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Abstract
Loss of genome stability is one of the hallmarks of the enabling characteristics
of cancer development. Homologous recombination is a DNA repair process
that often breaks down as a prelude to developing cancer. Conversely,
homologous recombination can be the Achilles’ heel in common anti-cancer
therapies, which are effective by inducing irreparable DNA damage. Here, we
review recent structural and functional studies of RAD51, the protein that
catalyzes the defining step of homologous recombination: homology
recognition and DNA strand exchange. Specific mutations can be linked to
structural changes and known essential functions. Additional RAD51
interactions and functions may be revealed. The identification of viable
mutations in this essential protein may help define the range of activity and
interactions needed. All of this information provides opportunities to fine-tune
existing therapies based on homologous recombination status, guide
diagnosis, and hopefully develop new clinical tools.
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Introduction
Homologous recombination (HR) is essential for the mainte-
nance of genome stability. By taking advantage of DNA sequence 
complementarity, HR is uniquely suited to repair a variety of  
DNA lesions—such as DNA double-strand breaks (DSBs) and 
stalled or collapsed DNA replication forks—that affect both 
strands of the double helix1. A key intermediate in the complex  
choreography of the DNA strands underlying HR is single- 
stranded DNA (ssDNA), generated near the lesion, bound by 
RAD51 protein. Initial nucleation of RAD51 on the ssDNA is  
followed by binding of additional protomers, resulting in a  
dynamic nucleoprotein filament with homology search and 
DNA strand exchange capabilities2. The product of the breast  
cancer–associated gene 2 (BRCA2) acts as a molecular scaffold 
(mediator) in this process by chaperoning RAD51 onto replica-
tion protein A (RPA)-coated ssDNA3. Although HR is required 
for normal cell function, genome sequencing approaches4 and 
functional HR assays performed on viable tumor material5 reveal  
that HR deficiency is more widespread in tumors than origi-
nally anticipated. This insight is important because patients with 
HR-deficient tumors can benefit greatly from treatment with  
poly ADP-ribose polymerase (PARP) inhibitors, which selectively 
kill HR-deficient cells6. Because worldwide sequencing efforts 
of germline and tumor DNA identify more and more variants of 
RAD51, assessing the functional consequences of these amino 
acid variations is of utmost importance for prognosis, diagnosis, 
and precision therapies for patients with cancer. This review will 
provide the latest advances and insights gained on the functional 
implications of RAD51 mutations.

The biochemical and biological functions of RAD51 can be  
related to the structure of individual protomers, the filaments they 
form, and their dynamic filament properties. It has long been 
appreciated that the particular structural features of filaments 
formed by recombinase proteins like RAD51 reflect its function.  
Recombinase nucleoprotein filaments are arranged with proteins 
in a right-handed helix around DNA. Functionally important  
parameters, such as the number of monomers per turn of the  
helix, the helical pitch, and rise per monomer, define these 
nucleoprotein filaments7. More detailed structural information is  

available on the interface between monomers, which comprises 
the ATPase active site of DNA-bound recombinases8. Additional 
dynamic properties such as kinetic parameters for filament 
assembly and disassembly as well as continuity and flexibility 
have more recently been defined on the basis of single-molecule  
methods9. These all proved to be rich quantitative characteristics 
of wild-type RAD51 for comparison with any new variants and  
predicting the effect of amino acid changes.

RAD51 nucleoprotein filaments: variety in form and 
function
Bacterial RecA is the paradigm recombinase first described in  
detail to define the filament structure. Nucleoprotein filament 
structures of RecA and RAD51 have been reconstructed from  
negative stain electron microscope images. This revealed, among 
other features, that both proteins form filaments with a variety of 
conformations7. The first atomic resolution crystal structure of 
a eukaryotic nucleoprotein filament, yeast Rad51, revealed that 
the protomer–protomer interface created an ATPase active site8. 
This nucleotide-binding protomer interface was in two different  
conformations. Specifically, the movement of two amino 
acid side chains, Phe187 and His352, resulted in a rigid body  
movement of one protomer relative to the other, creating the two  
conformations8. That structure was solved for a version of Rad51 
missing 79 N-terminal amino acids. Subsequent crystal struc-
tures of full-length Rad51, including these N-terminal amino 
acids, showed only one conformation for the ATPase interface10.  
Although there were other differences in the proteins from these 
two studies, it is possible that the N-terminus constrains the  
filaments to a single conformation at the ATPase interface8,10.  
More recently, high-resolution structural models of human RAD51 
filaments have been obtained from cryo–electron microscopy 
reconstructions11,12. Here, filaments formed with human RAD51 
had only one conformation at the nucleotide-binding site. How-
ever, there is evidence that this region influences conformation 
at the dimer interface and filament dynamics. It has been shown 
that interaction of the N-terminal domain of RAD51 with the 
BRC4 peptide of BRCA2 at the protomer–protomer interface 
restricts RAD51 dynamics, locking it into a single conformation 
in the filament13. Together, the structural studies of yeast Rad51 
with and without the N-terminal 79 amino acids and the effect  
of BRC4 interaction with the N-terminus of human RAD51 
show a role for these regions in filament arrangement and 
dynamics. Control and tuning of dynamic variation at the pro-
tomer contacts in the filament are certainly important aspects 
of RAD51 catalyzed homology recognition and DNA strand  
exchange functions.

More globally, RAD51 nucleoprotein filaments can be described 
by helical parameters and dynamic rearrangements. Specifically, 
active filaments formed with ATP or an analog bound at 
the interface have a longer helical pitch and an “open”  
conformation12,14. Recently, RAD51 nucleoprotein filaments 
with distinct mechanical properties have been defined for the  
wild-type protein (for example, persistence length, helical pitch, 
and rise per monomer) by a combination of single-molecule force 
spectroscopy and crystallography15. One form is described as the 
“open” or “extended” conformation, which displays a helical  
pitch of 134 Å and a rise per monomer of 18.4 Å. This  

            Amendments from Version 1

In the new version we corrected a misstatement regarding the 
interpretation of the data presented by Brouwer et al., 2018. 
The sentence “Slight variation at this interface was observed 
in two different crystal forms determined by Brouwer et al., but 
the forms did not alternate in the same filament15.” has been 
deleted. As a matter of fact, RAD51-ATP filament crystallized in 
one crystal form, not two. This one crystal form contained both 
interfaces referred to in our original sentence. In the crystal, the 
two interface types alternate between successive protomer-
protomer interfaces. Figure 5C in the publication by Brouwer 
et al., 2018 represents two models of the RAD51-ATP filament, 
obtained by building a filament using only one or the other type 
of interface seen in the crystal. In our publication we do describe 
the two conformations described by the Brouwer et al., 2018 from 
the structure and single-molecule analyses in the subsequent 
paragraph. 

See referee reports
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conformation is presumed to be the active state required for  
strand exchange. The second—considered to be the “closed”,  
“condensed”, or “collapsed” conformation—displays a helical 
pitch and rise per monomer of 112 Å and 16.9 Å, respectively. 
This difference results in a change of the monomers per helical 
turn of 7.3 versus 6.6 for the “open” versus “closed” conformation,  
respectively15. These two forms differ in position of a hinge 
at the protomer interface, resulting in tilting of one protomer  
relative to the other in the “closed” conformation with respect 
to the “open” conformation. Because the measured energy  
difference between these two forms was small, they could readily 
switch between the two conformations by thermal excitation, 
independent of other energy input or ATP hydrolysis15. These 
data lead to the conclusion that RAD51 nucleoprotein filaments 
can interconvert between two different conformational states. 
The functional role of this intriguing dynamic interchange has 
yet to be defined but is consistent with larger filament dynamics  
associated with ATP hydrolysis, which has already been linked 
to function16,17. Flexible and dynamic arrangements of filament 
structure are likely to be important, even essential, to the RAD51 
catalyzed function: homology recognition and DNA strand  
exchange. Recent work has modified the ATPase active site 
to see what effect this has on filament form and function.  
Specifically, filaments formed with RAD51 mutants, K113A 
and K113R, which are located in the ATPase domain, have been  
characterized. RAD51 K131A does not bind ATP, and RAD51 
K113R can bind but not hydrolyze ATP. Both mutants form 
filaments with a “closed” conformation, as does the wild-type  
protein with the non-hydrolyzable ATP analog AMP-PNP12. It 
is suggested that these forms, with different helical pitch and 
rise, could represent intermediate steps in dynamic filament  
assembly and rearrangement important for function.

Like many other proteins, RAD51 is modified by phosphor-
ylation in response to genotoxic stress. The importance and  
biochemical effect of the several phosphorylation sites have been 
difficult to sort out (as discussed in Subramanyam et al.18). Clear 
effects of one RAD51 phosphorylation site, Y54, at the protomer 
interface were obtained by mimicking phosphorylation with a  
non-natural amino acid (p-carboxymethyl-L-phenylalanine, or 

pCMF). RAD51 with Y54 replaced by pCMF has enhanced  
DNA strand exchange activity. The enhanced activity is coupled 
to weaker DNA binding and formation of less stable/more  
dynamic filaments, emphasizing the essential role of dynamic 
interactions among RAD51 itself and DNA to perform its core  
biochemical function18. Another example illustrating the  
importance of the RAD51–RAD51 interface is demonstrated by 
using small-molecule chemical inhibitor RI-119. This inhibitor  
covalently targets C319. C319 is located at the protomer– 
protomer interface, where it serves as an ATP cap, overlaying 
the nucleotide-binding site. The inhibitor thereby disrupts the 
protomer–protomer interface19. RAD51 filaments apparently  
have a “plastic” structure, and interconvertible conformations 
are influenced by the state of nucleotide bound at their  
interface, specific amino acid interactions, post-translational  
modifications, and chemical compounds. Mutations that poten-
tially affect RAD51 filament dynamics will be discussed in the  
next section.

RAD51 mutations associated with human disease
Because RAD51 nucleoprotein filament formation and dynamics 
are essential elements of its DNA strand exchange function, 
small changes to the protomers could cause dramatic effects. 
Mutations affecting DNA binding, filament formation or struc-
ture, ATP hydrolysis, or strand exchange would all influence 
function in HR. Here, we will specifically discuss recently 
identified mutations and what is known about their effects on  
RAD51 function (Table 1 and Figure 1). New RAD51 mutants 
have been discovered from functional HR assays on tumor  
material, genome sequencing of patients with phenotypes like  
those of Fanconi anemia (FA) (a genetic disease including 
HR defects), and large-scale cancer genome sequencing. The  
mutations causing FA-like phenotypes are perhaps the easiest to 
understand functionally. They are T131P and A293T, located at 
the ATPase active site interface, close to the amino acids F129 
and H294, equivalent to F187 and H352 in yeast Rad51. These  
amino acids are expected to influence the conformation at this 
interface and its alternating conformations, which they directly  
contributed to in yeast Rad51 filaments8,12. Mutations creat-
ing different chemical environments in close proximity of this  

Table 1. Recently identified RAD51 mutations.

Mutation Sort of 
mutation

DNA-binding 
activity

ATPase activity Strand exchange 
activity

Reference(s)

F86L Somatic Impaired Normal Impaired 20

T131P Germline Normal DNA-independent Impaired 21

D149N Somatic Impaired Normal Normal 22

R150Q Germline Impaired Impaired Normal 22

G151D Somatic Impaired Impaired Enhanced 22,23

E258A Germline Impaired DNA-independent Impaired 20

Q268P Somatic Impaired Normal Impaired 24

Q272L Somatic Impaired Normal Impaired 24

A293T Germline Impaired Impaired Impaired 25
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Figure 1. Overview of RAD51 structures and interactions. Overview of RAD51 mutations mapped onto structures based on PDB ID 5NWL15 
and 1N0W26. (a) Model based on the crystal structure of a heptameric right-handed RAD51 nucleoprotein filament. Two adjacent protomers 
are colored green and light gray; the other five protomers are shown in darker gray. ATP is highlighted by the blue areas at the interfaces of 
distinct protomers, and sites of mutation are highlighted in red. The red patch on the top of the white-colored protomer is the patch of amino 
acids 149–151 that is assumed to affect interaction of RAD51 with other binding partners. Note that Q272 is not highlighted in the figure, as 
that residue was not resolved in the crystal structure. (b) Focus on the interface between two protomers, where ATP is shown in blue and 
the discussed sites of mutation are highlighted with red spheres. Most of these mutations can be found at the direct interface between the 
two protomers and thus close to the nucleotide-binding pocket. (c) Interaction of RAD51 (light gray) with a BRCA2 BRC repeat (cyan). The 
locations of mutation discussed are highlighted in red. Here, one mutation is in close proximity of the binding region with the BRC repeat 
(E258) and therefore might impair RAD51 binding by BRCA2. 

interaction might affect conformational dynamics of human  
RAD51 nucleoprotein filaments. For example, A293T at the  
protomer–protomer interface is directly adjacent to a conserved  
loop involved in DNA binding and might explain the impaired 
filament assembly and stability25. These mutations have a  
dominant negative effect in some biochemical assays21,25.

Genome analysis of patients with cancer has revealed RAD51 
somatic mutations with interesting functional implications.  
Changes in three adjacent residues (D149, R150, and G151)  
located in the so-called Schellman loop were identified in breast 
cancer22. This region is reported to include a p53-binding site27–29. 
These three adjacent amino acids map onto RAD51 at a posi-
tion distinct from the DNA-binding or ATPase interface sites22. 
The last of these three mutations, G151D, does have altered 
DNA-binding and ATPase activity, indicating that filament  
architecture or dynamics or both are affected23. Mutations found 
in kidney and lung tumors, Q268P and Q272L, are located in 
a DNA-binding loop important for allosteric activation of ATP  
hydrolysis and DNA strand exchange24. Additional breast  
cancer–associated mutations F86L and E258A are located in the  
multimerization interface of RAD51 nucleoprotein filament. 
The DNA-binding loop and interface mutations, like the mutants 
described above, have a dominant negative effect in biochemical  
assays for RAD51 function20,24. Because RAD51 is an essen-
tial protein, these viable mutants may identify a functional range  
of activity. This aspect will be important to better define if such 
changes are to be targeted for eventual therapeutic intervention. 
Interestingly, F86L and E258A change the RAD51 protomer 
interface as well as the interaction interface with BRCA220. 
This example points out that RAD51 mutations not only impair 

nucleoprotein filament structure or stability but also can affect  
interactions with other partner proteins such as BRCA2 or pos-
sibly p53. BRCA2 is also an essential protein and its presumed  
essential role is as a RAD51 chaperone3,4. Our own work  
indicates that all diffusing nuclear RAD51 is bound to  
BRCA2, indicating that even minor changes to structure at the  
interface may have large consequences30.

The possible effects of RAD51 mutations on the 
interaction with BRCA2 
The recent analysis of RAD51 we have reviewed focused 
mainly on the effects on filament formation and function.  
Nucleoprotein filament dynamics and activities, essentially  
RAD51–RAD51 and RAD51–DNA interactions, are not the only 
interactions needed in normal HR function. Interaction partners,  
such as BRCA2, are obviously also needed for proper HR. 
BRCA2 is a large protein (3,418 amino acids) that includes a 
central region with eight BRC repeats that bind RAD51 and at 
least one additional RAD51-binding motif at the C-terminus.  
BRCA2–RAD51 interaction is needed to transfer RAD51 to 
replace RPA on ssDNA originating from the DSBs31,32. Partial 
structures of a complex including one BRC repeat and RAD51 are  
available26,33. The interface between RAD51 and BRCA2–BRC 
repeats overlaps with the RAD51–RAD51 interaction. Thus, 
changes in RAD51–RAD51 interface may also affect its  
interaction with BRCA2 (Figure 1C). Additional binding sites of 
RAD51 are present in BRCA2, such as the C-terminal domain 
of BRCA2, which is suggested to bind across a RAD51–RAD51 
interface in the nucleoprotein filament34. The importance of 
interaction between RAD51 and BRCA2 is demonstrated by  
observations that mutated BRC repeats conferred DNA-damage  
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sensitivity in vivo35 and altered RAD51 nucleoprotein filament 
formation in vitro36–38. The importance of RAD51 mutations 
on its interaction with additional partners and mediators, such  
as the RAD51 paralogs PALB2, MMS22L-TONSL, RADX, 
RAD54, RAD51AP1, and others39,40, awaits structural infor-
mation on their relevant interfaces. The RAD51 mutations  
we have reviewed may indicate important additional interac-
tions or identify the dynamic range of interaction strengths  
tolerated for RAD51 function in cell viability. Altered RAD51 is  
linked to cancer and other diseases affected by impaired genome 
stability. A detailed definition of RAD51 mutations linked  
to functions, emerging from the work we review here, is needed  
to guide personalized anti-cancer therapies and guide diagnosis 
based on variants of currently unknown significance.

Abbreviations
BRCA2, breast cancer–associated gene 2; DSB, double-strand 
break; FA, Fanconi anemia; HR, homologous recombination; 

pCMF, p-carboxymethyl-L-phenylalanine; RPA, replication  
protein A; ssDNA, single-stranded DNA.
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