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Abstract

A quality detection system for the “Red Fuji” apple in Luochuan was designed for automatic

grading. According to the Chinese national standard, the grading principles of apple appear-

ance quality and Brix detection were determined. Based on machine vision and image pro-

cessing, the classifier models of apple defect, contour, and size were constructed. And

then, the grading thresholds were set to detect the defective pixel ratio t, aspect ratio λ, and

the cross-sectional diameter Wp in the image of the apple. Spectral information of apples in

the wavelength range of 400 nm~1000 nm was collected and the multiple scattering correc-

tion (MSC) and standard normal variable (SNV) transformation methods were used to pre-

process spectral reflectance data. The competitive adaptive reweighted sampling (CARS)

algorithm and the successive projections algorithm (SPA) were used to extract characteris-

tic wavelength points containing Brix information, and the CARS-PLS (partial least squares)

algorithm was used to establish a Brix prediction model. Apple defect, contour, size, and

Brix were combined as grading indicators. The apple quality online grading detection plat-

form was built, and apple’s comprehensive grading detection algorithm and upper computer

software were designed. The experiments showed that the average accuracy of apple

defect, contour, and size grading detection was 96.67%, 95.00%, and 94.67% respectively,

and the correlation coefficient Rp of the Brix prediction set was 0.9469. The total accuracy of

apple defect, contour, size, and Brix grading was 96.67%, indicating that the detection sys-

tem designed in this paper is feasible to classify “Red Fuji” apple in Luochuan.

1 Introduction

Grading for sales is strongly needed to commercialize agricultural products and boost eco-

nomic benefits [1]. Automated apple grading can reduce manual work intensity and improve

the repeatability and accuracy of results. The external quality parameters for assessing apple

grades include surface defects, color, texture, size, and shape. The internal quality parameters

for assessing apple grades include degrees Brix, acidity, vitamins, water content, soluble solids,

internal quality defects, etc [2,3]. Based on these indicators, many experts and scholars have
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carried out relevant research on automatic apple grading. Among them, there are a relatively

large number of studies on automatic apple grading algorithms based on machine vision [4–

6]. Additionally, in terms of injury-free detection technology for agricultural products, spec-

troscopy technology has undergone rapid development [7–9]. Zhao Miao et al. developed a

robotic system for the automatic detection and classification of internal quality attributes of

apples using near-infrared spectroscopy [10]; Liu Penghui et al. used machine vision and spec-

troscopy for the non-destructive detection of apple crispness with accurate and reliable results

[11]. Tan Wenyi et al. used hyperspectral imaging to propose an accurate algorithm for apple

abrasion identification, which provided a new method for non-destructive detection [12]. Ker-

esztes et al. used shortwave infrared hyperspectral imaging combined with calibration and

glare correction techniques, on a real-time pixel basis for contusion detection of early apples

[13].

In 2020, China produced 44.066 million tons of apples, exceeding the global average pro-

duction by more than 50%, among which, approximately 1812106.13 acres of apples were

planted in Shaanxi Province, producing 11.8521 million tons [14], showing great demand for

automated apple grading machines. To carry out automatic grading of apples comprehensively

and accurately, this study designed a set of grading detection algorithms for Red Fuji apple in

Luochuan, mainly including four single quality detection algorithms and a comprehensive

grading algorithm. Firstly, three classifier models of defect, contour, and size were designed by

using machine vision, and the defect, contour, and size of the apple’s appearance were detected

successively. Secondly, near-infrared spectroscopy was used to collect the spectral information

of apples. And CARS-PLS algorithm was adopted to predict the sugar content of apples.

Finally, according to the National Standard of the People’s Republic of China for grading fresh

apples, combined with the defect, contour, size, and Brix of the detected apple, the comprehen-

sive grading algorithm of Red Fuji apples in Luochuan was designed. With the algorithm,

upper computer software was designed to display the grading detection results in real-time.

An online grading detection platform for apple quality was built to verify the effectiveness and

accuracy of the grading algorithm. Experimental results show that the accuracy of the designed

algorithm is 96.67%, which met the requirements of automatic grading of the Red Fuji apple in

Luochuan.

2 Experimental materials

The apples selected in this study are Red Fuji varieties in Luochuan, Shaanxi Province, which

were purchased from Shenggu Industrial Co Ltd in Yan’an, Shaanxi Province. Before experi-

ments, each sample was numbered, and the serial number label was attached to the bottom of

the sample. Their appearance is shown in Fig 1.

3 Principle of apple quality detection classifier

3.1 Principle of apple appearance quality grading detection

According to the National Standard of the People’s Republic of China for grading fresh apples

[15], apples are classified according to their size characteristics based on their cross-sectional

diameters, i.e., the diameter at the largest point in the cross-section, as follows: the apple with a

cross-sectional diameter >7 cm is graded large (L), the apple with a cross-sectional diameter

>6.5 cm and <7 cm is graded medium (M), and the apple with a cross-sectional diameter

<6.5 cm is graded small (S).

Similarly, the national standard for apple grading is based on varietal characteristics, shape

characteristics (fruit shape index), color, red coloring rate, pests, or other damages, and the

test indicators are as follows:
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Excellent fruit: uniform in appearance, round and free of ribs, square, round or nearly

round, without skew, with a fruit shape index of 0.85 or more; evenly distributed color, high

brightness; smooth and delicate, evenly distributed texture, not rough, without damages,

cracks or scars.

First-class fruit: undifferentiated in appearance, nearly round or oblate, slightly deformed

but not more than 30% of the total, with a fruit shape index of 0.8 to 0.85; ripe or slightly

underripe, evenly distributed color, evenly distributed texture, not rough; without damages,

cracks or scars.

Fig 1. Red Fuji apple appearance.

https://doi.org/10.1371/journal.pone.0271352.g001
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Second-class fruit: basic fruit shape, subrounded, slightly deformed, with defects in fruit

shape but still having basic features, no malformation, with a fruit shape index of 0.75 to 0.8;

slightly under- or overripe, slightly rough; slightly damaged, no cracks, slight scars on the skin,

but unaffected fruit merchantability.

Substandard fruit: variable appearance in shapes, oval-shaped fruit with large deformation,

with a fruit shape index of 0.75 or less; less evenly distributed texture, slightly under- or over-

ripe, slightly rough; with damage cracks and obvious scars on the skin.

Most of the factors affecting apple grading are sensory factors. According to the National

Standard for grading fresh apples, the defect, contour, and size of the Red Fuji apple in Luo-

chuan were selected as external quality detection indexes in this study. In general, apple surface

defects are usually judged by the human eye. Contour is generally evaluated by fruit shape

coefficient, which is usually the ratio of transverse diameter to longitudinal diameter. The

closer the fruit shape coefficient is to 1, the rounder the apple appearance. And the apple size is

generally evaluated by measuring the maximum cross diameter with a vernier caliper. The

above measurement methods of apple defect, contour, and size are physical detection methods,

which need to be completed manually. They are not efficient and automatic enough to meet

the requirements of real-time apple grading detection. Therefore, this study proposed methods

of processing apple images by machine vision to complete the real-time detection of the apple

defect area, aspect ratio, and maximum transverse diameter. Then, each external quality was

graded according to the national standards.

3.2 Principle and method of apple Brix detection

Currently, China’s national standard for apple internal quality only gives a reference index of

7% or more for fruit hardness and 13% or more for soluble solids in mature Fuji apples. The

unclear national standard for the internal quality of apples has resulted in a lack of scientific,

systematic, and operable indicators of grading evaluation based on this standard.

Customers pay attention to taste when buying apples. The most important factor affecting

the taste of apples is their sugar-acid ratio, of which the apple Brix value plays a leading role.

Current chemical methods for measuring the apple Brix value include 3, 5-dinitrosalicylic acid

colorimetric method, anthrone colorimetric method, Fehling reagent thermal titration, and so

on [16]. All the above determination methods need to use acid to hydrolyze disaccharides and

polysaccharides into reductive monosaccharides and use the reductive sugar determination

method to measure the sugar content of apples. In addition, gas chromatography and high-

performance liquid chromatography can not only measure sugar content but also determine

the composition of sugar. Generally, recovery and precision experiments are used to evaluate

the above chemical methods, and the accuracy of measured sugar content is evaluated by cal-

culating the total sugar recovery, standard deviation, and coefficient of variation. The more the

total sugar recovery is close to 100%, the smaller the standard deviation and coefficient of vari-

ation are, and the more accurate and reliable the measured sugar content is. These methods,

however, generally require the apple to be mashed and macerated into a solution for measure-

ment, which causes damage to the fruit and takes a long time with low efficiency, thus they are

not suitable for non-destructive apple grading.

When near-infrared light is directed at a suitable angle to the apple, the chemical groups

within the apple absorb the spectral energy and produce a diffuse reflection on the surface, the

intensity of which varies according to the degree of light absorption within the apple. Apple

sugars contain mainly C-H and O-H groups, which are located at different energy levels and

absorb different energies from different wavelengths of the spectrum. Additionally, these are

selective in their absorption of light, with the spectrum being absorbed only at specific
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frequencies. Therefore, apple sugars can produce characteristic absorption of near-infrared

(NIR) radiation, and the difference in absorption at different wavelengths also affects the

reflected energy of diffuse reflection [17]. Therefore, in this study, near-infrared spectroscopy

technology was used to collect the spectral reflectance data from apple samples within the 400

nm~1000 nm wavelength region. And three chemometrics methods, PLS algorithm,

CARS-PLS algorithm, and SPA-PLS algorithm, were used to build the mapping relationship

between the spectral reflectance data and the apple Brix. Three methods were compared and

analyzed to select the optimal method to measure the apple Brix.

3.2.1 PLS. PLS algorithm is a linear regression algorithm, not affected by the dimension,

and suitable for complex near-infrared spectral analysis. PLS algorithm can effectively elimi-

nate the collinearity of wavelengths. If the model contains a large number of useless informa-

tion variables, the prediction ability of PLS will also be affected [18]. In this study, the PLS

algorithm was used to establish a prediction model between the spectral data of the whole

band and apple Brix.

3.2.2 CARS-PLS. CARS algorithm is a feature variable selection method combining

Monte Carlo sampling and PLS model regression coefficient, imitating the principle of "sur-

vival of the fittest" in Darwin’s theory. Each time, wavelength points with the large absolute

weight of regression coefficients in the PLS model were retained as new subsets through adap-

tive weighted sampling, and then the PLS model was established based on the new subsets.

After multiple iterative calculations, the subset with the minimum root mean square error of

cross-validation (RMSECV) was selected as characteristic variables [19]. In this study, charac-

teristic variables selected by the CARS algorithm and actual Brix of apples were used to estab-

lish a PLS linear regression model.

3.2.3 SPA-PLS. SPA is an algorithm that uses a forward cycle to screen variables, and the

extracted feature bands have low collinearity, which effectively avoids information overlap and

reduces the amount of calculation [20]. The SPA algorithm was also adopted to screen charac-

teristic variables to optimize the effect of the PLS algorithm on predicting apple Brix in this

study.

4 Classifier construction for apple appearance quality detection

4.1 Apple image capture

The vision-based apple appearance detection device, shown in Fig 2, consists of a ring light

source (2835–120, Transcend, Shenzhen), two cameras (HF899, Jereh Microcom, Shenzhen),

a photoelectric switch (E3F-DS30C4, Hutron, Shanghai), and a dark box housing made of

polymethyl methacrylate (PMMA). Among them, the ring light source is adhered to the upper

panel of the housing to provide a light environment, and the top camera is mounted right in

the middle of the ring light source and connected to the universal serial bus (USB) port of an

external personal computer (PC) (HUAWEI MateBook 14, Huawei Technologies Co Ltd,

Shenzhen) through a predetermined external hole. The side-mounted photoelectric switch is

used to detect the passage of fruits on the conveyor belt, and two cameras take pictures when

apples are passed.

4.2 Image preprocessing

Acquiring and processing images of Red Fuji apples in Luochuan, Shaanxi Province, and

extracting and analyzing surface feature data such as the defects, size, and shape of the apples

are types of image preprocessing, and this algorithm flow is shown in Fig 3. First, the camera

was used to directly acquire the original image of the apple; then, preprocessing methods such

as image enhancement, filtering, and morphological processing were used to eliminate

PLOS ONE Grading Detection of “Red Fuji” Apple in Luochuan

PLOS ONE | https://doi.org/10.1371/journal.pone.0271352 August 4, 2022 5 / 25

https://doi.org/10.1371/journal.pone.0271352


background interference and improve the accuracy of segmentation; next, the apple surface

color was selected as the distinguishing feature for segmentation of the apple fruit from the

background.

The apple image preprocessing process is shown in Fig 4. The grey level of the original image

shown in Fig 4(A) is corrected using standard color plates and the contrast of the image is

enhanced using the gamma transform [21], as shown in Fig 4(B). Then, the image noise is sup-

pressed by using Gaussian filtering [22], preserving important information such as image con-

tours and edges, as shown in Fig 4(C). Next, the red, green, and blue (RGB) image is transformed

into the hue, saturation, and value (HSV) image shown in Fig 4(D), and the grey level trans-

formed and threshold segmentation [23] were performed to distinguish the white background

from the fruit area, as shown in Fig 4(E). Morphological processing was used to eliminate the tiny

discrete closed area and boundary interference [24] in the white background, as shown in Fig 4

(F). The interior of the highlighted area, where the fruit is located, may also be mistaken for the

black area due to the fruit tip as well as surface reflections. Multiple contours can be found by

finding the boundary pixel mutation points between the highlighted area and the black area. The

Fig 2. Sketch of the structure of the vision-based detection device. 1-ring light source 2-camera 3-photoelectric

switch 4-dark box housing.

https://doi.org/10.1371/journal.pone.0271352.g002
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largest contour is extracted as the apple contour, as shown in Fig 4(G). The pixel points at the

edge of the contour are selected to draw the apple contour, as shown in Fig 4(H).

4.3 Defect determination

Apple surface defect types mainly include rot, scars, wormholes, and crush injuries. The defec-

tive area can be extracted by grey level transformation and threshold segmentation of the

Fig 3. Image processing flow.

https://doi.org/10.1371/journal.pone.0271352.g003

PLOS ONE Grading Detection of “Red Fuji” Apple in Luochuan

PLOS ONE | https://doi.org/10.1371/journal.pone.0271352 August 4, 2022 7 / 25

https://doi.org/10.1371/journal.pone.0271352.g003
https://doi.org/10.1371/journal.pone.0271352


preprocessed apple image. However, the national standard does not give a clear definition. To

obtain the size of the area threshold for defect determination, based on the sensory judgment

and the market research, the minimum diameter of the defective area for the apple with a 70

mm medium diameter is 3 mm, and the critical defect ratio for the apple surface defect is

defined t0

t0 ¼
p� d2

0

p� d2
1

� 100% ¼
32

702
¼ 0:18% ð1Þ

If the defective pixel ratio t is greater than or equal to t0, the apple is evaluated to be defec-

tive; otherwise, it is evaluated to be normal, and the classifier for detecting apple defects is

t ¼
0 � 0:0018; Normal apples

� 0:0018; Defective apples
ð2Þ

(

Fig 5 shows the image processing process of defect determination. Forty apples were col-

lected, half of them were defective and the other half were not, and the experiment was con-

ducted in triplicate with the use of the defect classifier. The results are shown in Table 1, and

the average accuracy of the defect classifier was 96.67%, indicating that this model can be used

in the grading detection of apple defects.

Fig 4. Image preprocessing process. (a) Original image (b) Gamma transform (c) Gaussian filtering (d) HSV transform (e) Grey level transform (f)

Morphological processing (g) Find contours (h) Drawing contours.

https://doi.org/10.1371/journal.pone.0271352.g004
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4.4 Shape determination

From the top view, the shape of the apple was roughly classified into round and oval, as shown

in Fig 6, where (a) to (c) are the contours of nearly round apples and (d) to (f) are those of

nearly oval apples. Customers usually have a higher preference for round apples than for mis-

shapen apples. According to the national standard for grading apples and the consumption

habits, the apple images were preprocessed to extract the maximum contours and calculate the

maximum distance ratio between their horizontal and vertical directions, that is, the aspect

ratio λ [25], to construct the basic parameters of the apple contour classifier. The near round

contours in Fig 6(A) to 6(C) have aspect ratios λ ranging from 0.98 to 1.05, while the nearly

oval contours in Fig 6(D) to 6(F) have aspect ratios λ greater than or equal to 1.05 or less than

0.98. The apple aspect ratio λ can be used to evaluate the apple shape and judge its general con-

tour. The classifier to detect the apple contour is

l ¼
0:98 � 1:05; nearly round apples

� 0:98or � 1:05; nearly oval apples
ð3Þ

(

Forty apples were collected, half of them were nearly round and the other half were nearly

oval, and the experiment was conducted in triplicate with the use of the shape classifier. The

results are shown in Table 2, and the average accuracy of the shape classifier was 95%, indicat-

ing that the model can be used in the grading detection of apple fruit shape.

4.5 Size determination

The size of an apple is related to the maximum cross-sectional diameter of the fruit, so the

actual cross-sectional diameter of the apple and the maximum cross-sectional diameter in the

Fig 5. Process of extracting defective area of the apple. (a) Original image (b) Grey level transform (c) Defective apple area (d) Whole apple area.

https://doi.org/10.1371/journal.pone.0271352.g005

Table 1. Results of detection for apple defects.

Testing index Detection number First Second Third

Defective apples 20 20 20 18

Non-defective apples 20 20 19 19

Error 0 1 3

Accuracy 100% 97.5% 92.5%

https://doi.org/10.1371/journal.pone.0271352.t001
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image were measured to construct a mapping relationship between the image size and the

actual size of the fruit. Then, the grading system measured the maximum cross-sectional diam-

eter in the image of the apple to be graded, and based on the mapping relationship between the

actual size and the image size, the maximum cross-sectional diameter of the apple was approxi-

mated and used to distinguish among extra-large, large, medium and small apples to aid in the

system to grading.

In this research, we used a vernier caliper to measure and record the maximum cross-sec-

tional diameter Wr of a sample of apples, and Hu moments to measure the cross-sectional

Fig 6. Typical contours of apples. (a)~(c) Nearly round contour (d)~(f) Nearly oval contour.

https://doi.org/10.1371/journal.pone.0271352.g006

Table 2. Results of detection for apple shape.

Testing index Detection number First Second Third

Nearly round apples 20 19 18 19

Nearly oval apples 20 20 19 19

Error 1 3 2

Accuracy 97.5% 92.5% 95.0%

https://doi.org/10.1371/journal.pone.0271352.t002
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diameter Wp in the image. To measure the cross-sectional diameter of an apple in its image, it

is important to find the center of the apple profile (xc, yc) and the boundary point of the profile

(xk, yk) in the image.

Hu moments are geometric moments that characterize an image [26]. When the image

function is f(x,y) and the resolution is U×V, the p+q order moments of the image is

mpq ¼
XV

y¼1

XU

x¼1

xpyqf ðx; yÞ ð4Þ

The 0th order moments of a binary image m00 represent the area of the contour’s connected

domain. Using the 0th and 1st order moments, the coordinates of the apple contour center

point [27]

xc ¼
m10

m00

yc ¼
m01

m00

ð5Þ

8
>><

>>:

The radius sequence of (xc, yc) to that of the boundary point (xk, yk) in the image is

rk ¼ ½ðxk � xcÞ
2
þ ðyk � ycÞ

2
�

1
2 ð6Þ

For the extracted fruit contour in Fig 4(G), the coordinates of its geometric center can be

obtained using Eq (5), and the radius sequence from the geometric center to the boundary

point of the apple contour in the image can be calculated using Eq (6). By using the method of

the least convex package, the maximum Rmax in the radius sequence from (xc, yc) to (xk, yk)

was filtered out [28], and the maximum cross-sectional diameter of the apple in the image was

Wp = 2Rmax.

We selected 150 apple samples and used a vernier caliper to measure and record their maxi-

mum cross-sectional diameter Wr. Then, we took photos and carried out the image processing

shown in Fig 7. The maximum outer circle diameter of the apple image was obtained based on

the minimum convex hull method, and it was taken as the maximum cross-sectional diameter

Wp of the apple image. Thus, a linear regression model between Wr and Wp was constructed.

The results are shown in Fig 8, and the regression equation is

Wr ¼ 0:4052Wp þ 13:5015 ð7Þ

where the correlation coefficient R2 = 0.8462, the residual variance S = 3.9806, and the test of

significance of variance p<0.001, demonstrating that the linear regression model has a high

degree of accuracy and can meet the experimental requirements.

According to the national standard of the People’s Republic of China, the thresholds of

cross-sectional diameter Wr for distinguishing among extra-large, large, medium, and small

apples are 8 cm, 7 cm, and 6.5 cm respectively. Substituting these values into Eq (7), it can be

seen that the thresholds for apple size grading according to the maximum cross-sectional

diameter Wp of the apple image are 164, 139, and 127 pixels respectively, based on which the

classifier for apple size grading was constructed, as shown in Eq (8).

Wp ¼

� 164; extra � large apples

139 �Wp; 164; large apples

127 �Wp; 139;medium apples

< 127; small apples

ð8Þ

8
>>>><

>>>>:
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Fig 7. The extraction process of contours of apples with different sizes. (a) The large apple (b) HSV transform of the large apple (c) Contour

extraction of the large apple (d) The medium apple (e) HSV transform of the medium apple (f) Contour extraction of the medium apple (g) The small

apple (h) HSV transform of the small apple (i) Contour extraction of the small apple.

https://doi.org/10.1371/journal.pone.0271352.g007
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Fifty extra-large apples, 50 large apples, 50 medium apples, and 50 small apples were

obtained, photographed, and after image processing, the cross-sectional diameter Wp values of

these apples in images were calculated separately and substituted into the classifier for apple

size grading. The experiment was conducted in triplicate, and the results are shown in Table 3.

Statistics show that the average accuracy of grading apples for extra-large, large, medium, and

Fig 8. Linear regression plot of the apple size characteristic.

https://doi.org/10.1371/journal.pone.0271352.g008

Table 3. Results of detection for apple sizes.

Testing index Detection number First Second Third

Extra-large apples 50 48 47 48

Large apples 50 46 48 49

Medium apples 50 46 49 47

Small apples 50 48 46 46

Error 12 10 10

Accuracy 94.00% 95.00% 95.00%

https://doi.org/10.1371/journal.pone.0271352.t003
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small apples according to this classifier was 94.67%, indicating that the model can be used for

the grading detection of apple size feature extraction.

5 Apple Brix prediction model construction

5.1 Near-infrared spectral image acquisition device

A near-infrared spectroscopy-based apple Brix detection device was constructed, as shown in

Fig 9, mainly consisting of a spectrometer (USB2000+, Ocean Optics, USA), a tungsten-halo-

gen light source (CH-20001, Changhui Electronic Technology Co., Ltd., Guangzhou), a fiber

optic probe and probe holder (Changhui Electronic Technology Co., Ltd., Guangzhou), a

focusing lens (Changhui Electronic Technology Co., Ltd., Guangzhou) and a dark

box housing (PMMA). The acquisition device consists of two layers of the dark box structure.

The upper layer was used to house the instrument and power supply and the lower layer

detected the internal quality of the apples. The tungsten-halogen light source was arranged

symmetrically at 45˚ on the bottom plate of the lower layer, and a 24V lithium battery (Laiyue

Fig 9. Sketch of the structure of the apple internal quality detection device. 1- Spectrometer 2- Fiber optic probe 3-

Tungsten-halogen light source 4- Focusing lens 5- Dark box housing.

https://doi.org/10.1371/journal.pone.0271352.g009
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Electronic Technology Co., Ltd., Guangzhou) was used to supply power to the tungsten-halo-

gen light source.

5.2 Spectral curve acquisition and preprocessing

The surfaces of 168 apple samples were cleaned, and then the spectral curves of the apples were

acquired by connecting the near-infrared spectrometer to a computer through a USB port and

using spectral image acquisition software (Spectra Suite, 2020). The integration time of the

fiber optic spectrometer was adjusted to 4 ms, the averaging time to 30, and the smoothing

degree to 5. In this way, the final spectral reflectance curves of apple samples in the wavelength

range of 400 nm~1000 nm were acquired. The black and white corrections were then carried

out on the acquired curves according to Eq (9) to reduce the influence of the experimental

environment on the results [29].

R ¼
I � Id
Iw � Id

ð9Þ

Where: R—the spectral reflectance of the sample, %;

I—the intensity of the reflection spectrum of the sample, cd;

Iw—the reflected spectral intensity of a standard whiteboard (reflectance of approximately

95%), cd; and

Id—Reflected spectral intensity in the dark, cd.

A total of 1771 points were collected in the wavelength range between 400 nm and 1000

nm. To avoid additional noise interference, one wavelength point was selected every two

points, and 591 wavelength points were finally selected. The spectral reflectance data of 591

wavelength points of the apple samples were used as the final data for the next step of process-

ing. The multiple scattering correction (MSC) and standard normal variable (SNV) transfor-

mation methods were used to preprocess [30] spectral reflectance data of 168 samples to

reduce the influence exerted by extraneous factors such as noise, equipment, and the experi-

mental environment. The results are shown in Fig 10.

5.3 Apple Brix measurement

After obtaining the spectral data of the apples, the true value of apple Brix was measured using

a handheld digital sugar meter (PAL-1 digital sugar meter, ATAGO, Japan). Each apple was

peeled, diced, and mashed, and the juice was extracted to measure the apple Brix value. After

each use of the sugar meter, the sampling tank was cleaned, rezeroed, and calibrated with

water and then wiped clean with a dry paper towel, followed by the next measurement. The

degree Brix values of 168 apple samples, as shown in Table 4, ranged from 8.9% to 14.6%, with

a sample mean of 11.7%. Analysis of the experimental statistics showed that 90% of the apple

samples had a Brix of 10% and above, and 15% of the apple samples had a Brix of 13% and

above. Therefore, Brix values of 10% and 13% were selected as the thresholds for grading and

dividing the Red Fuji apples in Luochuan, Shaanxi Province, into high, medium, and low

grades based on their Brix values, with the grading criteria shown in Eq (10).

Apple Brix ¼

� 13%; high

10% � Brix < 13%;medium

< 10%; low

ð10Þ

8
><

>:
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5.4 Characteristic wavelengths extraction

The competitive adaptive reweighted sampling (CARS) algorithm and the successive projec-

tions algorithm (SPA) were used to filter the characteristic wavelength points related to the

Brix to eliminate the irrelevant spectral data, reduce the computational effort and reduce the

modeling time [31–33]. Fig 11 shows the results of the characteristic wavelengths selection

using CARS, (a) the variation in the number of variables when different sampling times were

selected, (b) the variation in the root mean square of cross-validation with the number of sam-

pling times, and (c) a graph of the selection results of characteristic wavelengths using CARS.

When the number of sampling times is 49 and the number of retained wavelength variables is

37, RMSECV reached a minimum value of 0.4869.

Fig 10. Spectral curves of samples after preprocessing.

https://doi.org/10.1371/journal.pone.0271352.g010

Table 4. Statistics on apple Brix.

Sample Number Minimum Maximum Average Standard Deviation

168 8.9 14.6 11.7 1.1

https://doi.org/10.1371/journal.pone.0271352.t004
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The range of the number of characteristic wavelengths was set from 30 to 50, the SPA algo-

rithm was used to extract the characteristic wavelengths, and the number of wavelengths corre-

sponding to the smallest RMSE was analyzed and calculated to obtain the optimal number of

wavelengths, as shown in Fig 12, a graph of the number of characteristic wavelengths extracted

by SPA and the RMSE. When the SPA algorithm extracted 32 characteristic wavelengths, as

shown in Fig 13, the RMSE reached a minimum value of 0.5562.

5.5 Brix prediction model construction

Using the sample set partitioning based on joint x-y distance (SPXY) algorithm, 168 samples

were divided into a validation set and a prediction set at a ratio of 3:1, with 126 samples in the

former and 42 in the latter. The SPXY algorithm can achieve a uniform distribution space to

ensure the validation set of samples [34], as shown in Eq (11)

dxyðp; qÞ ¼
dxðp; qÞ

maxp;q2½1;N�dxðp; qÞ
þ

dyðp; qÞ
maxp;q2½1;N�dyðp; qÞ

p; q 2 ½1;N� ð11Þ

The performances of the three models were compared and analyzed as shown in Table 5,

using the PLS algorithm [35] on the raw spectra, the spectra extracted by the SPA algorithm,

and those extracted by the CARS algorithm. The comparative analysis of performances is

shown in Table 5. After modeling with the PLS algorithm, the correlation coefficient of the

prediction set Rp = 0.6543 for the original spectral data, and the root mean square error

RMSEP = 0.7976, which indicated a large deviation. For the prediction model by extracting

characteristic wavelengths using the SPA algorithm, the correlation coefficient of the predic-

tion set Rp increased by 0.1787, and the RMSEP decreased by 0.2503. The correlation coeffi-

cient Rp of the prediction set obtained by extracting characteristic wavelengths using the

CARS algorithm increased by 0.2926, and RMSEP decreased by 0.4461. The scatter plot of the

predicted Brix results for the prediction set is shown in Fig 14, with the horizontal coordinates

representing the true Brix values and the vertical coordinates representing the predicted Brix

Fig 11. Graph of CARS characteristic wavelengths selection results.

https://doi.org/10.1371/journal.pone.0271352.g011
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values. The better the fit of the scatter plot to the straight line y = x, the more reliable the pre-

dictions are and the closer the predicted values are to the real values.

Comparing the four model evaluation index parameters, namely the correction set correla-

tion coefficient Rc, the correction set root mean square error RMSEC, the prediction set corre-

lation coefficient Rp and the prediction set root mean square error RMSEP, it can be

concluded that the Brix prediction model built using the CARS-PLS algorithm has optimal val-

idation and prediction performance. A comparison of the three scatter plots of the Brix predic-

tion results of the prediction set also yielded the same conclusion.

6 Experimental validation

6.1 Integrated apple grader design

Based on the above analysis, the apple grade was determined comprehensively based on differ-

ent characteristics in terms of defects, shape, size, and Brix of the apple fruit. The algorithm

flow of the apple grading is shown in Fig 15. First, the defects and shape of the apples are

extracted to evaluate whether they meet the requirements. As long as defects exist, the apples

are evaluated as substandard fruits. Among the apples meeting the requirements, those with

high Brix values are evaluated as excellent fruits, those with medium Brix values are the first-

class fruits, and those with low Brix values are second-class fruits; those with no defects but

Fig 12. Number of SPA extracted characteristic wavelengths vs. RMSE curve.

https://doi.org/10.1371/journal.pone.0271352.g012
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average shape are directly evaluated as the second-class fruits. Finally, the size features of the

apple images are extracted to achieve the grading of extra-large, large, medium, and small

apples.

6.2 Setting up the experimental platform

To verify the feasibility of the grading algorithm, the prototype apple quality detection system

shown in Fig 16 was set up. When an apple passes on the conveyor mechanism, a position

detection photoelectric sensor in the vision-based detection box sends a low level to the PC

device, which triggers the camera to capture the apple image. The device mainly realizes the

detection of the parameters of defects, contour, and size of the apples. After the detection of

appearance quality, the apples are sent to the internal quality detection system, and the col-

lected spectral information is brought into the Brix prediction model to obtain the predicted

values of the Brix. Finally, the developed upper computer software reflects the internal and

external quality information and the corresponding parameters on the interface and inputs the

detected parameters into the classifier models to assess the comprehensive grading of the

apples and display it on the interface.

Fig 13. Map of SPA extracted characteristic wavelengths.

https://doi.org/10.1371/journal.pone.0271352.g013

Table 5. Comparative analysis of PLS model performances.

Algorithm Characteristic wavelength number Optimum PCs Rc RMSEC Rp RMSEP

Original-PLS 591 15 0.9227 0.4486 0.6543 0.7976

SPA-PLS 32 10 0.8680 0.5779 0.8330 0.5473

CARS-PLS 37 14 0.9563 0.3403 0.9469 0.3515

https://doi.org/10.1371/journal.pone.0271352.t005
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PyCharm Community Edition 2020 software was used to write the upper computer soft-

ware under Windows, and PyQt5, a module of Python, was used to create the interface for

apple grading detection. The interface for running this software is shown in Fig 17.

6.3 Experimental results

A total of 120 apples were randomly selected to validate the grading system and the results of

the apple grading were output on the interface of the upper computer software. To allow for

optimal image acquisition with the camera, the calyx side of the apple was uniformly placed

towards the conveyor belt, and the stalk side was placed towards the camera on top of the

detection box. The experiment was conducted in triplicate, and the grading results are shown

in Table 6. The accuracy of apple grading detection was 95.83%, 97.50%, and 96.67%, respec-

tively, with an average accuracy of 96.67%.

7 Summary and discussion

This paper analysed the principles of apple defects, shape, size, and Brix detection and grading

based on China’s current national standard. In this research, Red Fuji apples in Luochuan,

Shaanxi Province, were used as the research object, the appearance quality classifier models of

apple defects, shape, and size characteristics were established based on machine vision, and the

prediction model of apple Brix value was constructed based on near-infrared spectroscopy.

The results showed that the average accuracy of apple defects, shape, and size characteristics

Fig 14. Scatter plots of the prediction results (in ˚ Brix). a. Original-PLS b. SPA-PLS c. CARS-PLS.

https://doi.org/10.1371/journal.pone.0271352.g014
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grading detection was 96.67%, 95.00%, and 94.67%, respectively. Among the three Brix predic-

tion models, Original-PLS, SPA-PLS, and CARS-PLS, the CARS-PLS model had the best pre-

diction performance, achieving the following performance merits: Rc = 0.9563,

RMSEC = 0.3403, Rp = 0.9469 and RMSEP = 0.3515. The validation experiment of the grading

detection platform showed that the average accuracy of the grading detection was 96.67%,

indicating that the apple grading system designed in this paper was feasible to some extent.

Fig 15. Flow chart of the apple quality grading algorithm.

https://doi.org/10.1371/journal.pone.0271352.g015

Fig 16. The prototype of the apple quality detection system.

https://doi.org/10.1371/journal.pone.0271352.g016
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The accuracy of apple grading with this method can be further improved by improving the

sensitivity of the photoelectric sensor and the operational stability of the transmission plat-

form, both of which can reduce the position shift when the image is taken so that the apple is

Fig 17. The interface of the apple quality grading software.

https://doi.org/10.1371/journal.pone.0271352.g017

Table 6. The results of apple quality grading according to the national standard.

Grade Detection number First Second Third

Excellent apples 21 19 19 20

First-class apples 35 33 35 34

Second-class apples 49 48 49 47

Substandard apples 15 15 14 15

Error 5 3 4

Accuracy 95.83% 97.50% 96.67%

https://doi.org/10.1371/journal.pone.0271352.t006
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centered in the middle of the photo and the defects, shape and size characteristics can be

extracted more accurately. If the distance between the fibre optic probe and the apple can be

automatically adjusted according to the apple size, or the sealing of the near-infrared spectros-

copy inspection device can be improved to reduce the interference of natural light on the spec-

tral data acquisition, the accuracy of the Brix prediction of the system can be further enhanced.

According to the research ideas in this paper, with improvements in some algorithms, the

apple grading detection system constructed can also be applied to the internal and external

quality detection and grading of other nearly round fruits and vegetables such as pears,

peaches, and tomatoes.

Supporting information

S1 File. The list of the grading detection device.

(DOCX)

S2 File. Original data.

(XLSX)

S3 File. Funding information.

(TXT)

Acknowledgments

The authors are grateful to the editors and reviewers for their helpful comments and recom-

mendations, which make the presentation better.

Author Contributions

Conceptualization: Li Liu, Yinggang Shi.

Data curation: Jin Wang.

Funding acquisition: Li Liu, Yinggang Shi.

Investigation: Jin Wang, Yujia Huo, Yutong Wang, Haoyu Zhao.

Methodology: Jin Wang, Li Liu, Yinggang Shi.

Software: Jin Wang, Yujia Huo.

Validation: Jin Wang, Yujia Huo, Yutong Wang, Haoyu Zhao.

Writing – original draft: Jin Wang.

Writing – review & editing: Kai Li, Yinggang Shi.

References
1. Hu G, Zhang E, Zhou J, Zhao J, Gao Z, Sugirbay A, et al. Infield Apple Detection and Grading Based on

Multi-Feature Fusion. Horticulturae. 2021; 7(9). https://doi.org/10.3390/horticulturae7090276

2. Goncalves MW, Argenta LC, De Martin MS. Maturity and Quality of Apple Fruit Durinig the Harvest

Period at Apple Industry. Rev Bras Frutic. 2017; 39(5). WOS:000418604100001.

3. Tian X, Li J, Wang Q, Fan S, Huang W, Zhao C. A multi-region combined model for non-destructive pre-

diction of soluble solids content in apple, based on brightness grade segmentation of hyperspectral

imaging. Biosystems Engineering. 2019; 183:110–20. https://doi.org/10.1016/j.biosystemseng.2019.

04.012

4. Baneh NM, Navid H, Kafashan J. Mechatronic components in apple sorting machines with computer

vision. J Food Meas Charact. 2018; 12(2):1135–55. https://doi.org/10.1007/s11694-018-9728-1

WOS:000431327000049.

PLOS ONE Grading Detection of “Red Fuji” Apple in Luochuan

PLOS ONE | https://doi.org/10.1371/journal.pone.0271352 August 4, 2022 23 / 25

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0271352.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0271352.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0271352.s003
https://doi.org/10.3390/horticulturae7090276
https://doi.org/10.1016/j.biosystemseng.2019.04.012
https://doi.org/10.1016/j.biosystemseng.2019.04.012
https://doi.org/10.1007/s11694-018-9728-1
https://doi.org/10.1371/journal.pone.0271352


5. Chopra H, Singh H, Bamrah MS, Mahbubani F, Verma A, Hooda N, et al. Efficient Fruit Grading System

Using Spectrophotometry and Machine Learning Approaches. IEEE Sens J. 2021; 21(14):16162–9.

https://doi.org/10.1109/jsen.2021.3075465 WOS:000673632700069.

6. Sofu MM, Er O, Kayacan MC, Cetisli B. Design of an automatic apple sorting system using machine

vision. Comput Electron Agric. 2016; 127:395–405. https://doi.org/10.1016/j.compag.2016.06.030

WOS:000383527100038.

7. Chen H, Qiao H, Feng Q, Xu L, Lin Q, Cai K. Rapid Detection of Pomelo Fruit Quality Using Near-Infra-

red Hyperspectral Imaging Combined With Chemometric Methods. Frontiers in bioengineering and bio-

technology. 2020; 8:616943. https://doi.org/10.3389/fbioe.2020.616943 MEDLINE:33511105.

8. Ma T, Tsuchikawa S, Inagaki T. Rapid and non-destructive seed viability prediction using near-infrared

hyperspectral imaging coupled with a deep learning approach. Comput Electron Agric. 2020; 177:9.

https://doi.org/10.1016/j.compag.2020.105683 WOS:000571756100001.

9. Rady AM, Guyer DE, Watson NJ. Near-infrared Spectroscopy and Hyperspectral Imaging for Sugar

Content Evaluation in Potatoes over Multiple Growing Seasons. Food Anal Meth. 2021; 14(3):581–95.

https://doi.org/10.1007/s12161-020-01886-1 WOS:000584915300001.

10. Zhao M, Peng YK, Li L. A robot system for the autodetection and classification of apple internal quality

attributes. Postharvest Biol Technol. 2021; 180:8. https://doi.org/10.1016/j.postharvbio.2021.111615

WOS:000681140700003.

11. Liu PH, Zhang P, Ni FP, Hu YH. Feasibility of nondestructive detection of apple crispness based on

spectroscopy and machine vision. J Food Process Eng. 2021; 44(10):10. https://doi.org/10.1111/jfpe.

13802 WOS:000670320300001.

12. Tan WY, Sun LJ, Yang F, Che WK, Ye DD, Zhang D, et al. The feasibility of early detection and grading

of apple bruises using hyperspectral imaging. J Chemometr. 2018; 32(10):14. https://doi.org/10.1002/

cem.3067 WOS:000447552300007.

13. Keresztes JC, Goodarzi M, Saeys W. Real-time pixel based early apple bruise detection using short

wave infrared hyperspectral imaging in combination with calibration and glare correction techniques.

Food Control. 2016; 66:215–26. https://doi.org/10.1016/j.foodcont.2016.02.007

WOS:000375163700027.

14. Li MR, Guo JP, He JQ, Xu CD, Li JK, Mi CR, et al. Possible impact of climate change on apple yield in

Northwest China. Theor Appl Climatol. 2020; 139(1–2):191–203. https://doi.org/10.1007/s00704-019-

02965-y WOS:000511515200013.

15. down.foodmate.net [Internet]. GB/T 10651–2008 Fresh apple; c2008 [cited 2022 Jun 25]. Available

from: http://down.foodmate.net/standard/sort/3/16154.html.

16. Nleya KM, Minnaar A, de Kock HL. Relating physico-chemical properties of frozen green peas (Pisum

sativum L.) to sensory quality. J Sci Food Agric. 2014; 94(5):857–65. https://doi.org/10.1002/jsfa.6315

WOS:000332520600006. PMID: 23893794

17. Zhisheng W, Guoqing O, Xinyuan S, Qun M, Guang W, Yanjiang Q. ABSORPTION AND QUANTITA-

TIVE CHARACTERISTICS OF C-H BOND AND O-H BOND OF NIR. Optika i spektroskopiya. 2014;

117(5):724–. https://doi.org/10.7868/s0030403414110233 RSCI:22267757.

18. Kutsanedzie FYH, Chen Q, Hassan MM, Yang M, Sun H, Rahman MH. Near infrared system coupled

chemometric algorithms for enumeration of total fungi count in cocoa beans neat solution. Food Chem.

2018; 240:231–8. Epub 2017/09/28. https://doi.org/10.1016/j.foodchem.2017.07.117 PMID: 28946266.

19. Hassan MM, He PH, Zareef M, Li HH, Chen QS. Rapid detection and prediction of chloramphenicol in

food employing label-free HAu/Ag NFs-SERS sensor coupled multivariate calibration. Food Chemistry.

2022; 374. https://doi.org/10.1016/j.foodchem.2021.131765 WOS:000734130600007. PMID:

34896956

20. Li XP, Jiang HZ, Jiang XS, Shi MH. Identification of Geographical Origin of Chinese Chestnuts Using

Hyperspectral Imaging with 1D-CNN Algorithm. Agriculture-Basel. 2021; 11(12). https://doi.org/10.

3390/agriculture11121274 WOS:000735302300001.

21. Lv JD, Wang YJ, Xu LM, Gu YW, Zou L, Yang B, et al. A method to obtain the near-large fruit from apple

image in orchard for single-arm apple harvesting robot. Sci Hortic. 2019; 257:6. https://doi.org/10.1016/

j.scienta.2019.108758 WOS:000486103700068.

22. Bhargava A, Bansal A, Goyal V. Machine Learning-Based Detection and Sorting of Multiple Vegetables

and Fruits. Food Anal Meth. 2022; 15(1):228–42. https://doi.org/10.1007/s12161-021-02086-1

WOS:000691158500001.

23. Zhang CL, Zhang SW, Yang JC, Shi YC, Chen J. Apple leaf disease identification using genetic algo-

rithm and correlation based feature selection method. Int J Agric Biol Eng. 2017; 10(2):74–83. https://

doi.org/10.3965/j.ijabe.20171002.2166 WOS:000399207000008.

PLOS ONE Grading Detection of “Red Fuji” Apple in Luochuan

PLOS ONE | https://doi.org/10.1371/journal.pone.0271352 August 4, 2022 24 / 25

https://doi.org/10.1109/jsen.2021.3075465
https://doi.org/10.1016/j.compag.2016.06.030
https://doi.org/10.3389/fbioe.2020.616943
https://doi.org/10.1016/j.compag.2020.105683
https://doi.org/10.1007/s12161-020-01886-1
https://doi.org/10.1016/j.postharvbio.2021.111615
https://doi.org/10.1111/jfpe.13802
https://doi.org/10.1111/jfpe.13802
https://doi.org/10.1002/cem.3067
https://doi.org/10.1002/cem.3067
https://doi.org/10.1016/j.foodcont.2016.02.007
https://doi.org/10.1007/s00704-019-02965-y
https://doi.org/10.1007/s00704-019-02965-y
http://down.foodmate.net/standard/sort/3/16154.html
https://doi.org/10.1002/jsfa.6315
http://www.ncbi.nlm.nih.gov/pubmed/23893794
https://doi.org/10.7868/s0030403414110233
https://doi.org/10.1016/j.foodchem.2017.07.117
http://www.ncbi.nlm.nih.gov/pubmed/28946266
https://doi.org/10.1016/j.foodchem.2021.131765
http://www.ncbi.nlm.nih.gov/pubmed/34896956
https://doi.org/10.3390/agriculture11121274
https://doi.org/10.3390/agriculture11121274
https://doi.org/10.1016/j.scienta.2019.108758
https://doi.org/10.1016/j.scienta.2019.108758
https://doi.org/10.1007/s12161-021-02086-1
https://doi.org/10.3965/j.ijabe.20171002.2166
https://doi.org/10.3965/j.ijabe.20171002.2166
https://doi.org/10.1371/journal.pone.0271352


24. Li L, Peng YK, Yang C, Li YY. Optical sensing system for detection of the internal and external quality

attributes of apples. Postharvest Biol Technol. 2020; 162:10. https://doi.org/10.1016/j.postharvbio.

2019.111101 WOS:000508903600009.

25. Demir B, Eski I, Gurbuz F, Kus ZA, Sesli Y, Ercisli S. Prediction of Walnut Mass Based on Physical Attri-

butes by Artificial Neural Network (ANN). Erwerbs-Obstbau. 2020; 62(1):47–56. https://doi.org/10.

1007/s10341-019-00468-8 WOS:000513347600006.

26. Ji W, Chen GY, Xu B, Meng XL, Zhao D. Recognition Method of Green Pepper in Greenhouse Based

on Least-Squares Support Vector Machine Optimized by the Improved Particle Swarm Optimization.

IEEE Access. 2019; 7:119742–54. https://doi.org/10.1109/access.2019.2937326

WOS:000498558400004.

27. Zunic D, Zunic J. Shape ellipticity from Hu moment invariants. Appl Math Comput. 2014; 226:406–14.

https://doi.org/10.1016/j.amc.2013.10.062 WOS:000331496200037.

28. Xu KR, Lu X, Wang QH, Ma MH. Online automatic grading of salted eggs based on machine vision. Int

J Agric Biol Eng. 2015; 8(1):35–41. https://doi.org/10.3965/j.ijabe.20150801.005

WOS:000351105500005.

29. Ma T, Li XZ, Inagaki T, Yang HY, Tsuchikawa S. Noncontact evaluation of soluble solids content in

apples by near-infrared hyperspectral imaging. J Food Eng. 2018; 224:53–61. https://doi.org/10.1016/j.

jfoodeng.2017.12.028 WOS:000424718600006.

30. Xia Y, Fan SX, Tian X, Huang WQ, Li JB. Multi-factor fusion models for soluble solid content detection

in pear (Pyrus bretschneideri ’Ya’) using Vis/NIR online half-transmittance technique. Infrared Phys

Technol. 2020; 110:9. https://doi.org/10.1016/j.infrared.2020.103443 WOS:000579527000006.

31. Fan SX, Huang WQ, Guo ZM, Zhang BH, Zhao CJ, Qian M. Assessment of Influence of Origin Variabil-

ity on Robustness of Near Infrared Models for Soluble Solid Content of Apples. Chin J Anal Chem.

2015; 43(2):239–44. WOS:000354900800007.

32. Shao YY, Liu Y, Xuan GT, Wang YX, Gao ZM, Hu ZC, et al. Application of hyperspectral imaging for

spatial prediction of soluble solid content in sweet potato. RSC Adv. 2020; 10(55):33148–54. https://doi.

org/10.1039/c9ra10630h WOS:000568227200016. PMID: 35515022

33. Zhang HL, Zhan BS, Pan F, Luo W. Determination of soluble solids content in oranges using visible and

near infrared full transmittance hyperspectral imaging with comparative analysis of models. Postharvest

Biol Technol. 2020; 163:9. https://doi.org/10.1016/j.postharvbio.2020.111148

WOS:000528876400017.

34. Wei X, He JC, Zheng SH, Ye DP. Modeling for SSC and firmness detection of persimmon based on NIR

hyperspectral imaging by sample partitioning and variables selection. Infrared Phys Technol. 2020;

105:7. https://doi.org/10.1016/j.infrared.2019.103099 WOS:000526110800002.

35. Fan SX, Huang WQ, Li JB, Guo ZM, Zhao CJ. Application of Characteristic NIR Variables Selection in

Portable Detection of Soluble Solids Content of Apple by Near Infrared Spectroscopy. Spectrosc Spectr

Anal. 2014; 34(10):2707–12. https://doi.org/10.3964/j.issn.1000-0593(2014)10-2707-06

WOS:000343189200021. PMID: 25739212

PLOS ONE Grading Detection of “Red Fuji” Apple in Luochuan

PLOS ONE | https://doi.org/10.1371/journal.pone.0271352 August 4, 2022 25 / 25

https://doi.org/10.1016/j.postharvbio.2019.111101
https://doi.org/10.1016/j.postharvbio.2019.111101
https://doi.org/10.1007/s10341-019-00468-8
https://doi.org/10.1007/s10341-019-00468-8
https://doi.org/10.1109/access.2019.2937326
https://doi.org/10.1016/j.amc.2013.10.062
https://doi.org/10.3965/j.ijabe.20150801.005
https://doi.org/10.1016/j.jfoodeng.2017.12.028
https://doi.org/10.1016/j.jfoodeng.2017.12.028
https://doi.org/10.1016/j.infrared.2020.103443
https://doi.org/10.1039/c9ra10630h
https://doi.org/10.1039/c9ra10630h
http://www.ncbi.nlm.nih.gov/pubmed/35515022
https://doi.org/10.1016/j.postharvbio.2020.111148
https://doi.org/10.1016/j.infrared.2019.103099
https://doi.org/10.3964/j.issn.1000-0593%282014%2910-2707-06
http://www.ncbi.nlm.nih.gov/pubmed/25739212
https://doi.org/10.1371/journal.pone.0271352

