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Abstract

In deep learning-based maize leaf disease detection, a maize disease identification method

called Network based on wavelet threshold-guided bilateral filtering, multi-channel ResNet,

and attenuation factor (WG-MARNet) is proposed. This method can solve the problems of

noise, background interference, and low detection accuracy of maize leaf disease images.

To begin, a processing layer called Wavelet threshold guided bilateral filtering (WT-GBF)

based on the WG-MARNet model is employed to reduce image noise and perform high and

low-frequency decomposition of the input image using WT-GBF. This increases the input

image’s resistance to environmental interference and feature extraction capability. Sec-

ondly, for the multiscale feature fusion technique, an average down-sampling and tiling

method is employed to increase feature representation and limit the risk of overfitting. Then,

on high and low-frequency multi-channel, an attenuation factor is introduced to optimize the

performance instability during training of the deep network. Finally, when the convergence

and accuracy are compared, PRelu and Adabound are used instead of the Relu activation

function and the Adam optimizer. The experimental results revealed that our method’s aver-

age recognition accuracy was 97.96%, and the detection time for a single image was 0.278

seconds. The average detection accuracy has been increased. The method lays the

groundwork for the precise control of maize diseases in the field.

1. Introduction

Maize is an important food crop and one of the most widely planted food crops globally. A

healthy maize industry plays an essential role in ensuring the world’s food security. However,

with the change in climate and environment, the stress of diseases and insect pests caused irre-

versible losses to maize and other crops. The leaf diseases caused by various pathogens greatly

restricted the photosynthesis of maize leaves and the transportation of nutrients, which seri-

ously affected the yield and quality of maize [1]. Only symptomatic spraying of pesticides can

control the spread of diseases and minimize losses. It is essential for disease control to discover

and judge the disease type in the time and select suitable pesticides for precise treatment. The
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traditional method of relying on plant pathologists to identify disease types on-site is time-

consuming, labor-intensive, inefficient, and prone to subjective errors, especially in the field

environment, which greatly increases labor costs [2]. In recent years, machine vision com-

bined with image processing technology is continuously overcoming the shortcomings of arti-

ficial recognition, such as easy misjudgment, dependence on expert experience, labor, and

manpower [3, 4]. However, the ideas of these studies are often based on the color, texture and

spatial structure of the image [5, 6]. The thresholds cannot meet all complex background

images obtained under natural conditions, and the ultimate recognition accuracy is limited.

There are some problems such as poor adaptability, weak anti-jamming ability, etc. As a result,

the practical application is severely limited.

At present, more and more researchers are devoted to the field of deep learning. Compared

with the traditional recognition methods, the emergence of the convolutional neural network

(CNN) effectively improves the recognition efficiency and accuracy, which is obviously better

than machine vision. Since the proposal of LeNet [7] in 1998, the convolutional neural net-

work has developed continuously upgraded models such as AlexNet [8] in 2012, Googlenet [9]

in 2014, and ResNet [10] in 2015. Many novel CNN models are also being proposed to apply

in the field of plant classification. For example, Muhammad Rizwan Latif [11] proposed using

deep learning architecture, serial feature fusion, and the optimal feature selection convolu-

tional neural network. Nazar Hussain et al. [12] proposed a new deep learning-based frame-

work for plant leaf disease identification that includes feature fusion and selecting the best

features.

The network models become more and more deep and complex. At the same time, it also

solves the problems of gradient disappearance and the explosion of backpropagation. How-

ever, in practice, the original disease images of maize leaves include issues such as noise and

background interference, resulting in low classification accuracy. In order to address the afore-

mentioned issues, we propose a WG-MARNet-based maize disease identification method

capable of identifying maize leaf pests and diseases.

The following are our two main contributions.

1. We use data augmentation to improve data quality, diversify data features, and expand the

size of our dataset to achieve a better outcome.

2. We propose the WG-MARNet with the following design for the classification of maize leaf

diseases.

a. To minimize image noise at the input side and to construct a high and low frequency

multi-channel network structure, a wavelet threshold-guided bilateral filtering

(WT-GBF) algorithm is proposed to be integrated into the network structure based on

the features of maize diseases.

b. It is proposed to use average down-sampling and tile operations to improve the multi-

scale feature fusion technology. Use improved multi-scale feature fusion technology to

enhance the ability of target feature expression.

c. An attenuation factor is proposed to be added to the high and low-frequency channels to

increase the stability of the network parameters during learning.

To make it easier for the reader to read this paper, Table 1 lists the abbreviations that fre-

quently appear in this paper.
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2. Related work

In recent years, with the application of computer vision technology in the field of agriculture,

there have been a lot of achievements in the research of image segmentation based on crop

and disease location. In 2010, Hengqiang Su et al. [13] extracted the lesion area of maize leaf

by Super-Green segmentation and Otsu threshold segmentation, combined with image mor-

phology operation, then extracted the color and texture characteristics parameters of different

lesion areas of maize leaf, and finally classified the experimental data by SVM method. In 2012,

in order to better identify common types of maize diseases, Baiyi Zhang [14] partitioned the

lesion area by preprocessing and using an improved level set algorithm and achieved a good

recognition accuracy. In 2013, in order to identify maize varieties, Donglaima et al. [15] first

used the Ostu algorithm to segment maize varieties, on which six characteristic parameters

were extracted, and then used the K-means clustering algorithm to identify maize varieties. In

2014, in order to better identify maize diseases, Shanwen Zhang et al. [16] proposed an algo-

rithm of local discriminant projects (LDP) to identify maize diseases. Based on image segmen-

tation and LDP, the dimension of the disease image is reduced. Finally, a database is

established to identify the disease image with high accuracy. In 2016, in order to better identify

maize leaf diseases, Liangfeng Xu et al. [17] proposed an adaptive multi-classifier method to

identify maize leaf diseases, and combined it with cluster analysis to obtain adaptive weights.

The proposed method can improve the accuracy of maize leaf disease identification. However,

because of the weak robustness of traditional support vector machine and other methods, the

application effect is not good in a complex field environment. Also, some researchers have

contributed in terms of data. To help farmers with the early detection of plant diseases and

other scholars with data from their research, Hafiz Tayyab Rauf et al. [18] made a dataset con-

taining diseases of citrus fruits such as Healthy, Blackspot, Canker, Scab, Greening, and

Melanose.

With the deep learning technology in target detection and image processing, convolutional

neural network (CNN) has been widely used in image recognition and classification [19, 20].

In the research of plant diseases and insect pests identification, CNN has been proved to have

better performance than traditional machine learning methods. Brahimi et al. [19] used 15,000

tomato disease images to classify and recognize 9 diseases in the data set based on the AlexNet

model and obtained better recognition results. In 2017, Mansheng Long et al. [21] applied

migration learning in the convolution network training process, constructed AlexNet model

Table 1. Abbreviations appearing in this article.

Abbreviations Full Name

WG-MARNet Network based on wavelet threshold-guided bilateral filtering, multi-channel ResNet, and

attenuation factor

WT-GBF Wavelet threshold guided bilateral filtering

LDP local discriminant projects

ISDA Integrated Subspace Discriminant Analysis

SSD Single Shot MultiBox Detector

SGD Stochastic Gradient Descent

DHLD Denoising and High and Low-frequency Decomposition module

MFF Multi-scale Feature Fusion module

MCFF Multi-channel Feature Fusion module

AF Addition of the attenuation Factor module

IoT Internet of Things

https://doi.org/10.1371/journal.pone.0267650.t001
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based on TensorFlow, and classified algae spot, yellow disease, coal pollution disease, and soft

rot disease of Camellia oleifera with 96.53% accuracy. Rehman M Z U [22] proposed a new

technique in 2018 for apple and grape disease detection and classification based on new adap-

tive thresholding and optimized weighted based segmentation fusion. The method is highly

efficient in terms of accuracy, sensitivity, precision, and F1 value. Muhammad Zia Ur Rehman

[23] proposed a classification method in 2021 for citrus diseases based on deep learning which

achieved 95.7% classification accuracy. In 2021, Jaweria Kianat [24] proposed a framework for

cucumber disease classification based on feature fusion and selection techniques based on

deep learning with an accuracy of 93.50% obtained from the selected dataset. Ahmad Almad-

hor et al. [25] trained advanced classifiers for image-level and disease-level classification using

a high-resolution guava leaf and fruit dataset and obtained an overall classification accuracy of

99%. Almetwally M. Mostafa et al. [26] proposed an AI-Driven framework for the recognition

of guava plant diseases through machine learning. After pre-processing and enhancing the

data, enhanced data were then augmented over the nine angles using the affine transformation

method—augmented enhanced data used by five DL networks by altering their last layers. The

final application was applied to different networks and better results were obtained. In 2022,

Zia ur Rehman [27] proposed a new method for real-time apple leaf disease detection and clas-

sification using MASK-RCNN and deep learning feature selection based on deep learning,

achieving the best accuracy of 96.6% in Integrated Subspace Discriminant Analysis (ISDA)

classification.

Although the above research has produced positive results, most of the previous researches

on methods of identifying disease types with the help of deep learning and CNN were carried

out in the laboratory or under controlled conditions. The sample size of the image set obtained

in the field is small, which affects the generalization of the model. When using a large public data

set as a research object, the image background in the data set is too simple and the data is seri-

ously underrepresented. In the face of practical application, due to the lack of representativeness

of the data set, the ability of the model to extract disease regional features in the complex back-

ground is reduced, especially in the actual maize original image, such as noise, unclear features,

and background interference, the recognition accuracy, and speed are greatly reduced.

Facing the above problems, we proposed WG-MARNet for the classification of maize leaf

disease. The method can eliminate the noise of maize images, enhance the focus characteristics

of maize, and realize the high-precision recognition of maize disease images.

1. The improvement of the WG-MARNet is as follows:

A. According to the principle that maize lesions have huge feature differences in high and

low frequency images, the wavelet threshold-guided bilateral filtering is used for high

and low frequency decomposition, and a high and low frequency multi-channel net-

work structure is established to improve the ability of feature extraction.

B. The multi-scale feature fusion method is improved by using average down-sampling

and tile operations. This not only enhances the ability of target feature expression but

also reduces the increase in the number of features and reduces the risk of overfitting.

C. Attenuation factors are introduced on the high and low frequency multi-channels to

optimize the problem of unstable performance when training deep networks.

D. Through the comparative experiments of convergence and accuracy, we use PRelu and

Adabound instead of the Relu activation function and Adam optimizer.

2. The flow chart based on data enhancement and the WG-MARNet framework is shown in

Fig 1.
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3. Materials and methods

3.1 Data acquisition and preprocessing

The data set used in the experiment was derived from the data set website and field collection.

Websites for collecting the data set include the China Science Data Network (http://www.

csdata.org/) and Digipathos. On the data set website, 150 images of 9 common maize diseases

caused by fungi are carefully selected. The other part of our data set is collected in cooperation

with the Hunan Academy of Agricultural Sciences, China. We use Sony ILCE-7M2 to shoot

optical images of different diseases from multiple angles at different time periods in the morn-

ing, noon, and evening under sunny and cloudy weather conditions. Such photos can reflect

the many complex conditions of maize growing in the field to ensure that the collected images

are more representative. Finally, 1000 images were collected with a pixel size of 3600×2700,

including 458 samples with uniform illumination under sunny conditions, 263 samples with

uneven illumination, and 279 samples under cloudy conditions. The number of 9 disease

images finally obtained through field collection and data collection website is 1150. https://

github.com/FXD96/Corn-Diseases is the link to the dataset we collated.

In order to effectively improve data quality, increase the diversity of data features, and

reduce the dependence of convolutional networks on computer hardware due to complex

backgrounds, data enhancement operations are performed on the collected disease image sets.

we use multi-angle flipping, brightness adjustment, saturation adjustment, and adding Gauss-

ian noise to expand the corresponding data set to 8 times the original. The transformed image

is uniformly adjusted to 224×224×3 (height×width×color channel). The original sample size

and the enhanced sample size distribution are shown in Table 2.

3.2 WG-MARNet

In order to improve the recognition accuracy of maize diseases and solve the problem of low

accuracy caused by noise and unclear features in original maize images obtained from the

complex environment, this paper designs a WG-MARNet model.

Table 2. Profile of sample images for nine types of diseases.

Category Number of Original samples Number of Augmented samples

Anthracnose leaf blight 107 856

Tropical rust 115 920

Southern maize rust 130 1040

Common rust 142 1136

Southern leaf blight 150 1200

Phaeosphaeria leaf spot 120 960

Diplodia leaf streak 116 928

Physoderma brown spot 128 1024

Northern leaf blight 142 1136

https://doi.org/10.1371/journal.pone.0267650.t002

Fig 1. Flowchart of data enhancement and WG-MARNet framework.

https://doi.org/10.1371/journal.pone.0267650.g001
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First, the maize leaf disease image data set is used as the input of the model. After the

WT-GBF processing layer, the image noise is eliminated and the input image is decomposed

at high and low frequencies, which improves the ability to resist environmental interference

and avoids the characteristics of maize disease spots in the high and low frequency images. Sec-

ond, the high and low frequency multi-channel multi-scale fusion network structure (MAR-

Net) with attenuation factor is established, which improves the model feature extraction ability

while enhancing the robustness of the deep network. Finally, PRelu and adabound are selected

as the activation functions and optimizers of the WG-MARNet. The structure of the

WG-MARNet is shown in Fig 2.

The input image size used in this network is a three-channel image of 224×224. The image

is decomposed into high and low frequencies using WT-GBF to obtain low-frequency images

and high-frequency images. Then the high-frequency images are taken again to obtain the

Fig 2. Structure diagram of the WG-MARNet.

https://doi.org/10.1371/journal.pone.0267650.g002
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weakened background information. At the same time, the higher frequency image that

enhances the lesion information, the low-frequency image and the higher frequency image are

fed into the network in a channel. The following analysis of the network takes the low-fre-

quency channel as an example.

The first layer of the network is the convolution layer, which contains 64 channel convolu-

tion operations. Then, the batch normalization layer is used to re parameterize the distribution

of feature maps. Then, a nonlinear excitation layer PRelu is added to introduce nonlinearity

into the network of this layer. Every two network feature extraction layers need to be added

with a nonlinear excitation function to introduce nonlinearity. Otherwise, multiple feature

extraction network layers can be represented by one feature extraction network layer, which

cannot introduce stronger feature extraction ability and wasted computing resources. The rea-

son why residual structure is not used directly from the first convolution layer is that the fea-

ture map is used instead of the original input image when a shortcut is directly connected. The

following feature extraction network is divided into 16 residual blocks with 4 groups, conv2-x

to conv5-x. Each residual block group conv-x contains a corresponding number of residual

blocks. Table 3 shows that the number, size, and step size of convolution kernels in each resid-

ual block are also included in the table.

The block diagram of a residual block network in conv2_x residual group is given below, as

shown in Fig 3.

The picture above is the structure of the first residual block Conv2_1 in the Conv2_X resid-

ual group. After Conv1_X convolution, the input feature map is a 64-channel 56×56 feature

map. After three convolution kernels extract features, the output becomes a 28×28 feature map

with 64 channels. The parameter "3" in the figure indicates that the size of the convolution ker-

nel is 3×3, "2" indicates that the stride of the convolution layer is 2, and "64" indicates the out-

put channel. The value of the stride determines whether the size of the output feature map will

change. When stride is 2, it means that the size of the output feature map is half of the input

feature map, and the shortcut connection part is for a convolution operation to make the out-

put feature map. The number of channels is the same as that of the shortcut so that the connec-

tion operation of Element wise Add can be performed.

Table 3. Parameter configuration of residual block in conv1-conv5 group.

Conv1 Conv2_x Conv3_x Conv4_x Conv5_x

7×7,64, 3×3max pool, stride2 1� 1; 64

3� 3; 64

1� 1; 256

2

6
6
4

3

7
7
5� 3

1� 1; 128

3� 3; 128

1� 1; 512

2

6
6
4

3

7
7
5� 4

1� 1; 256

3� 3; 256

1� 1; 1024

2

6
6
4

3

7
7
5� 6

1� 1; 512

3� 3; 512

1� 1; 2048

2

6
6
4

3

7
7
5� 3

https://doi.org/10.1371/journal.pone.0267650.t003

Fig 3. Conv2_ 1 parameter operation diagram.

https://doi.org/10.1371/journal.pone.0267650.g003
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In addition, dropout is added to the fully connected layer to prevent overfitting further.

Among them, after average pooling, the sizes of the output characteristic graphs of conv2_x,

conv3_x, conv4_x, and conv5_x are changed into [56,56256], [28,28512], [14,141024], [7,7,

2048], if conv2_x, conv3_x, and conv5_x feature vectors are selected for multi-feature fusion,

then the fused feature vectors are spliced into a 2816 dimensional feature vector, and then the

high and low-frequency feature vectors are fused to generate a 5632-dimensional feature vec-

tor for the following network classification.

3.2.1 Denoising and high and low frequency decomposition of maize leaf disease

images. Generally speaking, due to the influence of image acquisition equipment and shoot-

ing conditions, there is always some noise in maize images. The goal of WT-GBF processing is

to reduce the impact of these noises (small-scale texture details, outliers and spots, etc.), high-

light useful information (object edges, foreground, and background boundaries, etc.) to

improve the accuracy of subsequent network recognition. At the same time, due to the charac-

teristics of maize diseases (Large spot disease, small spot disease, and rust, etc.), the leaf disease

information is mainly manifested in the high-frequency part of the image, and only a small

part of the disease information remains in the low-frequency background image. WT-GBF

decomposes high and low-frequency images to realize subsequent network sub-channel pro-

cessing of high and low-frequency images and improve feature extraction capabilities.

The WT-GBF is chosen to decompose the high and low frequencies of the image. The rea-

son is that compared with other commonly used filters, this algorithm can well retain the

detailed texture of the low-frequency background image and has the effect of maintaining the

boundary. The two kernel functions in bilateral filtering are combined spatial domain function

and range kernel function. It is precise because of the role of these two kernel functions in the

filtering process that bilateral filtering has edge and detail retention characteristics. The effect

of wavelet threshold denoising is very good. Firstly, the maize disease image is denoised by the

wavelet threshold to obtain a smoother image. The wavelet threshold uses a hard threshold,

and then the smoothed image is used as a guide image for calculating the kernel function of

bilateral filtering. Fig 4 shows the comparison of several common filters. It can be seen that the

low-frequency image obtained by using wavelet threshold to guide bilateral filtering has better

detail retention.

After the maize lesion image is subjected to WT-GBF, the low-frequency background

image IL and the high-frequency lesion image IH are obtained. In order to obtain a higher fre-

quency image IHH, the high frequency image IH needs to be passed through the filter again,

which can be expressed as:

I ¼ IL þ IH
IH ¼ IHL þ IHH

ð1Þ

(

The images of maize disease images decomposed by high and low frequencies are shown in

Fig 4.

3.2.2 Multiscale feature fusion. With the training of deep neural networks, the content of

the features extracted by the network will also vary greatly with the different feature levels [28],

and these levels of information have their own characteristics. For image tasks: In general, the

features extracted by the shallow network contain rich detailed information on the image con-

tent. However, due to the relatively shallow feature level, there will be a lot of redundant infor-

mation in the information contained. If the information is directly used for classification, the

effect is often unsatisfactory due to the lack of high-level semantic information; the informa-

tion extracted from the deep network contains more semantic information, and compared

with the features extracted from the shallow network, there is no Too much detailed
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information of the image content. The positioning information is not accurate enough.

Because the extracted information is too refined and too abstract, it also leads to the lack of

information to some extent, and the integrity of the information cannot be guaranteed. The

hierarchical features are between the shallow features and the deep features. There is a certain

amount of detailed information on the image content, as well as high-level semantic informa-

tion, and the information content is relatively complete.

In the feature fusion method shown in Fig 5, we first average down-sampling the extracted

shallow, middle and high-level features to reduce the size of the feature map and the number

of features. Then we tile the features, stitch the features of each level after tiling to get a fused

feature vector, which will function as the last feature vector. The result is predicted by the

training classifier. This method eliminates the operation required for progressive fusion and

reduces the number of features. Finally, the three features are fused directly for classification.

Compared with the existing popular methods, the fusion method proposed in this paper is

more suitable for this research task.

3.2.3 Multi-channel feature fusion. The feature fusion layer of a multi-channel convolu-

tion neural network can fuse different feature information, which makes the fused feature

information more distinguishable and better expressive ability for images. After the input

image is pooled by convolution of each channel in the multi-channel convolution neural net-

work, the output feature maps of the high-frequency channel and the low-frequency channel

can be obtained, respectively. Before feature fusion, Average pooling was performed on the

feature map. A kernel size of 4 and a stride of 4 were used to reduce the dimensions of the

extracted features. Then the two-dimensional picture data is transformed into one-dimen-

sional feature vectors, and the data is batch standardized to make the data distribution more

dispersed and closer to the data distribution of the test set, which reduces the model overfit-

ting. Finally, the processed one-dimensional data is input into the full connection layer for fea-

ture information fusion. The multi-channel feature fusion process is shown in Fig 6.

Fig 4. High and low frequency decomposition effect picture. (a) Low Frequency Patch Images. (b) Higher Frequency Patch

Images.

https://doi.org/10.1371/journal.pone.0267650.g004
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3.2.4 Attenuation factor. To increase the stability of the learning process of neural net-

work parameters, a convolution attenuation factor is introduced into the convolution channel,

and the sparse restriction on the output characteristic graph of each convolution module is

Fig 5. Multi-scale feature fusion method based on task design.

https://doi.org/10.1371/journal.pone.0267650.g005

Fig 6. Multi-channel feature fusion process diagram.

https://doi.org/10.1371/journal.pone.0267650.g006
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applied [29]. The data flow on each channel of WG-MARNet is controlled and managed. The

structure block scheme shown in Fig 7 is adopted in this paper.

The nonlinear mapping function for a single structure is:

Y ¼ l1Yn1 þ l2Yn2 þ l3Yn3X ð2Þ

In the expression, Smeans summing up the neurons in the corresponding output charac-

teristic map of each channel. λ1, λ2, and λ3 are convolution decay factors, and

0<λ3<λ2<λ1�1. The convolution module shares a convolution attenuation factor with all the

neurons on the output characteristic graph. Different convolution modules will use different

size attenuation factors.

Formula (2) shows that the output of WG-MARNet is determined by the output data of

each channel. Based on the contribution of each channel to the output of the neural network, a

concept of network output contribution ratio is introduced to define the contribution ratio of

Fig 7. Attenuation factor introduction graph.

https://doi.org/10.1371/journal.pone.0267650.g007
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network output to the attenuation factor of each channel. The Shortcut channel has no attenu-

ation factor, so its attenuation factor is equivalent to 1, so the contribution ratio of neural net-

work output to the Shortcut channel M = 1/(1+λ1+λ2+λ3). The attenuation factors of the three

convolution modules on the convolution channel are λ1, λ2, and λ3 which are artificially set

network hyperparameters, so their network output contribution rates are:

Mn1 ¼ l1=ð1þ l1 þ l2 þ l3Þ

Mn2 ¼ l2=ð1þ l1 þ l2 þ l3Þ

Mn3 ¼ l3=ð1þ l1 þ l2 þ l3Þ

ð3Þ

8
><

>:

Because 0<λ3<λ2<λ1�1, there is Mn3<Mn2<Mn1<M. From the perspective of forward

propagation, the attenuation factor in this paper is designed as follows: The final output of the

network is dominated by convolution channels, supplemented by the Shortcut channels, dom-

inated by shallow features and supplemented by deep features. Therefore, the range of attenua-

tion factor is limited to 0<λ3<λ2<λ1�1, which is based on the following: First, the

convolution channel is always changing due to the training parameters, and the output of the

front layer network will be used as the input of the back layer network. The effect of the change

of the front layer network parameters on the subsequent output results will increase exponen-

tially with the increase of network depth, resulting in the deep network being prone to a local

optimum. Solutions are difficult to converge, so to enhance the stability of the network, the

attenuation factor is set to less than 1. secondly, from the perspective of a single structure

block, the Shortcut channel is equivalent to data passing through 0 convolution layers for fea-

ture extraction, the first convolution module is equivalent to data passing through 2 convolu-

tion layers, the second convolution module is equivalent to data passing through 4

convolution layers. In order to ensure that the output contribution rate should be dominated

by shallow features and supplemented by deep features, so λ3<λ2<λ1.

From the point of view of backward propagation, the convolution attenuation factor can

control the size of the gradient values propagating from back to forward. The attenuation fac-

tor plays a role in reducing the learning rate of weights for each layer of the network, so that

the weights parameters can be adjusted more finely during network training. And it also helps

to improve the robustness of the network.

4. Application and results analysis

4.1 Experiments setup

The experimental platform chooses Windows10 operating system, equipped with Core i7-

7770KCPU@4.00GHX8 processor and NvidiaGeforceGTX1080TiGPU.

We employ stochastic gradient descent (SGD) while considering the performance of hard-

ware devices and training effects. The batchsize during training is set to 32, the momentum

parameter is set to 0.9, and the number of epochs is set to 15. The AdaBound optimizer is used

in this paper’s model. Because changing the learning rate affects the model’s convergence

speed and stability, a callback function is included. The learning rate is set to 0.01 for the first

10 epochs, and the weight decay rate is set to 0.05 for the next 5 epochs to boost fitting speed.

4.2 Experimental evaluation index

In order to evaluate the test results of the proposed method for disease identification and clas-

sification, the precision and recall were calculated respectively after the samples were tested.

The comprehensive evaluation index F1 is used as the evaluation value of accuracy and recall

rate. Average accuracy (AA) and single image detection time (t) were introduced as evaluation
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indexes. AA = number of correct classification / total number of tests × 100%, t = total test

time / number of test images. Other indicators are calculated as follows:

P ¼
TP

TPþ FP
ð4Þ

R ¼
TP

TPþ FN
ð5Þ

F1 ¼
2� P� R
Pþ R

ð6Þ

P represents the precision, while R represents the recall rate. TP represents the number of

samples that are actually targets, and the model predicts that the sample is a target (detecting a

positive sample as a positive sample). In Eq 8, FP represents the number of samples that are

not actually targets, but the model predicts that the sample is a target (tests negative samples as

positive samples). In Eq 9, FN represents the number of samples that are actually targets, but

the model did not predict them as target (no positive samples were detected as positive

samples).

4.3 Performance and analysis

4.3.1 Recognition results and confusion matrix. Taking northern leaf blight disease and

common rust disease as examples, Fig 8 shows the recognition results of WG-MARNet in the

test set. It can be found that the proposed method can accurately locate the lesion using the

positioning frame and output the recognition probability. The disease spots can also be accu-

rately identified and located under the background interference of maize stalks and soil (Fig

8A). It can be seen from Fig 8 that WG-MARNet can achieve high accuracy for image recogni-

tion under different lighting conditions, including maize stalks, soil, and overlapping leaves

Fig 8. Example of recognition results of northern leaf blight and common rust. a. Northon leaf blight. b. Common rust.

https://doi.org/10.1371/journal.pone.0267650.g008
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(The recognition probability of most lesions is high. At 0.9). In order to show the recognition

accuracy and classification results of WG-MARNet more clearly, a confusion matrix is drawn

based on the model classification results on the test set (Fig 9). Combined with the confusion

matrix analysis of the disease recognition results, the proposed method is suitable for 9 differ-

ent types of Anthracnose leaf blight, Tropical rust, Southern maize rust, Common rust, South-

ern leaf blight, Phaeosp haeria leaf spot, Diplodia leaf streak, Physoderma brown spot, and

Northern leaf blight. When identifying disease types, the accuracy and recall rate of each dis-

ease type are different. This has a certain relationship with the feature type of each disease, but

the recognition accuracy of each disease type is maintained at 0.9682~0.9897, the average accu-

racy is 0.9762; the recall rate is maintained at 0.954~0.983, the average recall rate is 0.9719. F1

is 0.959 ~0.979, the average accuracy of the model is 97.43%. The above results show that the

proposed method performs well in the established data set and can be applied to the detection

of crop diseases in the actual field environment.

4.3.2 Effect of multi-scale feature fusion on model performance. To analyze the impact

of the multi-scale feature fusion algorithm on model performance, this part of the experiment

used 80% of the datasets to train the WG-MARNet models with and without multi-scale fea-

ture fusion and then validated them with 20% of the datasets. The results of the experiment are

shown in Fig 10. After applying the multi-scale feature fusion algorithm, the maximum accu-

racy can be increased to 98.97%. And the minimum accuracy can be improved to 96.95%.

Under the same conditions, the accuracy of nine disease images was improved by 2.33%,

2.57%, 2.30%, 1.28%, 3.64%, 1.27%, 3.35%, 1.77% and 3.40%, respectively. The recognition

accuracy has been significantly improved. This shows that because the information extracted

by the deep network is too refined and too abstract, the information is missing to a certain

extent. Therefore, our multi-scale feature fusion algorithm effectively improves the recognition

accuracy in practice.

4.3.3 Comparative experiments of different activation functions and optimizers. In the

construction of the ResNet network, Relu or Sigmoid is used as the activation function, and

Adam is the optimizer as the mainstream choice. We have chosen activation functions (Relu,

Sigmoid, PRelu) and optimizers (Adam, Adabound) to form multiple solutions. The scheme

configuration is shown in Table 4. The first part compares the choice of optimizers on the

premise of a unified activation function. The experiment includes the comparison between

Sheme1 and Sheme6, the comparison between Sheme2 and Sheme5, and the comparison

Fig 9. ANTH, TRT, SCR, CR, SLB, PHLS, DLS, PHRS and NLB represent Anthracnose leaf blight, Tropical rust, Southern

maizerust, Common rust, Southern leaf blight, Phaeosp haeria leaf spot, Diplodia leaf streak, Physoderma brown spot and

Northern leaf blight respectively; The darker diagonal values in figures represent the number of correct classifications and the

recall rate of each category, respectively.

https://doi.org/10.1371/journal.pone.0267650.g009
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between Sheme3 and Sheme4. It can be seen from Table 4 that although the F1 of Scheme 1 is

0.51% higher than the F1 of Scheme 6, the Loss is higher than that of Scheme 6. Other pro-

grams 4 and 5 that use Adabound perform better than those that use Adam. The other part

compares the choice of activation function under the premise of a unified optimizer. The

experiment included a comparison between 1-2-3 and 4-5-6. Scheme 3 using the Prelu func-

tion has lower Loss than schemes 1 and 2; F1 and Loss of Scheme 5 and Scheme 6 are lower

than Scheme 1; F1 of Scheme 4 reached 97.89% while Loss was close to 0. Based on the experi-

mental results and analysis, we finally decided to use Adabound as the optimizer and PRelu as

the activation function.

4.3.4 Test results compared with other classification algorithms. To further verify the

performance of WG-MARNet proposed in this paper, it is compared with RstNet50 and the

main target detection Single Shot Multi-Box Detector (SSD) algorithms. SSD uses a 16-layer

VGG feature extraction network. The three methods use the same dataset, and the training

methods are all Stochastic Gradient Descent (SGD). The initial learning rate of the three meth-

ods is 0.01, the dropout value is 0.6, and the maximum number of iterations is 6000. Finally,

Fig 10. Effect comparison chart of multi-scale feature fusion.

https://doi.org/10.1371/journal.pone.0267650.g010

Table 4. Scheme configuration of optimizer and activation function.

Schemes Optimizer Activation Function Loss F1(%)

Sheme1 Adam Relu 0.041 97.14

Sheme2 Adam Sigmoid 0.037 96.35

Sheme3 Adam PRelu 0.027 97.17

Sheme4 AdaBound PRelu 0.012 97.89

Sheme5 AdaBound Relu 0.035 96.63

Sheme6 AdaBound Sigmoid 0.029 96.71

https://doi.org/10.1371/journal.pone.0267650.t004
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the curve charts of loss values with the number of iterations for the three classification detec-

tion algorithms are obtained (Fig 11), and the curve charts of accuracy with the number of iter-

ations (Fig 12). Table 6 shows the average accuracy and time-consuming of the three methods.

We assume that the WG-MARNet performs better than other networks. The null hypothe-

sis is that the average accuracy of the WG-MARNet is the same as the average accuracy of

other networks in inferential statistics. We repeatedly measured the accuracy of the experi-

ment ten times, conducting a one-way analysis of variance with α = 0.05. As shown in Table 5,

the P value is 2.44 × 10−4, which is much smaller than α, and the F value is 8.815, which is

greater than the critical value of 2.606. The results mean that the null hypothesis is rejected.

The analysis demonstrates a significant difference in accuracy between the WG-MARNet and

other networks.

The loss value of all three methods lowers as the number of repetitions grows, with the loss

value decreasing the fastest at the start due to the high initial learning rate setting. WG-MAR-

Net has the lowest loss value of the three and achieves convergence the quickest. According to

Table 5, WG-MARNet has the lowest loss value among the five, and the proposed algorithm

achieves an accuracy of 0.9718 and a single image detection time of 0.278s. In comparison to

the new algorithms SCANet [27], Re Alex Net [28], the WG-MARNet algorithm proposed in

this paper improves the multi-scale feature fusion technique and introduces attenuation fac-

tors on the channels to identify maize disease images more accurately and efficiently, which

has some advantages. The algorithm’s accuracy is increased by 4.95% and 4.73%, respectively,

while the detection time of a single image is lowered by 0.047 seconds and 0.090 seconds. In

terms of detecting speed and accuracy, the experimental results reveal that WG-MARNet sur-

passes the original ResNet50, SSD. And the new SCANet, Re Alex Net method, have improved

overall performance and can be employed in the field for real-time detection of maize diseases

in complicated backgrounds.

Fig 11. The loss curves of different classification and detection algorithms varying with the iteration number.

https://doi.org/10.1371/journal.pone.0267650.g011
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4.3.5 Ablation experiments. Experiments were chosen to design ablation experiments

utilizing an 80% data set to evaluate the impact of each component of the proposed method on

the performance of the WG-MARNet. The ResNet network was chosen as the base network

structure to assess the performance impact of the Denoising and High and Low-frequency

Decomposition module (DHLD), the Multi-scale Feature Fusion module (MFF), the Multi-

channel Feature Fusion module (MCFF), and the Addition of the attenuation Factor module

(AF) on the WG-MARNet model. When training the deep network, the attenuation factor is

applied to both high and low-frequency multi-channels to reduce performance instability.

According to the data in Table 6, the basic network structure Resnet (network (1)) achieved

an average precision of 91.77% and an average recall rate of 92.53% on this dataset, and the

model’s average accuracy was 92.22%. Denoising and high and low-frequency decomposition

result in average precision and recall rates of 92.58% and 93.46%, respectively, and the created

high and low-frequency multi-channel network structure considerably improves feature

extraction capability. The network (3)’s multi-scale feature fusion methodology was improved

by applying the average downsampling and tiling method to boost target feature expression

Fig 12. The precision curves of different classification and detection algorithms varying with the iteration

number.

https://doi.org/10.1371/journal.pone.0267650.g012

Table 5. Comparison of the detection results for different classification and detection algorithms.

Module Precision F p-value F Crit Detection time per /s

SSD 0.9293 8.815 2.44×10−4 2.606 0.293

ResNet50 0.8832 0.417

WG-MARNet 0.9718 0.278

SCANet [30] 0.9223 0.325

reAlexNet [24] 0.9245 0.368

https://doi.org/10.1371/journal.pone.0267650.t005
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capability. The addition of the multi-scale feature fusion module structure based on denoising

and high and low-frequency decomposition greatly improves model performance. The evalua-

tion indices improve by 1.20%, 1.38%, and 1.61%, respectively, compared to a network (2). In

comparison to network (3), network (4) includes a multi-channel feature fusion module to

fuse disparate feature information and increase differentiation and picture representation

capability. When compared to a network (3), it improves by 1.26%, 1.04%, and 0.17% in each

evaluation index. Finally, the WG-MARNet (network (5)) incorporates attenuation factors on

both high-frequency and low-frequency channels to enhance the unstable performance when

training the deep network, allowing the weight parameters to be fine-tuned during training

improving the network’s robustness. According to the experimental results, the addition of

attenuation factors on high and low-frequency channels reaches 97.62%, 97.19%, and 97.43%

for each evaluation index. The experimental results reveal that each component significantly

improves the WG-MARNet’s performance.

5. Conclusion

In this paper, we propose an Internet of Things (IoT) maize leaf disease identification method

based on WG-MARNet. To begin, the ResNet50 network is expanded to multiple channels,

and the low- and high-frequency images are sent into separate channels. The multi-scale fea-

ture fusion technique is then enhanced by mean down-sampling and tiling techniques. To

improve the target feature expression, the multi-scale feature fusion technique is utilized; an

attenuation factor is added to the channels to solve the problem that the deep network is prone

to unstable performance during training. After using the PRelu activation function and the

AdaBound optimizer, our network can achieve an accuracy of up to 97.89% with a Loss of

0.012. Combined with the confusion matrix analysis of the disease identification results, the

proposed method has an average recall of 97.19% and an F1 of 95.9% to 97.9% when perform-

ing classification, with an average accuracy of 97.43% for the model. The experimental results

demonstrate the efficacy of the proposed maize leaf disease detection algorithm, which

achieves an accuracy of 0.9718 and a single image detection time of 0.278s when compared to

contemporary techniques ResNet50, SSD, SCANet, and Re Alex Net.

This paper can provide methods and concepts for intelligent monitoring of maize diseases

in the field environment, as well as lay the groundwork for early and accurate maize disease

prevention and control. Furthermore, based on the findings of this study, it can serve as a

foundation for additional field-wide disease patrol monitoring using continuous frame video.

Despite the proposed method’s high performance, the data used in this experiment are limited.

Table 6. Experimental results of each component of the WG-MARNet.

Network Accuracy Recall F1(%)

ResNet (1) 88.32% 87.95% 89.12%

ResNet+DHLD (2) 92.58% 93.46% 93.33%

ResNet+DHLD+

MFF (3) 93.78% 94.84% 94.94%

ResNet+DHLD+

MFF+MCFF (4) 95.04% 95.88% 95.11%

ResNet+DHLD+

MFF+MCFF+AF

WG-MARNet(WG-MARNet) (5) 97.62% 97.19% 97.43%

https://doi.org/10.1371/journal.pone.0267650.t006
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The data set is not particularly large for WG-MARNet, so the image data set will be increased

in the future to develop a more representative and sample feature-rich maize disease database.
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