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A recent refinement in high-throughput sequencing involves the incorporation of
unique molecular identifiers (UMIs), which are random oligonucleotide barcodes, on
the library preparation steps. A UMI adds a unique identity to different DNA/RNA
input molecules through polymerase chain reaction (PCR) amplification, thus reducing
bias of this step. Here, we propose an alignment free framework serving as a
preprocessing step of fastq files, called UMIc, for deduplication and correction of
reads building consensus sequences from each UMI. Our approach takes into
account the frequency and the Phred quality of nucleotides and the distances
between the UMIs and the actual sequences. We have tested the tool using
different scenarios of UMI-tagged library data, having in mind the aspect of a wide
application. UMIc is an open-source tool implemented in R and is freely available from
https://github.com/BiodataAnalysisGroup/UMIc.

Keywords: unique molecular identifiers, molecular barcodes, error correction, next-generation sequencing,
bioinformatics

INTRODUCTION

The introduction of next-generation sequencing (NGS) has revolutionized genomic research and
has impacted tremendously clinical applications (Lander et al., 2001; Shen et al., 2015). Through
the NGS technologies, researchers are able to study whole genomes (whole-genome sequencing) or
smaller regions (exome sequencing), with an unparalleled depth and sensitivity compared to Sanger
sequencing (Shen et al., 2015). However, detection of variants with low frequency (below ∼1–3%)
still remains a difficult task because of background noise (Fox et al., 2014).

In clinical applications, the detection of true mutants in low-frequency alleles or rare subclones
that may contribute to the disease at an early stage remains a big challenge for cancer studies.
This is mainly due to the NGS library preparation process, which includes multiple rounds
of polymerase chain reaction (PCR) amplification, introducing PCR duplicates and artifacts in
the output sequence. This limitation was overcome by the use of unique molecular identifiers
(UMIs), facilitating detection and removal of PCR duplicates. Sample preparation involves the
introduction of a UMI to each target molecule before PCR amplification. A UMI is a short sequence
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(usually 8–16 nucleotides, but this can vary depending on
the study) that is specific to a molecule and is generated by
permutations of a string of randomized nucleotides (Kivioja et al.,
2011; Islam et al., 2014).

This method allows monitoring of each target molecule
and, consequently, helps reduce PCR amplification bias and
increase the accurate quantification and subsequent comparison
of targets. UMIs can be used in different NGS methods (Kinde
et al., 2011; Salk et al., 2018; Saunders et al., 2020) in a
variety of approaches. The most common process to analyze
these data is by aligning the sequences to a reference genome
or transcriptome with the UMI tag attached to the header.
Then, the reads with the same alignment coordinates and UMIs
are deduplicated [e.g., UMI-tools (Smith et al., 2017), Picard,
zUMIs (Parekh et al., 2018), gencore (Chen et al., 2019), Je
(Girardot et al., 2016), etc.]. More recently, tools that skip
the alignment step have been developed with a gain in speed
on larger datasets [e.g., Calib (Orabi et al., 2019)]. In either
scenario, the methods for grouping the reads by their UMIs are
similar. The typical process keeps the read that has the highest
UMI frequency and the highest quality score (Liu, 2019). Also,
many of these tools are not considering the errors introduced
to the UMI sequencing and are not be able to estimate the
number of true UMIs.

From a different perspective, we have developed a method
in which the extraction of the consensus read is performed at
the nucleotide level, taking into account the frequency of the
bases and their mean quality. We propose an R-based framework,
called UMIc, which is a preprocessing step of the raw fastq files
based on an alignment-free method. The tool takes as input
a fastq file and generates a new fastq file in which each read
represents the consensus sequence of a group of unique UMIs.
The method for the grouping of reads combines correction of the
UMIs and the actual sequence calculating distances between the
UMIs and the sequences, respectively. Our approach was tested
on empirical UMI-tagged library data from Stahlberg et al. (2017)
and Zilionis et al. (2017).

MATERIALS AND METHODS

Overview
Briefly, the workflow of UMIc consists of three main steps:

1. Initial read correction of the sequences with the same
UMI, using the previously described method.

2. UMI merging, taking into account both the distance of
the UMIs and the distance of the sequences, generated
by the first step.

3. Final read correction of the sequences that belong to the
same group of merged UMIs, as created by the second
step.

Project link: https://github.com/BiodataAnalysisGroup/UMIc
Operating system: Windows
Programming language: R
License: MIT

Workflow
UMIc contains one script (UMIsProject.R) with another
two scripts of dependency including the required functions
(casesWorkflows.R, functions.R). The UMIs have to be attached
to the start of the read, and the length depends on the
user’s scenarios (user’s option). UMIc can be implemented
on three different kinds of libraries (Figure 1): (i) single-
read libraries: UMI on R1 (Read1), (ii) paired-end libraries:
UMI on R1, and (iii) paired-end libraries: UMI on R1 and
R2 (Read2).

The input data must be provided in fastq files, and it is
assumed that the UMI is placed at the beginning of each sequence
and contains a UMI-tagged library. The output data are stored
also in fastq files, with the same name as the input files including
the corrected reads (i.e., consensus sequences resulting from the
same UMI). The first phase includes the automated process of
reading fastq files at a working directory. The library preparation
step of the input files must be generated using the same protocol
and fulfill the same input parameters described. Then, the
workflow consists of the selected criteria by users relating to their
analysis (Table 1).

Read Correction Method
We developed a method for the correction of (i) the UMI and
(ii) the downstream sequence at the nucleotide level, taking into
account the frequency of each base and their mean quality. In
more detail, this process can be outlined as follows:

1. Calculation of the frequency and the mean
quality of each base.

2. Setting a criterion, defined by the mean of the two
previously calculated values of each base.

3. Selection of the base with the maximum value criterion.
4. In case of a draw between bases, selection of the base with

the maximum quality value.
5. Setting the new quality as the selected base’s mean quality,

calculated in step 1.

These steps result in the generation of a consensus sequence of
the initial UMI+read.

UMI Merging Method
The process starts with the data-cleaning module. The UMIs that
fulfill the condition of minimum reads per UMI are selected
for the downstream analysis (the user can set this minimum
by changing the parameter countsCutoff). Then, the UMIs are
grouped according to specific criteria, and this serves to initiate
the deduplication of the reads, keeping the initial sequences
resulting from the same UMI. The main idea is described in
Figure 2 and in the following steps:

• Finding the UMI with the maximum number of reads.
• Calculation of the distances (Hamming distances)

between the UMIs with the maximum number of reads
to all the other UMIs, and the same is performed for the
corresponding sequence to all the other sequences.
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FIGURE 1 | Graphical representation of working cases of the UMIc tool.

TABLE 1 | Selected criteria being input from the users.

Option Type Details

pairedData T or F Boolean variable that indicates whether
data are paired T or single F

UMIlocation R1 or R1 and
R2

Variable that indicates whether UMI is
located only in R1 or R1 and R2

UMIlength Numeric The length of the UMI sequence

sequenceLength Numeric The length of the read sequence

countsCutoff Numeric Min read counts per UMI, for initial data
cleaning

UMIdistance Numeric Max UMI distance for UMI merging

sequenceDistance Numeric Max sequence distance for UMI
merging with the associated reads

• Finding the reads that fulfill the distance criteria (user
selection) and grouping on the UMI with the maximum
number of reads.
• Read correction step, as previously described in Read

Correction Method.
• Removal of the associated reads from the list and

continuation of the process with the second UMI with the
maximum number of reads.

Output Files
The output files are stored in a new folder of the working
directory named by the user. The output data are stored in fastq
files with the same root name as the input files with the addition of
the suffix “_corrected.” The files contain the corrected sequences
(without the UMI) and the corresponding quality resulting from
the mean of the selected base.

The framework also produces a “summary_table.csv”
including all the information of the output fastq files, as well

as extra information that can help the user to return from
the output sequences to their corresponding input sequences.
It is organized in a table (Figure 3), in which each row is an
output sequence.

RESULTS

Implementation
The proposed framework for the deduplication and error
correction of UMI libraries was evaluated on two different kinds
of library preparation steps. The first dataset is a UMI-tagged
paired-end library generated as described in Girardot et al.
(2016). In this case, the UMIs are 12nt long and are at the
very beginning of R1. The second dataset is also UMI-tagged
paired-end library and contains two different samples generated
by the approach of Zilionis et al. Orabi et al. (2019). Here, the
UMIs are 10 nt long and are at the very beginning of R1 and
R2. The implementation was performed based on the available
datasets and on different use cases: (i) single-end libraries: UMI
on R1, (ii) paired-end libraries: UMI on R1, and (iii) paired-end
libraries: UMI on R1 and R2. The use case (ii) contains the first
dataset selected for the following section avoiding repetitions to
be mentioned in all the use cases with the related datasets.

Complexity
Regarding the theoretical complexity, it can be roughly calculated
in the following way. First, we define the following constants:

• m: number of sequences
• n: length of sequences
• k: length of UMIs

We proceed to an estimation of the theoretical complexity,
by splitting the workflow of the toolkit into its most basic
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FIGURE 2 | Graphical representation of the UMI merging method. (A) Grouping of the reads with the same UMI and selection of the bases for the generation of the
consensus sequence. (B) Grouping of the UMIs with specific distances and inspection of the distance of the actual read in order to merge the reads resulting from
the same UMI.

parts. Just a reminder that the workflow is analytically presented
both on paper and in the wiki method page of the GitHub
repository as well.

(1) Data cleaning: O(m · k)
(2) Read correction: O

(
k ·m2)

+ O(m · n), because

(a) Identifying the same UMIs: O(k ·m2)
(b) Read correction: O(m · n)

(3) UMI merging: O
(
k ·m2)

+ O(n ·m2)

(a) Hamming distance between first UMI and the rest of
them: O(k ·m)

(b) Calculation of Hamming distances between sequences:
O(m · n)

(c) For each UMI: O (m) × {sum of previous complexities}

(4) Final read correction: O
(
k ·m2)

+ O (m · n)

So, an overall estimation of the theoretical complexity is

O[(k + n) ·m2
+ (k + n) ·m]

It is important to mention here that this is a very rough estimation
of the complexity, but it is definitely an upper bound. For
example, the complexity of read correction part consists of two
terms: O

(
k ·m2) and O (m · n). The first term is associated

with finding identical UMIs and the second one in applying
the reading correction process in the sequences. However, there
is definitely a trade-off between the two terms. At an extreme
scenario where all UMIs are identical, the second term reaches
its highest value O (m · n), whereas the first one degenerates to
O(m · k). The latter scenario could be also considered as the
best-case scenario, in which the computation time reaches an
�[(n + k) ·m] complexity. In contrast, at a scenario where
all UMIs are unique, the first term reaches its highest value
O

(
k ·m2), but there is no read correction process, so the second

term is zeroed. Same holds, more or less, at the UMI merging part.

Frontiers in Genetics | www.frontiersin.org 4 May 2021 | Volume 12 | Article 660366

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-660366 May 22, 2021 Time: 17:15 # 5

Tsagiopoulou et al. UMIc

FIGURE 3 | Example of the output csv table with all relevant information of the fastq files.

In practice, the computation time seems to grow almost linearly
with respect to sample size m.

We generated 20 artificial datasets by randomly sampling
different numbers of rows from the original dataset. The datasets

TABLE 2 | A table containing the computational time of UMIc for each one of the
artificial datasets.

Dataset Number
of

reads

Execution
time in

seconds

Execution
time in

minutes

Number of
Hamming
distances
calculated

1 1,000 337.8267 5.63 2,090

2 2,000 394.6571 6.58 3,588

3 5,000 533.7972 8.9 7,533

4 10,000 631.97 10.54 12,633

5 20,000 726.3552 12.106 18,484

6 50,000 987.8132 16.4636 32,088

7 100,000 1,815.77 30.263 53,374

8 150,000 2,308.1 38.47 77,602

9 200,000 3,019.3 50.32 103,124

10 250,000 3,614.9982 60.25 126,852

11 300,000 4,116.79 68.62 160,376

12 350,000 3,756.78 62.613 193,272

13 400,000 2,912.381 48.5396 224,337

14 450,000 2,924.56 48.74 245,492

15 500,000 4,743.065 79.051 281,483

16 600,000 7,120.2394 118.67 358,086

17 700,000 4,144.6042 69.076 414,266

18 800,000 5,476.5872 91.2764 456,569

19 900,000 7,245.7027 120.7617 465,044

20 1,000,000 7,967.4016 132.78 488,868

Apart from the computational time (in seconds and minutes), we also present the
number of Hamming distances that are calculated for each run.

FIGURE 4 | Execution time with respect to different sample sizes. In the
graph, the actual time points were fit to a linear and a quadratic function.
Moreover, an upper and a lower bound of the estimated complexity is also
included.

consisted of 1,000 to 1,000,000 reads and were used as input
to UMIc, selecting case 1 as a workflow (paired-end libraries
and UMI in Read1). Below we present a table containing the
computational time of UMIc for each one of the artificial datasets
and the number of Hamming distances (Table 2). All experiments
were performed on a 24-core Unix cluster with 220 GB RAM.

Figure 4 shows the computational time required for various
datasets and therefore provides an estimate of the underlying
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FIGURE 5 | (A) Pie chart of the sequences before and after the data-cleaning step. (B) Bar plot of the UMIs found on the raw fastq file (start) and the UMIs remaining
after the cleaning and the merging steps. (C) Frequency bar plot of the bases from 13,020 reads in each position using the UMI GTAAAACGACGG after and before
correction.

complexity. In order to identify the best-fitting function, we used
both linear and quadratic estimates; however, quadratic fit seems
to be a degenerated version of the linear one, which further
enhances our argument that our theoretical analysis corresponds
to the worst-case scenario. In practice, computation time seems
to grow linearly with respect to sample size.

Case Report
The used dataset contains 108,001 reads, and we found 1,304
UMIs after extracting the first 12 bp of the R1 fastq file from a
UMI-tagged library. Applying the data-cleaning step using the
countsCutoff resulted in 106,401 reads with 344 related
UMIs (Figure 5A). After the merging of the UMIs, we ended
up with 286 unique DNA molecules (criteria: UMI distance = 1,
sequence distance = 3, min counts cutoff = 6) (Figure 5B). In
other words, the input fastq file contains 108,001 reads, and the
output fastq files include the 286 UMIs resulting from the UMIc
workflow. The process collapses the reads derived from the same
UMI and contributes to the creation of the consensus sequence.
An example of a UMI with the bases before and after correction
is displayed in Figure 5C. The UMIs were merged and corrected

based on our approach, and 33 UMIs that showed merging
with other UMIs were displayed in Figure 6A. Particularly, we
examined the merging and correction steps of a random read
(M03403:12:000000000-CNPJD:1:1101:15600:2169
1:N:0:CCCTCATC+CTGTCGCT). The UMI of the read was
GAGCTTCAACTC, and we found 1,001 reads with the same
UMI. Then, after scanning the other reads that met the criteria
of distance, we found three more groups of reads with the UMIs
GCGCTTCAACTC, GATCTTCAACTC, GAGCTTCCACTC and
number of reads 23, 13, and 12, respectively (Figure 6B). The R1
showed no distance between the actual reads, and the R2 showed
a distance range from 0 to 2 bases.

Comparison to Relevant Approaches
We used UMI-tools (Smith et al., 2017), a software toolbox for
dealing with UMIs and single-cell RNA-Seq cell barcodes and
pRESTO (Vander Heiden et al., 2014), a toolkit for processing
raw reads from high-throughput sequencing of B-cell and T-cell
repertoires including features for UMIs, in order to compare
its functionalities with UMIc. The main differences are listed in
Table 3.
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FIGURE 6 | (A) Bar plots showing the number of reads on the merged UMIs. (B) Dot plots of a group of four UMIs on the x-axis and the distance of the reads on the
y-axis on R1 and R2. The density and the size of the dots represent the number of reads after merging.

A clear advantage of UMIc is that, by omitting the
alignment step to a reference genome, it allows us to analyze
data from hypervariable regions, such as the B- and T-cell
receptor sequences (BCR and TCR sequencing). Traditional
alignment/mapping tools such as bowtie that are used on UMI-
tools are unable to analyze this kind of data, given that none of
the reference genomes (hg19 or hg38) include information of
the V(D)J construction. In this perspective, UMIc’s alignment-
free approach has the advantage of excluding the UMIs
during analysis, and deduplicating the corresponding sequences,
therefore building a unique consensus without the need of
chromosomal location information, which is very complex in the
cases of BCR and TCR sequencing. Indeed, testing and validation
of UMIc were performed using BCR sequencing data; it is
important to highlight that UMI-tools are not able to effectively

process them. However, and in order to provide an effective
comparison between UMI-tools and UMIc, we used the test
dataset provided by UMI-tools and our own validation dataset
independently, after ensuring that their respective characteristics
are comparable. Specifically, UMI-tools provide a test dataset that
contains ∼1 million reads after mapping, with the read length
ranging from 22 to 76 bps. In order to perform an appropriate
comparison, for UMIc, we also used single-end raw reads (∼1
million), after manually trimming them to the maximum length
of the corresponding reads from UMI-tools (i.e., 76 bp).

For UMI-tools, the UMI extraction required 158 s (∼2.5 min)
to complete, the alignment step to the reference genome was
completed in∼20 min, and the deduplication step was performed
in 69 s (∼1 min). Overall, the UMI-tools workflow needed
∼24 min to complete. UMIc was able to complete the entire
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TABLE 3 | Comparison of functionalities offered by UMIc, UMI-tools, and pRESTO.

Feature UMIc UMI-tools pRESTO

Language R Python Python

Input fastq bam fastq

Align free Yes Not supported Yes

Sequence length Supports only same sequence length Supports different sequence lengths Supports different sequence lengths

Extract UMI Based on the number of nucleotides on
5′

Based on the pattern of barcodes on 5′

and 3′
Based on the number of nucleotides
on 5′

Paired data Yes Yes Yes

UMI on R1 or R1 and R2 Yes Yes Yes

UMI correction Through UMI and reads distance Offers five methods (three of them
network based, which use UMI
distance and read counts) and one of
them cutoff 1% of mean (number of
reads/UMI)

In case of significant nucleotide
diversity within UMI groups, divides the
groups in subclusters

Data cleaning Specification of min number of
reads/UMI group

UMI quality filtering for a specified
Phred score threshold

UMI quality filtering for a specified
Phred score threshold and offers
removal of highly variable UMI read
groups

Deduplication Creation of consensus sequence, using
per base frequency and Phred scores

Selection of representative read, based
on mapping coordinates and quality

Creation of consensus sequence,
using per base Phred scores
(optionally, a frequency and quality
threshold that will assign an N to the
position)

Output fastq bam fastq

process in 990.175 s (∼16.5 min). Regarding the memory
requirements of the UMIc workflow, after data cleaning, the
overall memory used was ∼890 MByte. After building the first
consensus across all reads, the memory footprint increased to
∼932 MByte and finally decreasing to ∼878 MBytes after UMI
merging. All experiments for both tools were performed on the
same UNIX-based environment with 220 GB RAM available and
using only a single thread.

As an additional comparison, we used pRESTO, which
is a toolkit for processing raw reads from high-throughput
sequencing of B- and T-cell repertoires. However, pRESTO
requires a file containing primer sequences in order to properly
identify the UMIs. As our tool was tested on two different
data types produced by different protocols (Stahlberg et al. and
Zilionis et al.), only the former one contained primer sequences.
The latter does not contain any primers (as the underlying
protocol does not require primer sequencing) and therefore
could not be analyzed by the pRESTO tool. Ultimately, the
dataset that was used to evaluate both pRESTO and UMIc
contains 1,304 UMIs; 571 distinct UMIs were identified by
pRESTO and 286 by UMIc. However, UMIc also takes into
consideration the number of reads present in each UMI.
By applying the same filtering on the results generated by
pRESTO, we ended up with 174 UMIs remaining from pRESTO
(Figure 7A), of which 124 UMIs were common to the 286
UMIs produced by UMIc (Figure 7B), clearly highlighting the
discovery sensitivity of our approach (Figure 7C). To summarize,
our approach (i) does not require a primer sequencing file and is
applicable on (ii) all the NGS experiments (RNA-seq, DNA-seq,
etc.) not only on BCR-seq data and (iii) the different library
preparation protocols.

DISCUSSION

Unique molecular identifiers can be used to identify PCR
duplicates from the amplification steps on NGS experiments
(Kivioja et al., 2011; Islam et al., 2014). By adding a random UMI
in each read, it is possible to exclude duplicates based on the
unique UMIs. UMIs are introduced in many NGS experiments
such as RNA-seq, single-cell RNA-seq (scRNA-seq) (Zilionis
et al., 2017; Srivastava et al., 2019), BCR repertoire sequencing
(Egorov et al., 2015), etc. Also, it is worth noting that the UMI
approach is suitable for NGS-based measurable residual disease
detection, which allows the determination of individual risk in
acute myeloid leukemia patients based on mutational clearance
after treatment (Yoest et al., 2020) and the IG/TR rearrangements
in acute lymphoblastic leukemia (Bruggemann et al., 2019).
However, and despite the increase in bioinformatics tools for
UMI analysis, there exists no single approach to efficiently
remove UMIs and correct reads accordingly.

In this work, we propose a novel tool, namely, UMIc, which
provides a complete framework to analyze UMI-tagged libraries.
Our approach is easily applicable to any type of fastq files with
the prerequisite of the existence of UMIs at the beginning of the
reads. The UMIc implementation supports a fast execution for
generating (i) the corrected fastq files and (ii) a table in csv format
including additional information of the output fastq files.

In relation to other existing tools, UMIc is a preprocessing
step skipping the alignment step and deduplicates and corrects
reads directly based on the DNA sequence. By omitting the
alignment, our method is faster on larger datasets. The output
contains corrected fastq files in which each read emerges from
the deduplication of the UMIs during the generation of a
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FIGURE 7 | Bar plots showing the number of UMIs processed at each step by (A) pRESTO and (B) UMIc as well as (C) the common UMIs of the two tools.

consensus sequence. The criterion of the consensus sequence
takes into account both the frequency and the mean Phred
quality of nucleotides.

A number of tools have been developed that contain a
fixed workflow including the sequence assembly, such as migec
(Shugay et al., 2014) and pRESTO (Vander Heiden et al., 2014),
tailored to the analysis of BCR and TCR repertoire sequencing.
Their design has been mainly driven by the specificity of the data,
which cannot be readily analyzed with traditional mappers such
as bwa, bowtie2, and others. The UMIc approach of omitting
the mapping on a reference genome addresses this challenge by
supporting its use as a preprocessing step. This means that the
user can, after the application of UMIc, continue the analysis on
their pipeline of preference such as IMGT (Alamyar et al., 2012),
HISAT2 (Kim et al., 2019), or bwa (Li and Durbin, 2009), using
the fastq files produced as output from the proposed framework.
To achieve this, UMIc takes into account the distances of
sequences separating the UMI and the actual read. The UMI
meeting the criteria of distance with the other UMIs (e.g., 1 bp)
is examined for the distances between the remaining sequences.
Moreover, the duplicated sequences will result in a short distance
between the actual reads due to sequencing errors.

Overall, UMIc provides a complete framework to analyze
UMI-tagged libraries. These libraries need to go through a
demultiplexing and error-correcting process, based on the unique
UMIs that serve as monitors of the original module (e.g., a
DNA fragment). We see UMIc as a broad-use tool, similarly to
other trimming and preprocessing tools, such as Trim Galore!
which produces correcting and adaptor-free reads. In the same
overall philosophy, our approach serves as a preprocessing step of
fastq files for deduplication of reads and also an error correction
step, toward building consensus sequences from each UMI. The
significant novelty of UMIc is that, by skipping the alignment
step, it enhances the downstream analysis and therefore can
be directly added to several NGS workflows as a preprocessing
step. This allows the user to be able to use any tools based on
preference and the respective NGS experiments; for example,
if the input fastq files are DNA-seq, the user can perform the
alignment process using bwa directly on the output of UMIc. This
approach offers a wide application of the UMIc tool completely

independently of the overall selected computational pipeline
(RNA-seq, DNA-seq, and BCR-seq).

UMIc has been implemented as an open-source R package,
in accordance with the FAIR principles (Findable, Accessible,
Interoperable, Reusable) for research software (Lamprecht
et al., 2020). The tool is freely available on GitHub1 under an
MIT license, including detailed documentation of installation
and implementation, highlighting the reproducibility of
the source code.

Overall, there is a growing need for appropriate tools for error
correction on NGS experiments. The use of UMIs is promising,
yet because of their recent implementation, the downstream
analysis of these kinds of NGS data is still an ongoing process.
Our method gives a new perspective toward analyzing UMIs by
offering a short execution time in R language, which provides
the opportunity of generating corrected fastq files from the
initial raw data.
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