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Abstract

Difficulties with inducing sterile and long lasting protective immunity against malaria with subunit vaccines has renewed
interest in vaccinations with attenuated Plasmodium parasites. Immunizations with sporozoites that are attenuated by
radiation (RAS) can induce strong protective immunity both in humans and rodent models of malaria. Recently, in rodent
parasites it has been shown that through the deletion of a single gene, sporozoites can also become attenuated in liver
stage development and, importantly, immunization with these sporozoites results in immune responses identical to RAS.
The promise of vaccination using these genetically attenuated sporozoites (GAS) depends on translating the results in
rodent malaria models to human malaria. In this study, we perform the first essential step in this transition by disrupting,
p52, in P. falciparum an ortholog of the rodent parasite gene, p36p, which we had previously shown can confer long lasting
protective immunity in mice. These P. falciparum P52 deficient sporozoites demonstrate gliding motility, cell traversal and
an invasion rate into primary human hepatocytes in vitro that is comparable to wild type sporozoites. However, inside the
host hepatocyte development is arrested very soon after invasion. This study reveals, for the first time, that disrupting the
equivalent gene in both P. falciparum and rodent malaria Plasmodium species generates parasites that become similarly
arrested during liver stage development and these results pave the way for further development of GAS for human use.
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Introduction

Plasmodium falciparum is the human parasite responsible for the vast

majority of deaths associated with malaria, estimated to be between

1–2 million per year [1]. Drug resistant parasite strains, insecticide

resistant mosquitoes and the lack of adequate global control

measures have meant that malaria continues to be a major

international health issue [2]. Despite years of effort on testing a

variety of sub-unit vaccines designed to a variety of antigens

expressed at various stages of the parasite life-cycle, success has been

limited [3–5]. The complexity of both the parasites life-cycle and

host immune responses to infection have contributed to the slow

progress in the development of a vaccine that can induce efficient

and long lasting protective immune responses [6]. Recently, there

has been a renewed interest in the attenuated whole-organism

vaccine strategy [7]. Initially, this approach has used radiation-

attenuated sporozoites (RAS) to obtain sterile immunity experimen-

tally in both mice and humans [8,9]. Specifically, full protective

immunity against Plasmodium infection was achieved by immunisa-

tion only with live attenuated sporozoites (the infectious form of the

parasite injected by the mosquito) that invade and then abort

development inside hepatocytes in the liver of both rodent models of

malaria and in humans [10].

Recently, it has been shown that a comparable attenuation of

liver stage development can be achieved either by the targeted

deletion of specific genes that are essential for liver stage

development generating genetically attenuated sporozoites (GAS;

[11–15]) or by chemical attenuation of sporozoites (CAS) [16]. In

rodent models, GAS and CAS resemble both RAS and wild-type

parasites in terms of invasion of host hepatocytes but, like RAS,

they abort and/or arrest development inside the hepatocyte.

Importantly, immunisation with both GAS and CAS also induce

sterile immunity that is comparable to RAS.

Attenuation by genetic modification may have several advan-

tages compared to CAS and RAS in that it generates parasites

with a defined attenuation and results in homogeneous population

of parasites. This, therefore, removes any issues with the delivery

of correct doses of either irradiation or drugs in order to obtain

precisely attenuated parasites that both invade hepatocytes and

also become developmentally arrested [17].

Recently, GAS have been produced in the rodent malaria

parasites, P. berghei and P. yoelii, by single gene deletion of a number
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of genes (uis3, uis4, sap1 and p36p) as well as the simultaneous

deletion of two genes (p52+p36 in P. yoelii; uis3+uis4 in P. berghei

[11–15,18,19]). Immunisation with sporozoites of all these

resulting parasite lines induce, to varying degrees, protection

against re-infection with wild type parasites. Studies on these

parasites show that they are sufficient to confer protection in some

cases with doses as low as 1000–10000 sporozoites [18,20].

In our laboratory we have generated attenuated P. berghei

sporozoites by deleting the gene encoding p36p. This protein is a

member of a small family of proteins that is conserved in

Plasmodium [21], which includes some important antigens which

are putative-candidates for transmission blocking vaccines (i.e.

P48/45, P230; [22–26]). Sporozoites, deficient in expressing P36p

resulted in aborted development in hepatocytes, prior to parasite

replication. Immunisation with Dpb36p sporozoites induces long

lasting and protective immune responses against challenge with

wild-type sporozoites in rodents [15] and confers a degree of cross-

species protection against other rodent parasites [20]. It has also

been shown in P. yoelii that the disruption of the ortholog of p36p

and its paralogous gene, p36, results in generation of attenuated

sporozoites that can confer protective immunity [18].

In order to translate the promising observations in rodent

models of malaria to humans, that GAS have the capacity to

induce protective immune responses comparable to RAS, it is first

necessary to generate P. falciparum mutants that are also attenuated

during liver stage development.

In this study, we therefore generated P. falciparum parasites that

were deficient in expressing P52 (PFD0215c), the equivalent of P.

berghei P36p. The analysis of sporozoite invasion of hepatocytes in

vitro as well as development within primary human hepatocytes

with P. falciparum Dp52 mutants demonstrates a pattern of

attenuation essentially identical to P. berghei mutants unable to

express P36P. Specifically, development aborts shortly after

hepatocyte invasion. These findings open up the exciting

possibility that, as with the P. berghei Dp36p sporozoites, P.

falciparum mutants lacking this gene may also confer protective

immunity in humans against wild-type sporozoite infection.

Results

The P. falciparum p52 gene (PFD0215c) is an ortholog of
P. berghei p36p (PB000891.00.0) and is amenable to gene
disruption

In the P. berghei genome the two neighbouring genes p36

(PB000892.00.0) and p36p (PB000891.00.0) are a paralogous pair

of genes located on chromosome 10 and based on sequence

similarity (i.e. 46% amino acid sequence similarity). These genes

belong to a larger gene family constituting 10 members i.e. the 6-

cys family [21]. The repertoire of genes within this gene family is

similarly expanded within all (currently sequenced) genomes of

Plasmodium with every member of the P. berghei gene family having

a direct ortholog in P. falciparum based both on sequence similarity

and syntenic positioning of genes [21]. Previously, it has been

described that the expression of P. berghei 36p appears to be

exclusive to the sporozoite stage [27–29], which is supported by

the presence of P36p peptides only in the proteome of P. berghei

sporozoites [30], detection of the protein by Western analysis of

proteins of salivary gland sporozoites (SGS) [31] and the presence

of transcripts in P. berghei SGS [32]. Further, this stage specific

expression was also observed for the orthologous protein in the

closely related rodent malaria parasite, P. yoelii, where both protein

and transcripts are present in the SGS stage [33].

The ortholog of P. berghei p36p in P. falciparum is PFD0215c,

referred to as p52 [29] and (www.PlasmoDB.org), they share 39%

amino acid sequence identity (and 58% similarity) as well as the

corresponding syntenic conservation (P. falciparum chromosome 4

and P. berghei chromosome 10; [34]). Examination of the available

P. falciparum proteomes reveals that peptides corresponding to this

protein are only detected in the SGS proteome of Lasonder et al

2008 (i.e. 5 unique peptides) and also transcriptome analyses

indicate that expression only occurs in SGS [35].

To investigate if a P. falciparum mutant lacking the p52 gene

would also manifest the same attenuated phenotype during

development in the liver, as observed with P. berghei mutants

lacking p36p, two independent transfections were performed to

disrupt p52 in P. falciparum.

The construct contained the Toxoplasma gondii DHFR selection

cassette and a 1020 base pair internal fragment of the p52 coding

sequence that is used as target sequence for integration of the

construct into the P. falciparum p52 locus by single cross-over

integration (see Figure 1A for details/schematic representation of

the construct and the integration event). Blood stage parasites of

the NF54 strain of P. falciparum were transfected as previously

described [36] and pyrimethamine resistant parasites were selected

by standard methods for drug-selection of transformed P. falciparum

parasites. Cloned lines of the resistant parasite populations were

obtained for both experiments (i.e. clone Dp52-1 and Dp52-2) by

the method of limiting dilution. Correct integration of the

construct and disruption of the p52 locus was demonstrated for

one clone of each line by diagnostic PCR and Southern analysis of

restricted DNA (Figure 1B&C). Since we have used a construct

designed for single cross-over integration, reversion of the

disrupted locus to wild type can occur at low frequency in the

parasite population as has been reported for P. berghei TRAP

mutants [37]. It is possible that such reversion events can be

detected by sensitive PCR analysis resulting in low amounts of wild

type PCR fragments (Figure 1C).

The Dp52 parasites have comparable development to
wild-type parasites during blood stage growth, in
culture, and in the mosquito

During the cloning procedure of the mutant parasites and

subsequent in vitro cultivation of the asexual blood stages, the

growth and multiplication characteristics of the two mutant clones,

Dp52-1 and Dp52-2, were comparable to wild type parasites of the

parent line NF54 (data not shown).

Gametocyte production of the mutant parasites was analysed in

blood stage cultures that were optimised for gametocytogenesis

[38]. Gametocyte production of the mutant parasites ranged

between 14 and 87 gametocytes/1000 erythrocytes which is

comparable to wild type gametocyte production (Table 1) and

gametocytes were able to develop in morphologically mature

(stage V) parasites with a similar morphology to wild type parasites

[39]. Male gametocytes were functionally mature as shown by

exflagellation (formation of gametes) in vitro (Table 1) and formed

the characteristic exflagellation centres after induction of game-

togenesis.

Parasite development in the mosquito was analysed by feeding

female A. stephensi mosquitoes using standard membrane feeding of

cultured gametocytes [38] and subsequent monitoring of oocyst

and sporozoite production. Counting of oocysts at day 7 showed

that the mutant lines produced infections in 88–93% of the

mosquitoes with oocyst numbers ranging from 4–52 per mosquito

which is comparable to wild type mosquito infection (Table 1).

Also the sporozoite production with a mean number per mosquito

of 44.632 and 76.764 for Dp52-1 and Dp52-2 respectively, was also

similar to wild type (Table 1).

P. falciparum Dp52 GAS
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Sporozoites of Dp52 parasites have gliding motility and a
traversal capacity comparable to wild-type sporozoites

The ability of mutant sporozoites to move by gliding motility is

essential for invasion and was assessed by their ability to ‘glide’ on

glass slides [40]. The motility of Dp52-1, Dp52-2 and NF54 (Wt)

parasites was visualised by counterstaining the trails left by the

sporozoites with anti-PfCSP1 antibodies and quantifying the

amount of sporozoites out of 100 sporozoites that left trails. This

analysis showed that sporozoites of both mutant-lines are able to

glide and produce the repeating circles characteristic of correct

gliding (Figure 2A) and, moreover, gliding motility is comparable

to wild type parasites (Figure 2B).

It has been shown that Plasmodium sporozoites migrate to the

liver and then traverse/transmigrate through several hepatocytes

Figure 1. Generation of P. falciparum parasites lacking expression of P52. (A) Illustration of the DNA construct (m144) used for the targeted
gene disruption of p52 and the p52-genomic locus before and after integration. Shown are the p52 gene and target sequence (amplified using 1624
& 1625), the paralog of p52, p36, and the T. gondii dhfr/ts selection cassette. In addition, primer pairs and restriction sites for diagnostic PCR and
Southern analysis are shown (see B and C). hrp – histidine rich protein. (B) Southern analysis of BstNI/SnaBI digested genomic DNA of Wt and Dp52
demonstrates correct disruption of p52. DNA was hybridized with a p52 specific probe detecting a 3.3 kb fragment in Wt, a 2.2 kb fragment for intact
plasmid and the expected fragments of 1.3 kb and a 4.2 kb band (see A) in the two Dp52 clones (Dp52-1 and Dp52 -2). (C) PCR analysis of genomic
DNA of Wt and Dp52 clones and the plasmid DNA (construct) demonstrates correct disruption of p52. Genomic DNA from Wt and Dp52 asexual
parasites and sporozoites was used as template for the PCR reactions. The Wt specific PCR was performed using primers 1638 and 1676 amplifying a
2.1 kb fragment. PCR primer pairs 1638 and L430, specific for integration of the DNA construct (see A) amplify a 2.0 kb fragment. Primer pairs 190 and
191 amplifying a 1.8 kb fragment from T. gondii dhfr/ts were used as a control.
doi:10.1371/journal.pone.0003549.g001

Table 1. Gametocyte, oocyst and sporozoite development of Dp52 parasites.

Parasite
Gametocyte no.
Per 1000 RBC (range) Exfl.a

Oocyst productionb

(IQR)
Infected/dissected
mosquitoes

% Infected
mosquitoes

Mean no. of sporozoites
per mosquito (std)

Wt 27 (12–50) + 22 (6/39) 36/40 90 55 633 (22.580)

Dp52-1 27 (14–36) + 13 (4/26) 35/40 88 44 632 (9.953)

Dp52-2 38 (12–87) + 23 (5/51) 37/40 93 76 746 (30.339)

aExflagellation (Exfl) of male gametocytes was determined in small samples from the cultures by counting exflagellation centres under the light-microscope in 25
homogeneous fields of rbc at a 406magnification. A mean of 2–10 per field is scored as +; .10 as ++ and less then 2 as +/2.

bOocyst production is the median of the oocysts counted at day 7 after mosquito feeding and IQR is the inter quartile range. No significant difference exist between
mutant and wild-type parasites (Wilcoxin rank-sum test; p = 0.13 for Dp52-1 and p = 0.5 for Dp52-2).

doi:10.1371/journal.pone.0003549.t001
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before they establish an infection in a hepatocyte residing inside a

parasitophorous vacuole [41,42]. To determine if the lack of P52

expression has an effect on sporozoites cell traversal, we analysed

hepatocyte traversal in vitro using the Dextran incorporation FACS

assay as previously described [43]. Only wounded cells incorporate

Dextran and by quantifying these cells by FACS, we were able to

demonstrate that sporozoites of both mutant lines have a cell

traversal rate in cultured hepatoma cells (hepG2) that is comparable

to that of wild type parasites. On average Dp52-1 migrated through

4.2% of cells, Dp52-2 through 2.9% of cells and wild-type through

2.9% hepatocytes as compared to the Dextran only control where

only 0.38% cells were Dextran positive (Figure 2C).

The Dp52 parasites are arrested early during hepatocyte
development in cultured primary human hepatocyte cells

The ability of the Dp52-1 and Dp52-2 parasites to invade and

develop inside hepatocytes was investigated using primary human

hepatocytes which had been isolated directly from patient material

[44]. Freshly isolated sporozoites, collected in culture medium

were added to these hepatocytes that were cultured in 24 well

culture plates (56104 sporozoites/well) at 37uC as previously

described [44]. To examine the ability of the sporozoites to invade

host cells, the infected primary human hepatocytes were fixed and

examined 3 hours after incubation with sporozoites. In order to

distinguish between extracellular and intracellular sporozoites, a

double staining immuno-fluorescence protocol was followed [45].

Using alternatively (red and green fluorescent) conjugated anti-

PFCS antibodies we stained sporozoites before and after

hepatocyte permeabilisation (with 1% Triton X100). Therefore

extracellular sporozoites were doubly fluorescently stained (i.e. red

and green fluorescence) whereas intracellular sporozoites were

only exposed to antibodies after triton X-100 treatment and were

only singly fluorescently stained (i.e. green fluorescence) as can be

seen in Figure 3A. In calculating the percentage of intracellular

sporozoites, we found no difference in invasion of primary human

hepatocytes between wild-type parasites and mutant parasites

lacking P52 (Figure 3B). To examine the intracellular parasite

development to the replicating schizont stage, we analysed the

parasites inside the hepatocytes after 3 days and 5 days after the

addition of sporozoites. Cultures of primary human hepatocytes at

either day 3 or 5 after sporozoite addition were fixed in methanol

and stained using an anti-HSP70 mouse serum. Additional

staining of the host and parasite DNA with DAPI, shows that

wild type parasites are clearly in the process of schizogony as

shown by the multiple DAPI positive nuclei. Counting of the

schizonts in the culture wells revealed that at day 3 an average of

1054 liver schizonts/well are present in the cultures of the wild

type parasites, however, for infections initiated with both Dp52

Figure 2. Gliding Motility and Traversal Capacity of Wt and Dp52 sporozoites. (A) Representative immunofluorescence staining with anti-
PfCSP antibodies of the trails produced by Wt and mutant sporozoites deficient in P52 expression (Dp52-1 and Dp52-2) as well as Wt sporozoites,
treated with cytochalasin D, an inhibitor of sporozoite motility. Characteristic circles of gliding motility are present in Wt and mutant lines, and absent
in Wt sporozoites that have been treated with cytochalasin D. (B) Gliding motility of P. falciparum Wt (cytochalsin D treated and untreated) and
mutant sporozoites as assessed by the capacity to produce the characteristic circles (see A). (C) Cell traversal ability of P. falciparum Wt and mutant
sporozoites as determined by FACS counting of Dextran positive hepG2 cells. Dex: hepatocytes cultured in the presence of Dextran but without the
addition of sporozoites.
doi:10.1371/journal.pone.0003549.g002
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mutant lines there is a drastic reduction in the number of schizonts

with an average of only 1.7 schizonts per well (Figure 3C). At day 5

the size of the wild type schizonts and the number of nuclei per

schizont have increased significantly but the total number of

infected cells in wild type cultures however decreased (i.e. average

of 475 parasites/well) which is a well known phenomenon in in

vitro cultures of hepatic [46]stages; where the number of infected

hepatocytes decrease during the process of maturation (Figure 3D).

Again, at day 5 the average number of liver schizonts formed in

the infection initiated with Dp52 mutants is drastically reduced to

1.2 liver schizonts per well. Interestingly, the very few liver

schizonts observed with the Dp52 mutants in day 3 and day 5

cultures have wild-type morphology with regard to both the size

and number of DAPI positive nuclei. We interpret the presence of

these schizonts as the result of a low contamination of wild type

parasites that are the consequence of reversion events in the

mutant parasite genome, resulting in the restoration of the wild-

type p52 locus (see Discussion for further details).

To examine the loss and aborted growth of parasites lacking

P52 during development in the hepatocytes in more detail,

cultures were examined at 20 hours post-infection by the double

staining method used to investigate invasion (see above). At

20 hours intracellular wild-type parasites were observed to be

developing inside the hepatocytes; characteristic transformation of

the long slender sporozoite forms into the round trophozoites can

be observed and many of these parasites are in the process of

‘rounding up’ at one end (Figure 4A). In contrast, all the visible

intracellular Dp52 parasites appear morphologically indistinguish-

able from Wt parasites at 3 hours post invasion (i.e. they still

maintain a sporozoite like appearance; Figure 4A). These

observations show that parasites are aborted before or during

the transformation of the sporozoite into the growing trophozoite

stage. Further, examination of mutant parasites at either day 3 or

day 5 revealed that compared to the clear liver schizont

development of wild-type parasites there were very few anti-

HSP70 positive parasites and those that were visible appeared to

very small and round forms, which were also equally present in

cultures incubated with wild-type sporozoites, possibly extracellu-

lar degraded parasites that are known to be able to persist for

several days in vitro culture (Figure 4B). These results indicate that

the Dp52 mutants have wild-type development up until post-

hepatocyte invasion, where the mutant parasites clearly arrest soon

after invasion. The intracellular parasites deficient in P52

expression maintain their slender morphology characteristics of

extracellular sporozoites, whereas, wild-type parasites begin to

transform into the rounded trophozoite stage by 20 hours post

invasion.

Discussion

The protein P52 belongs to the small 6-Cys family of conserved

cysteine-rich proteins, many of which are membrane-anchored

[21]. Several of these proteins play an important role in fertility

and recognition of gametes such as P48/45, P47 and P230 [23–

25]. These gamete surface proteins are considered to be important

Figure 3. Invasion capacity of Wt and Dp52 sporozoites in
primary human hepatocytes in vitro. (A) Intra (In) and extracellular
(Ex) sporozoites 3 hrs after incubation of sporozoites with primary
human hepatocytes in culture. Sporozoites were first stained with anti-
PfCSP antibodies (red). Then cells were permeabilised and sporozoites
were stained with anti-PfCSP antibodies (green). Consequently,
extracellular sporozoites will stain red AND green and intracellular
sporozoites will stain only green. Nuclei of the hepatocytes (white arrow
heads) were stained with DAPI (B) The percentage of intracellular/

invaded sporozoites (Wt and Dp52 mutant lines) in primary human
hepatocyte 3 hours after sporozoite incubation, as determined in the
double anti-CSP staining immuno-fluorescence assay (see A). (C) The
number of schizonts detected by IFA using anti-HSP70 antibodies and
the nuclear dye DAPI formed 3 days after incubation with either Wt or
Dp52 mutant sporozoites. (D) The number of schizonts detected by IFA
using anti-HSP70 antibodies and the nuclear dye DAPI formed 5 days
after incubation with either Wt or Dp52 mutant sporozoites.
doi:10.1371/journal.pone.0003549.g003
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candidate antigens in the development of a transmission blocking

vaccine. Characterization of these proteins using comparable

reverse genetic technologies in rodent models of malaria and in P.

falciparum have revealed that these proteins have similar functions

in both human and rodent malaria [25,26,47] and van Dijk

unpublished observations).

In this study we show that another member of the 6-cys family,

P52, has a comparable role in both human and rodent malaria.

Specifically, P52 in P. falciparum and its ortholog P36P in P. berghei

function in the establishment of infection within a hepatocyte. We

have previously shown that development of P. berghei parasites

lacking P36P is aborted early after sporozoite invasion of the

hepatocyte, whereas gliding motility and the capacity of these

sporozoites to traverse and invade hepatocytes is not affected. We

found evidence that development was aborted during or just after

the formation of the parasitophorous vacuole and that the Dp36p

parasites had lost the capacity to prevent the host cell to undergo

apoptosis [15]. Moreover, such early aborted development also

occurred in the closely related rodent parasite P. yoelii when

parasites lacked this protein [18].

Figure 4. Development of wild-type and Dp52 parasites in primary human hepatocytes. (A) Parasites at 20 hours. Extracellular parasites
are visualised by staining with anti-PfCSP antibodies (secondary conjugated with ALEXA594, i.e. red fluorescence) before permeablisation (a-PfCS*)
and all parasites are visualised by staining with anti-PfCSP antibodies (secondary conjugated with ALEXA488 i.e. green fluorescence) after
permeablisation (a-PfCS**). The nuclei of the host cells are stained with DAPI (blue). (B) Parasites at day 3 or day 5. Nuclei of both the host cell and the
merozoites inside the developing schizont are visible by DAPI staining (blue). Parasites are identified by anti-HSP70 staining (a-HSP70; secondary
antibody conjugated with ALEXA488; green). Parasite lacking P52 expression fail to develop into schizonts and the only visible forms of the parasite
are small ‘rounded’, possibly degenerate and/or extracelluar, forms. Scale bars in the DAPI panels represent a size of 10 mM.
doi:10.1371/journal.pone.0003549.g004
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In this paper we present data to demonstrate that P52 functions

in P. falciparum at the same stage of development (i.e. intra-

hepatocytic development) as its P. berghei ortholog. Parasites lacking

P52 are not affected in their erythrocytic development (asexual or

sexual) or in maturation in the mosquito. The production of

sporozoites within the oocyst is not affected and the salivary glands

of infected A. stephensi mosquitoes contain high numbers of salivary

gland sporozoites (SGS) for parasites deficient in P52. This is not

unexpected since large scale proteome and transcriptome analyses

indicate that expression of P52 is absent in all these stages except

for SGS [33,48]. This has been further confirmed as P52 has been

detected specifically in the proteome of sporozoites collected from

the salivary glands and not the sporozoites from the oocyst

(Lasonder et al., 2008 in press PLoS Pathogens).

The presence of proteins specific to the SGS suggests a role in

sporozoite biology in the vertebrate host, anywhere along its

journey to the hepatocyte, invasion of and initial intracellular

remodelling of the host cell interior. For example, the SPECT1,

SPECT2, TRAP and CelTOS are proteins that appear to be

either exclusively present or predominantly expressed in sporozo-

ites of the salivary gland and are present in preparation for

injection into the host. These proteins have been shown to play a

role in either the gliding motility of sporozoites or in cell traversal

[37,49,50].

The sporozoites that lack P52, however, have normal gliding

motility, cell traversal capacity and the ability to invade

hepatocytes, which was also observed in rodent malaria parasites

lacking the P36p ortholog [15,18]. As with the rodent malaria

parasite p36p deletion mutants, development of the P. falciparum

parasites that lack P52, development is aborted rapidly after

invasion of the hepatocyte. In the Dp36p P. berghei parasites

evidence was presented that the invaded parasites abort develop-

ment during or just after formation of the parasitophorous

vacuole. In the P. falciparum mutant parasites we have not observed

indications of the transformation of the long slender sporozoites

into the round trophozoite stage.

Perhaps not unexpectedly, we found a few parasites in the

cultures of the mutant lines that were able to develop into

maturing schizonts, morphologically identical to wild type

schizonts. It is well known that ‘reversion-events’ can occur in

the genome of mutant parasites that have been transformed with

constructs that integrate by single-cross-over recombination. Such

reversion events can result in removal of the integrated construct

including the drug selectable marker, resulting in low levels of

contamination of mutant parasite populations with wild type

parasites [51]. After the feeding mosquitoes with blood containing

Dp52 gametocytes, no drug-pressure can be applied to kill

‘revertant-parasites’ and as these mutant parasites actively multiply

within the oocysts, sporozoites can be produced which restore the

wild type genotype. Such ‘wild type’ parasites are the most likely

explanation for the presence of the very few schizonts in

hepatocytes cultured with mutant parasites. However, it remains

possible that a low proportion of the mutant parasites, lacking P52

expression, are able to develop into the schizont stage. In P. berghei

it has been shown that by infection of mice with .100000 mutant

sporozoites intravenously ‘break-through’ parasites are observed

that give rise to blood stage infection, despite irreversible

disruption of the p36p gene by double cross-over recombination.

Interestingly, in P. yoelii it has been shown that disruption of the

orthologous gene p36p and its paralog p36 within the same

parasite, result in complete abortion of development without

breakthrough parasites [18]. In P. falciparum the gene p52 is in

exactly the same genomic context as the rodent malaria p36/p36p

genes and has its paralogous gene, pf36 (PFD0210c) also

immediately downstream [34]. It is therefore possible to disrupt

both genes using a single DNA construct, as has been shown for

other paralogous genes in rodent malaria [18,52] and for adjacent

genes encoding aspartatic proteases in P. falciparum [53,54].

In infections initiated with P. falciparum deficient in P52 we find a

greater than 99% reduction (and possibly complete absence) of EEF

development very soon after sporozoite invasion. It would appear

that this degree and stage of attenuation is essentially the same as

described for rodent malaria parasites lacking its ortholog, p36p.

Consequently, P52 is the first protein in P. falciparum

demonstrated to have an essential role at any stage of development

after sporozoite invasion of the hepatocyte. Early abortion of liver

stage development has also been shown for sporozoites that have

been attenuated by c-radiation (RAS). Such sporozoites are able to

invade the hepatocyte but are unable to transform into the

schizont stage. Invasion and establishment of an infection in the

liver appears to be essential for inducing protective immune

responses [10] and over-irradiated sporozoites, which are unable

to initiate an infection in hepatocytes, do not induce protective

immunity [55,56]. Thus the correct dose of radiation is essential

for inducing protective immune responses. We, and others, have

shown that attenuated parasites generated by genetic modification

(GAS) can also induce identical protective immune responses in

rodent models of malaria. Genetic modification technology

permits the creation of very specific and targeted alterations

(deletions) in the Plasmodium genome as compared to the non-

specific genomic or protein alterations induced by either radiation

or chemical approaches. Genetic modification can therefore result

in the reproducible production of homogeneous populations of

parasites with a clearly defined genotype and phenotype and

consequently these may have clear advantages in the testing of

‘whole parasite vaccine’ approach over RAS and CAS.

This study, showing that P. falciparum parasites can be

attenuated by disrupting a single gene is a first, but essential, step

in the development of a vaccine based on attenuated parasites.

Further optimization of such parasites will likely use double cross-

over recombination to avoid reversion to a ‘wild-type’ genotype;

disruption of multiple genes each of which may generate arrested

and/or protective parasite and thereby creating a parasite which

contains successive obstacles for the restoration of parasite growth;

and removal of foreign DNA from the transgenic parasite genome

which can ease the transition of genetically modified organisms for

human use. These are the next steps that must be accomplished

before it would be possible to move such potentially protective

parasites into clinical trials to test the safety, immunogenicity and

potency of these parasites in immune response and re-challenge

studies in humans.

Materials and Methods

Parasites
P. falciparum parasites line NF54 (wild-type; Wt) and Dpf52 (see

below) blood stages were cultured in a semi automated culture

system using standard in vitro culture conditions for P. falciparum

and induction of gametocyte production in these cultures was

performed as previously described [57–59].

Generation of Dp52 parasites
The p52 gene (PFD0215c) of P. falciparum was disrupted with the

insertion plasmid mI44, a derivative of the previously described

pDT.Tg23 plasmid [60]. The construct mI44 was generated by

cloning a 1020 bp internal fragment of the p52 coding sequence,

obtained by PCR amplification using primers 1624 (59-

cgcggatccTGTAGCAATGTGATTCAAGATG) and 1625 (59-
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ggactagtTGATTGTTATTATGATGTTCCTC), into the BamHI

and SpeI restriction sites of the pDT.Tg23 plasmid. For details of

the location of primers and sizes of amplified products see

Figure 1A.

Transfection of wild type blood-stage parasites of line NF54 was

performed as described [36], using a BTX electroporation system.

Transfected parasites were cultured using the semi automated

culture system and transformed, drug-resistant Dp52 parasites

were selected by treatment of the cultures with pyrimethamine as

described [60].

Genotype analysis of transformed parasites was performed by

diagnostic PCR and Southern blot analysis. Genomic DNA of Wt

or transfected parasites (blood stages or sporozoite) was isolated

[61] and analyzed by PCR using primer pair 1638 (59-

CATGCCATGGTTTGAATAAGTTTTACAACCTGC) and

L430 (59-GGATAACAATTTCACACAGGA) for correct inte-

gration of mI44 in the pf52 locus and for the presence of Wt using

primer pair 1638 and 1676 (59- GGACTAGTTTTGCCA-

GAATGTTCTTGTTCG), both annealing outside the target

region used for integration. Primer pairs 190 (59-CGGGATC-

CATGCATAAACCGGTGTGTC) and 191 (59-CGGGATC-

CAAGCTTCTGTATTTCCGC) were used as a control to detect

the presence of either integrated or episomal plasmid. PCR

reactions were performed using the conditions as described [62].

For Southern blot analysis, genomic DNA was digested with BstNI

and SnaBI, size fractionated on a 1% agarose gel and transferred to

a Hybond-N membrane (Amersham) by gravitational flow [61].

The blot was pre-hybridized in Church buffer [63] followed by

hybridization to a pf52 specific probe. This probe, a PCR fragment

of the coding region of p52, obtained with the primer pair 1624

and 1625 (see above for the sequence of these primers), was

labelled using the High Prime DNA labelling kit (Roche) and

purified with Micro Biospin columns (Biorad).

Cloning of transfected parasites was performed by the method

of limiting dilution [64] in 96 well plates. Parasites of the positive

wells were transferred to the semi-automated culture system for

further genotype and phenotype analysis of the cloned parasites

Analysis of gametocyte production
Gametocyte production was established in cultures at day 13–15

after start of the ‘gametocyte cultures’ by counting the number of

mature (stage V) gametocytes in Giemsa stained thin blood films

[59].

Exflagellation of male gametocytes was determined in small

samples from the cultures by stimulating the gametocytes in FCS

pH 8.0 at room temperature for 10 minutes. Exflagellation centres

were counted under the light-microscope in 5 homogeneous fields

of red blood cells at a 406magnification.

Analysis of mosquito stage development
14-day-old cultures of Wild-type (Wt; NF54) or Dp52 gameto-

cytes were fed to Anopheles stephensi mosquitoes using the standard

method of membrane feeding [38]. On day 7 after feeding the

midguts of 40 mosquitoes were dissected and the number of oocyst

counted as described [38,65]. Statistical analysis of oocyst

production (oocyst numbers) was performed with the non-

parametric Wilcoxin rank-sum test.

On day 14–16 after infection, the salivary glands of the

mosquitoes were collected by hand-dissection. These salivary

glands were collected in William’s E medium supplemented with

10% FCS, 2% penicillin-streptomycin, 1% sodium-pyruvate, 1%

L-glutamine, 1% insulin-transferin-selenium (Gibco) and 10-7M

dexamethasone (Sigma) and homogenized in a home made glass

grinder. The free sporozoites were counted in a Bürker-Türk

counting chamber using phase-contrast microscopy and the

number of sporozoites per salivary gland calculated.

Analysis of gliding motility of sporozoites
Lab-Tec 8-chamber slides (Nalge Nunc) were coated with

25 mg/ml 3SP2 antibody specific for the P. falciparum circumspor-

ozoite protein (CSP) for 15 hours [40].

Sporozoites were obtained from dissection of infected Anopheles

stephensi mosquito salivary glands. After grinding, the suspension is

filtered through a 40 mm cell strainer (Falcon) to remove mosquito

debris, and centrifuged at 15500 g for 3 min at 4uC. Sporozoites

are then recovered in the pellet and resuspended in complete

culture medium (see composition below).

Sporozoites (56104) were directly transferred to the 8-chamber

slides and incubated at 37uC for 2 hours. Controls consisted in

wild type sporozoites in addition a negative control consisting in

WT immobilized sporozoites treated with 10 mm of cytochalasin

D was also performed. Briefly, cytochalasin D (Sigma) was diluted

from a 500 mM stock in Me2SO to a 10 mm final concentration

with sporozoites. Sporozoites were then transferred to the 8-

chamber slides and incubated at 37uC for 2 hours in the presence

of cytochalsin D.

Sporozoites were fixed with 4% PFA and after washing with

PBS, the sporozoites and the trails (‘gliding circles’) were stained

with a FITC-3SP2 conjugated antibody. Slides were mounted with

Vectashield and counting of the ‘gliding circles’ was performed

using a DMI4000B Leica fluorescence microscope at 4006
magnification. Photographs of the gliding circles were obtained

with the Leica SP2 AOBS confocal microscope at the ‘‘Plate-

forme d’Imagerie Cellulaire de la Pitié-Salpêtrière, Paris’’.

Cultures of primary human hepatocytes
Primary human hepatocytes were isolated from healthy parts of

human liver fragments, collected during unrelated surgery in

agreement with French national ethical regulations, as described .

Cells were seeded in 96 well plates or 8-chamber Lab-Tec slides

(Nalge Nunc) coated with rat tail collagen I (Becton Dickinson, Le

Pont de Claix, France) at a density of 86104 or 216104 cells per

well respectively. These cells were cultured at 37uC in 5% CO2 in

complete William’s E culture medium supplemented with 10%

FCS, 2% penicillin-streptomycin, 1% sodium-pyruvate, 1% L-

glutamine and 1% insulin-transferin-selenium (reagents for cell

culture Gibco, Invitrogen) and 10-7M dexamethasone (Sigma,

Saint Quentin Fallavier, France).

Sporozoite cell traversal assay[66]
Hepatocyte traversal was analysed by the Dextran incorpora-

tion FACS assay [43]. HepG2-A16 (76104 cells/well) cells were

seeded in 48 well plates. After 24 hours, they were incubated with

105 sporozoites for 2 hours in the presence of rhodamine-dextran

lysine fixable (10000MW Molecular probes, Invitrogen). After

washing the cells were trypsinized, fixed with 1% formaldehyde

and analyzed by FACS using a Beckman Coulter Epics xl flow

cytometer. 5000 cells were counted/analysed and dextran-positive

cells were detected using filter FL2 for rhodamine [43]

Immuno-fluorescence analysis of parasite development
in hepatocytes

To analyse parasite development in primary human hepato-

cytes, 56104 extracted sporozoites were added to primary human

hepatocyte cultures, 3 hours after the addition of sporozoites, the

cultures were washed with media to remove mosquito salivary

gland material as well as un-invaded and un-attached sporozoites,
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complete media was added and cultures were incubated overnight

at 37uC. The day after, the culture medium was replaced and

again the 3rd day post infection for cell cultures fixed at day 5 post

infection [67].

Cultures with were fixed at different time points after adding the

sporozoites with cold methanol and developing liver schizonts

were stained with Plasmodium Heat shock protein 70 (HSP70) [68]

followed by goat anti-mouse ALEXA-488 (Molecular probes) and

nuclei were stained with 1 mg/ml diamidino-phenylindole (DAPI).

For the invasion assays [45], cultures were first fixed with 4%

para-formaldehyde (PFA) and extracellular (non-invaded) parasites

were stained with mAbs against CSP followed by anti-mouse-

ALEXA594 (i.e. red fluorescence; Molecular probes). In order to

then distinguish intracellular parasites the hepatocytes were

permeabilised with 1% Triton-X-100 in PBS for 4 min; allowing

parasites to be stained with mAbs against CSP and these were then

identified using anti-mouse-ALEXA488 (i.e. green fluorescence;

Molecular probes) and nuclei were stained with 1 mg/ml DAPI.

Analysis and counting of stained intracellular and extracellular

parasites were performed using a DMI4000B Leica fluorescence

microscope and the Olympus FluoView FV1000 confocal

microscope.
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