (Maneu
et al., 2000). Msi3, while technically in the Hsp70 family is the
homolog of the S. cerevisiae Sse1 (human Hsp110). They are
regarded as co-chaperones since they are nucleotide exchange
factors for Ssa. Msi3 is essential for survival in vitro as well as
for the establishment of C. albicans infections in a mouse model
(Nagao et al., 2012). In addition, the mutant strain tetMsi3, whose
expression of MSI is repressed, exhibits higher susceptibility to
FLC than does the control strain. Furthermore, tetMsi3 altered
the response to FLC from fungistatic activity to fungicidal activity
(Cho et al., 2003; Nagao et al., 2012). Thus, compromising
Hsp70 inhibits host cell phagocytosis of C. albicans and decreases
C. albicans antifungal drug resistance. We believe that Hsp70
would also be a potential antifungal target against candidiasis if
it conquers the obstacles of safety caused by highly conserved
structure of Hsp70 among eukaryotes.

Hsp60
As immunodominant antigens in humoral and cellular
responses, fungal Hsp60 facilitates powerful immunological
reactions (Habich et al., 2006). Cross-reactivity between fungal
and human Hsp60 may illustrate a potential link between
infection and autoimmunity (47). Expression of C. albicans
Hsp60 mRNA increase upon elevated incubation temperature
beyond 35◦C (Raggam et al., 2011). Many studies showed that
Hsp60 acts as an immunogenic trigger in orchestrating C.
albicans-related diseases under thermal stress. These findings
may contribute to a deeper understanding of host–pathogen
relationships (Rajaiah and Moudgil, 2009; Raggam et al., 2011).

Small Hsps
Unlike the highly conserved sequences among species of high-
molecular-mass Hsps, small Hsps share only a short fragment
called the acystall within a conserved sequence of the C-terminus.
C. albicans Hsp12 is a small Hsp primarily expressed under
different types of stress, like osmotic and thermal stress (Enjalbert
et al., 2003; Smith et al., 2004). Enhanced expression of Hsp12
significantly promotes cell adhesion and germination of C.
albicans, while decreasing the susceptibility of C. albicans to the
quorum sensing molecule, farnesol (Davis-Hanna et al., 2008;
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Fu et al., 2012). In addition, C. albicans strains overexpressing
HSP12 are sensitive to itraconazole, ketoconazole, and FLC (Fu
et al., 2012). Thus, targeted up regulation of Hsp12 expression is
a potential antifungal treatment against C. albicans.

Hsp21 is another small Hsp crucial for C. albicans to resist
specific stressors, including thermal and oxidative stress. Hsp21
is also involved in regulation of glycerol, glycogen, and trehalose
homeostasis in response to elevated temperature (Mayer et al.,
2012). Additionally, Hsp21 was found to promote the virulence
of C. albicans. Hsp211/1 mutants form significantly shorter
hyphae and exhibit defects in invasive growth (Mayer et al.,
2012). Furthermore, hsp211/1 C. albicans mutants are highly
susceptive to a broad range of antifungal drugs (Mayer et al.,
2013). Therefore, targeting Hsp21 is a possible treatment strategy
for C. albicans infection.

POTENTIAL ANTIFUNGAL TARGETS
WITHIN HSPS-ASSOCIATED
INTRACELLULAR SIGNALING PATHWAYS
IN C. ALBICANS

Hsps are involved in a wide variety of intracellular signaling
pathways in C. albicans. In response to activation of diverse
signaling pathways, the heat shock transcription factor (Hsf1) is
phosphorylated, resulting in the induction of target HSP gene
expression via the heat shock element (HSE) (Nicholls et al.,
2009). Thus, therapeutic targeting of Hsps could exert antifungal
effects or reverse drug tolerance of C. albicans to antifungal drugs
by disrupting Hsp-related signaling pathways.

The number of available Hsp inhibitors is limited; however,
drugs targeting other elements of Hsp-related signaling pathways
have been shown to exert antifungal effects. In this section, we
will review the Hsp-associated signaling pathways in C. albicans
and summarize potential antifungal targets in these pathways.

Calcium-Calcineurin Signaling Pathway
Calcineurin is a conserved calmodulin-dependent phosphatase
in pathogenic fungi. Calcineurin is activated by the second
messenger calcium and regulates stress responses in fungi
(Kraus and Heitman, 2003). Calcineurin is necessary for C.
albicans to survive during cell membrane stress, cation stress,
alkaline pH, and endoplasmic reticulum stress (Cruz et al.,
2002; Steinbach et al., 2007). Elements of the calcium-calcineurin
signaling pathway, such as various channels, transporters and
other proteins or enzymes, are intimately connected to various
physiological processes in C. albicans (Liu et al., 2015; Li and Sun,
2016).

Singh et al. revealed that impairing the calcineurin function
phenocopies inhibition of Hsp90 (Singh et al., 2009), both of
which result in decreased drug resistance of C. albicans to azoles.
Calcineurin is a heterodimer composed of a catalytic subunit
(either Cna1 or Cna2) and an activating regulatory subunit
(Cnb1) (Cowen and Lindquist, 2005). It is widely accepted
that calcineurin is a client protein of Hsp90, which binds to
the catalytic subunit of calcineurin in C. albicans (Cowen,
2009; Li and Sun, 2016). In addition, downstream targets of
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calcineurin include the transcription factors Hph1, Hph2, and
Crz1, which were initially discovered in S. cerevisiae as targets
related to stress adaption and drug resistance (Heath et al., 2004;
Karababa et al., 2006). Both Crz1 and Hph1 modulate Hsp90-
dependent drug resistance (Cowen et al., 2006), and the key
mediator of Hsp90-dependent drug resistance is thought to be
calcineurin. Furthermore, Hsp90 also regulates apoptosis in C.
albicans via the calcium-calcineurin signaling pathway (Phillips
et al., 2003; Lu et al., 2011). Apoptosis is induced by various
environmental stimuli, including hydrogen peroxide (H2O2),
acetic acid (AA) as well as by drug treatment with AMB in C.
albicans. Caspase, encoded by the gene CaMCA1, is an essential
enzyme involved in apoptosis. Dai et al. demonstrated that
compromising Hsp90 inhibits CaMCA1 expression, decreasing
caspase activity upon exposure to apoptotic stimuli. Thus,
compromised Hsp90 reduces C. albicans apoptosis, partially via
down regulation of the calcineurin-caspase signaling pathway
(Dai et al., 2012). In conclusion, calcineurin interacts with Hsp90,
and the activated calcineurin-Hsp90 complex regulates the stress
response, drug resistance, and apoptosis in C. albicans (Juvvadi
et al., 2014).

Hsp70 participates in the calcium-calcineurin signaling
pathway as well. Msi3, a member of the Hsp70 family, binds
Cgr1 during high levels of expression at an early stage of the
yeast–hypha transition (Cho et al., 2001, 2003). The relationship
between Msi3 and Cgr1 signifies a functional role of Hsp70 in
addition to its role in thermal adaptation (Cho et al., 2003).
Furthermore,MSI3 and certain calcineurin-dependent genes are
highly expressed in response to FLC treatment. Increased Msi3
leads to expression of the calcineurin dependent genes UTR2
and PLC3 in the wide-type strain. However, in the mutant
strain tetMsi3, up-regulation of MSI3 is lost in response to FLC
treatment, and the expression of calcineurin-dependent genes
remains stable. Therefore, induction of calcineurin-dependent
gene expression is required for up-regulation ofMSI3 expression.
These findings illustrate that Msi3 confers FLC resistance in part
by activating the calcium-calcineurin signaling pathway. Nagao
et al. speculated that Msi3 functions cooperatively with Hsp90 as
a cochaperone or through an as yet undiscovered mechanism to
activate the calcineurin signaling pathway (Nagao et al., 2012).
Thus, the mechanism for Hsp70 regulation of the calcineurin
signaling pathway in C. albicans requires further elucidation.

Hsp90 and Hsp70 both participate in the calcium-calcineurin
signaling pathway and are crucial to C. albicans’ drug resistance.
Agents targeting calcium, the trigger of Hsp-related calcium-
calcineurin signaling show antifungal effects. Inhibitors of
calcineurin, cyclosporine A (CsA), and tacrolimus (FK506)
inhibit calcineurin by distinct mechanisms (Hemenway and
Heitman, 1999). CsA binds with Cpr1, a peptidyl prolyl cis-trans
isomerase (cyclophilin A) to calcineurin function. FK506 binds
to the structurally unrelated peptidyl-prolyl cis-trans isomerase
FKBP12 to block function of calcineurin. Both CsA and FK506
have potent synergistic effects in combination with azoles against
C. albicans both in vitro and in vivo (Sun et al., 2008; Uppuluri
et al., 2008; Chen et al., 2013). Juvvadi et al. identified a
novel serine-proline rich region that is unique to filamentous
fungi and absolutely absent in human calcineurin. It has been

shown that phosphorylation of the serine-proline rich region
regulates the functions of calcineurin in A. fumigatus (Juvvadi
et al., 2013). Thus, it is prospective to realize the possibility of
inhibiting fungal calcineurin specifically as an antifungal strategy.
Additionally, calcium channel blockers (CCB) that disturb
cellular calcium homeostasis in C. albicans have synergistic
antifungal effects in combination with FLC (Yu et al., 2014a,b;
Liu et al., 2016). Yu et al. verified that verapamil inhibits hyphal
development and gastrointestinal colonization of C. albicans
(Yu et al., 2014a). Furthermore, Liu et al. identified four CCBs,
amlodipine, nifedipine, benidipine, and flunarizine, which have
synergistic effects with FLC against resistant C. albicans strains
(Liu et al., 2016). It may provide a potential therapy to combine
CCBs with azoles against C. albicans infections in clinic. These
discoveries indicate that targeting components of the Hsp-
associated calcium-calcineurin signaling pathway could exert
antifungal characteristics and/or reverse drug tolerance in C.
albicans.

MAPK Signaling Pathways
Mitogen activated protein (MAP) kinase signaling pathways
are conserved in eukaryotic cells and regulate growth and
adaptations stress, including thermal stress, apoptosis, and
inflammation. This pathway includes three types of kinases:
MAP kinase kinase kinase (MAPKKK), MAP kinase kinase
(MAPKK), and MAP kinase (MAPK). When upstream signals
act on MAPKKK, MAPKKK is phosphorylated and in turn
phosphorylates MAPKK, which in turn phosphorylates MAPK.
Ultimately, MAPK signals to downstream transcription factors
in order to develop adaptive responses. Thus, MAPK signaling
pathways are activated by many extracellular stimuli and
mediate signal transduction from the cell surface to the nucleus
(Monge et al., 2006). Four MAPK signaling pathways have been
identified in C. albicans: the Mkc1 pathway, related to cell wall
integrity (Navarro-García et al., 1995); the Hog1 pathway, mainly
participating in osmotic, oxidative, and other stress adaptions
(Smith et al., 2004; Correia et al., 2016); the Cek1 pathway,
involved in mating and starvation (Csank et al., 1998; Chen
et al., 2002); and the Cek2 pathway, crucial for mating (Chen
et al., 2000, 2002). Each of these MAPK signaling pathways plays
important roles in the growth and virulence of C. albicans.

MAPK signaling pathways are intimately associated with
heat shock responses in C. albicans (Brown et al., 2014). Leach
et al. illustrated that C. albicans Hsp90 modulates the activity
of Hsf1 in response to thermal stress over the short term. In
addition, the components of MAPK-Cek1, Hog1, and Mkc1-
are all client proteins of Hsp90. Compromising Hsp90 function
inhibits cell wall biogenesis inC. albicans via impairing activation
of Cek1, Hog1, and Mkc1. Thus, Hsp90 modulates long-term
thermal adaption viaMkc1-, Hog1-, and Cek1- mediated cell wall
remodeling (Leach et al., 2012a; Ene et al., 2015).

Further studies have confirmed that Hsp-associated MAPK
signaling pathways contribute to the virulence of C. albicans and
confer drug tolerance. The Mkc1 MAPK pathway is composed
of the MAPKKK Bck1, the MAPKK Mkk1 and the terminal
transcription factors Swi4/Swi6 (Lafayette et al., 2010; Román
et al., 2015). Mediated by protein kinase C (Pkc1), this pathway
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is responsible for maintaining the integrity of the cell wall
during growth, morphogenesis, and cell wall stress in C. albicans
(Navarro-García et al., 1995; Lafayette et al., 2010). The cell wall
is the first point of contact for antifungal drugs and represents
an attractive therapeutic target in fungal pathogens (Cullen and
Edgerton, 2016). As mentioned above, Hsp90 interacts with
Mkc1, and Hsp90 and Hsp70 help to maintain phosphorylation
of activated Pkc1 and control the degradation of fully primed and
activated Pkc1 (Lum et al., 2013). Therefore, inhibiting Hsp90
both in vitro and in vivo decreases drug resistance to ergosterol
biosynthesis inhibitors via destabilization of the terminal MAPK,
Mkc1 of Pkc1-Mkc1 signaling pathway in C. albicans (Singh
et al., 2009; Lafayette et al., 2010). Furthermore, LaFayette
et al. speculated that the Pkc1-Mkc1 and calcineurin pathways,
controlled by Hsp90 independently, may regulate drug resistance
of C. albicans to ergosterol biosynthesis inhibitors through a
single target (Lafayette et al., 2010). In addition, as a member
of the Hsp70 family, C. albicans Ssa1 and Ssa2 act as invasins.
Ssa1 and Ssa2 combine with host cell cadherins and facilitate
host cell endocytosis, allowing C. albicans to invade host cells
(Sun et al., 2010). Saraswat et al. suggested that Ssa1 binding with
mucin Msb2 detects and regulates thermal stress adaptations,
such as survival and hyphae formation at high temperature
through the Pkc1-Cek1 signaling pathway (Saraswat et al., 2016).
Ssa11/1 andMsb21/1mutants were shown to exhibit defective
phosphorylation of Mkc1 (P∼Mkc1) and P∼Cek1, especially
at high temperatures. Moreover, some small Hsps are also
involved in MAPK signaling. Genetic deletion ofHSP21 prevents
phosphorylation of Cek1 at elevated temperatures, indicating
that phosphorylation of Cek1 during thermal stress is Hsp21-
dependent (Mayer et al., 2012). In addition, expressions of C.
albicans HSP12 is regulated by the Hog1 stress response. It has
been shown that devitalized Hog1 represses HSP12 expression.
However, stress mediated by activated Hog1 abolishes this
repression (Smith et al., 2004; Fu et al., 2012).

These results all verify that Hsps govern the MAPK signaling
pathways that play significant roles in the growth and virulence
of C. albicans. As a result, inhibiting Hsps or other elements
of MAPK signaling should disrupt growth and reduce virulence
of C. albicans. Sussman et al. found that cercosporamide,
a selective and potent fungal Pkc1 kinase inhibitor, acts as
a broad-spectrum natural antifungal compound against C.
albicans. Furthermore, cercosporamide, in combination with
an echinocandin analog, exerts synergistic antifungal effects
against C. albicans (Sussman et al., 2004). This finding suggests
a potential efficient combination strategy to treat C. albicans
infections. Hopefully, more drugs targeting molecules of the
MAPK signaling pathways will be discovered and may help to
improve the treatment of C. albicans infections.

RAS1-CAMP-PKA Signaling Pathway
As a conserved small GTPase on the plasma membrane
of eukaryotic cells, Ras regulates a key cyclic Adenosine
monophosphate (cAMP)-dependent protein kinase A (PKA)
pathway (Mösch et al., 1999; Leberer et al., 2001; Piispanen
et al., 2011). In C. albicans, the Ras1-cAMP-PKA signaling
pathway is primarily composed of the proteinRas1, adenylate

cyclase (AC), cAMP, PKA, and its downstream targets (Hogan
and Sundstrom, 2009). Ras1 is described as a “molecular
switch,” bound to either guanosine triphosphate (GTP) during
an activated state by interaction with guanosine nucleotide
exchange factors (GEFs) or to guanosine diphosphate (GDP)
during inactivated states through interaction with GTPase
activator proteins (GAPs) (Fortwendel, 2012). Upon Ras1
activation, Ras1-GTP binds to AC and catalyzes production
of the second messenger cAMP. Subsequently, the increase
of intracellular cAMP activates cAMP-dependent PKA that
phosphorylates a series of transcription factors that control
phenotype, metabolism, stress adaption, proliferation, and other
functions (Broach, 1991; Rolland et al., 2002; Cassola et al.,
2004; Li and Wang, 2013). Further studies show that Efg1, a
transcription factor, in parallel with other unidentified signaling
molecules, is the terminal point of the Ras1-cAMP-PKA pathway
in C. albicans (Bockmühl and Ernst, 2001; Shapiro et al.,
2009). Moreover, the Ras1-cAMP-PKA signaling pathway is also
involved in normal physiological activities, e.g., acceleration of
apoptosis (Phillips et al., 2006), as well as several pathogenic
behaviors, such as cell adhesion, hyphal morphogenesis, biofilm
formation, and white-to-opaque switching (Inglis and Sherlock,
2013).

Studies have conclusively demonstrated that C. albicans Hsps
control growth and virulence of C. albicans via interaction with
the Ras1-cAMP-PKA pathway (Leberer et al., 2001; Shapiro
et al., 2009). Compromising Hsp90 function induces a transition
from yeast to hypha growth, while attenuating virulence, in
a murine model of C. albicans infection. These phenotypes
are likely due to C. albicans’ requirement for morphogenetic
flexibility to attain virulence (Shapiro et al., 2009, 2012a).
Elevated temperature beyond 37◦C impairs Hsp90 activity and
reverses Hsp90-mediated repression of morphogenetic progress
(Shapiro et al., 2012b;Mayer et al., 2013). Shapiro et al. discovered
that a C. albicans strain with an active RAS1 allele (Ras1V13)
and a C. albicans strain heterozygous for HSP90 remain as
yeast. In contrast, the combination of Ras1V13 and reduced levels
of Hsp90 leads to filamentation. Furthermore, deletion of one
IRA2 allele has no effect on Ras1 activity in a strain containing
wild type Hsp90; however, deleting one HSP90 allele in the
IRA21/1 heterozygote enhances filamentation. In conclusion,
genetic epistasis analyses suggest that Hsp90 promotesC. albicans
morphogenesis by repressing Ras1-cAMP-PKA signaling in a
temperature-dependent manner (Shapiro et al., 2009). Other
studies have focused on specific interactions between Hsp90
and the Ras1-cAMP-PKA signaling pathway in C. albicans.
Shapiro et al. demonstrated that genetic depletion of SGT1
phenocopies compromise of Hsp90 function. They described
Sgt1 as a co-chaperone that physically interacts with Hsp90.
Moreover, they asserted that Cyr1, the AC of the Ras1-cAMP-
PKA signaling pathway, interact with Sgt1 and Hsp90, thereby
controlling Ras1-cAMP-PKA signaling (Shapiro et al., 2009,
2012b). We know that tight control of trehalose, regulated
by the G protein-coupled receptor (Gpr1), is required for C.
albicans morphogenesis. Suggesting that trehalose is a possible
link between the Ras1-cAMP-PKA pathway and the Hsp90-
mediated regulation of morphogenesis (Serneels et al., 2012).
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In summary, Hsp90 regulates C. albicans morphogenesis and
pathogenesis in response to environmental stress via the Ras1-
cAMP-PKA signaling pathway. Dodecanol-and farnesol-induced
expression of HSP12 stimulates budding growth in wild type
C. albicans and is dependent on Ras1-cAMP-PKA signaling
(Davis-Hanna et al., 2008; Fu et al., 2012). What’s more, Hsp21,
which potentiates resistance of C. albicans to commonly used
antifungal drugs, also lies downstream of the Ras1-cAMP-
PKA signaling pathway (Harcus et al., 2004; Mayer et al.,
2013).

In conclusion, Hsps regulate the virulence properties of C.
albicans, especially hyphal morphogenesis, via Ras1-cAMP-PKA
signaling. Targeting Hsps-related Ras1-cAMP-PKA signaling
is also a potential antifungal strategy against C. albicans.
Jain et al. have shown that MDL-12330A, an inhibitor of
mammalian AC, has a synergistic effect in combination with
azoles against both azole-susceptible and-resistant strains of C.
albicans (Jain et al., 2003). In addition, Xie et al. confirmed
that staurosporine, a protein kinase inhibitor, abrogates fungal
drug resistance via targeting AC and the cAMP-dependent
PKA (Xie et al., 2017). The lichen-derived small molecule
retigeric acid B that inhibits AC activity significantly inhibits
the filamentation of C. albicans. Moreover, it attenuates the
virulence of C. albicans, leading to prolonged survival in
nematodes models (Chang et al., 2012). In short, drugs targeting
the Ras1-cAMP-PKA signaling pathway and mechanisms for
these drugs need to be further studied for treatment of
candidiasis.

Cell Cycle Control Pathways
In fungi, extracellular and intracellular signals govern the
cell cycle, controlling cell division and differentiation. Fungal
cells exhibit different morphologies, affected by the activity of
cyclin-dependent kinases. Cell cycle regulation is pivotal for
the virulence and infectious development of fungal pathogens
(Berman, 2006; Pérez-Martín et al., 2016).

Leach et al. observed that Hsf1 and Hsp90 orchestrate
temperature-dependent global transcriptional remodeling of
chromatin architecture in C. albicans, indicating Hsps may
participate in movement of the cell nucleus (Leach et al., 2016).
Further studies suggest that Hsps are involved in the cell
cycle control pathways of C. albicans. Senn et al. found that
filaments of C. albicans induced by compromised Hsp90 are
neither pseudohyphae nor hyphae-like, but rather are similar to
filaments induced by cell cycle arrest (Senn et al., 2012). This
finding implies that Hsp90 is involved in cell cycle control and
affects morphogenesis of C. albicans. Further studies illustrate
that Cdc28, a kind of cyclin-dependent kinase in C. albicans, is
normally stable, but its depletion leads to filamentous growth
(Umeyama et al., 2006). However, levels of Cdc28 are markedly
reduced in response to Hsp90 depletion, while CDC28 transcript
levels remain stable. Therefore, reduced levels of Hsp90 may
result in instability of Cdc28. Thus, Senn et al. speculated that
Cdc28 is a candidate for an Hsp90 client protein and is one
of the targets of Hsp90’s influence on cell cycle control in C.
albicans (Senn et al., 2012). Additionally, Hsp90 is required for
the stability of two C. albicans mitotic cyclins, Clb2, and Clb4

(Bensen et al., 2005). Nevertheless, CLB deletion does not lead
to Hsp90 inhibition, and so it is less likely to contribute to
Hsp90’s impacts on morphogenesis (Bensen et al., 2005; Senn
et al., 2012). Moreover, Shapiro et al. showed that Hms1, a
transcriptional regulator, contributes to morphogenesis induced
by elevated temperature or impaired Hsp90 in C. albicans.
Hms1 lies downstream of the cyclin Pcl1 and the cyclin-
dependent kinase Pho85. In response to inhibition of Hsp90,
Hms1 promotes filamentous growth by activating the expression
of UME6 and RBT5. Meanwhile, deleting HMS1 improves the
survival rates of C. albicans infection in metazoan models
(Shapiro et al., 2012a). These data indicate a potential antifungal
strategy for treating C. albicans infections by targeting elements
in the Pho85-Pcl1-Hms1 pathway. These findings demonstrate
that Hsp90 governs morphogenesis via multiple elements of
cell cycle control pathways in C. albicans. Thus, modulation of
Hsp90 is a promising antifungal strategy to treat C. albicans
infections.

Others
Other signaling pathways in C. albicans have been shown to
be regulated by Hsps. Leach et al. first revealed a molecular
link between membrane fluidity and the heat shock response
(Leach and Cowen, 2014). In response to elevated temperature,
the E3 ubiquitin ligase Rsp5, which controls expression of
OLE1 via transcription factor Spt23, is a hypothesized early
sensor of temperature. The OLE1 gene encodes a fatty acid
desaturase, and decrease of OLE1 triggers expression of
FAS2, which encodes a fatty acid synthase. Moreover, the
decrease of OLE1 prevents activation of Hsf1 and reduces
expression of HSP in response to heat shock. This finding
confirms the link between membrane fluidity and the heat
shock response. In addition, OLE1 not only controls levels of
fatty acid desaturase, which regulates fluidity of C. albicans
membrane, but also facilitates hyphae development, a crucial
process for C. albicans virulence (Krishnamurthy et al., 2004;
Noverr and Huffnagle, 2004). Thus, disrupting Hsp-regulated
membrane fluidity is a potential antifungal strategy against C.
albicans.

Robbins et al. reported that impairing Hsp90 governs
dispersion and reverses antifungal drug tolerance of C. albicans
biofilms via down-regulation of matrix glucan (Robbins et al.,
2011). They illustrated that Hsp90 regulates glucan levels either
by affecting Fks1, an important synthase for the production of
matrix glucan, or by affecting Zap1 and its downstream targets
Gca1 and Gca2, controlling the hydrolytic release of β-glucan
fragments to the matrix. Existence of matrix glucan is a barrier
for drugs in reaching C. albicans and promotes its invasive
ability. Therefore, targeting matrix glucan via Hsp90 disruption
may also be a good therapeutic strategy against C. albicans
biofilms.

CONCLUSION

Initially, Hsps in C. albicans were considered simply a series of
proteins generated in response to thermal stress. Further studies
suggest that in addition to regulating thermal adaptations, Hsps
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act as molecular chaperones that interact with many molecules
in diverse signaling pathways, such as the calcium-calcineurin
signaling pathway, MAPK signaling pathways, the Ras1-cAMP-
PKA signaling pathway and cell cycle control pathways. These
Hsp-associated pathways are essential for controlling basic
physiological activities and virulence of C. albicans. Further
studies have shown that agents targeting Hsps and elements of
Hsp-associated pathways exert antifungal effects and/or reverse
tolerance of C. albicans to traditional antifungal drugs. These
findings support the hypothesis that understanding the link
between Hsps and its many signaling partners could lead to the
elucidation of several novel antifungal targets to be explored in C.
albicans.
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