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Abstract

Hypertension occurs at a higher rate in African Americans than in European Americans.
Based on the assumption that causal variants are more frequently found on DNA segments
inherited from the ancestral population with higher disease risk, we employed admixture
mapping to identify genetic loci with excess local African ancestry associated with blood
pressure. Chromosomal regions 1g21.2-21.3, 4p15.1, 19912 and 20p13 were significantly
associated with diastolic blood pressure (8 = 5.28, -7.94, -6.82 and 5.89, P-value = 6.39E-
04, 2.07E-04, 6.56E-05 and 5.04E-04, respectively); 1921.2—21.3 and 19912 were also sig-
nificantly associated with mean arterial pressure (3 = 5.86 and -6.40, P-value = 5.32E-04
and 6.37E-04, respectively). We further selected SNPs that had large allele frequency
differences within these regions and tested their association with blood pressure. SNP
rs4815428 was significantly associated with diastolic blood pressure after Bonferroni correc-
tion (B =-2.42, P-value = 9.57E-04), and it partially explained the admixture mapping signal
at20p13. SNPs rs771205 (B =-1.99, P-value = 3.37E-03), rs3126067, rs2184953 and
rs58001094 (the latter three exhibit strong linkage disequilibrium, g =-2.3, P-value = 1.4E-
03) were identified to be significantly associated with mean arterial pressure, and together
they fully explained the admixture signal at 1921.2—-21.3. Although no SNP at 4p15.1
showed large ancestral allele frequency differences in our dataset, we detected association
at low-frequency African-specific variants that mapped predominantly to the gene PCDH?7,
which is most highly expressed in aorta. Our results suggest that these regions may harbor
genetic variants that contribute to the different prevalence of hypertension.
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Introduction

Hypertension is a strong risk factor for coronary artery disease. Hypertension is a heritable dis-
ease, with an estimated heritability of 30-50% [1]. So far, genome-wide association studies
(GWAS) have been successful at identifying genetic loci associated with hypertension, but the
effect sizes of individual loci have been small, and currently-identified loci only explain a small
fraction of the total heritability (4-6%) [2]. Other genetic determinants for blood pressure are
still yet to be discovered.

One way to investigate the unexplained heritability is to study less represented populations,
such as African Americans. In the United States, hypertension is diagnosed more frequently in
African Americans than European Americans, representing 40% of African Americans vs.
28% of European Americans among people from all age groups [3], and 60% of African Amer-
icans vs. 38% of European Americans among individuals aged between 45 to 85 years [4]. Afri-
can Americans form an admixed population in which each individual not only displays
different proportions of European and African ancestry, but their chromosomes also show
ancestral mosaicisms resulting from recombination across generations. To identify causal
genetic loci in admixed populations, admixture mapping serves as a powerful tool when large
allele frequency differences are present in the ancestral populations. Ancestral allele frequency
differences at causal loci may contribute to disease prevalence differences in different
populations.

Previously, GWAS for hypertension have identified genetic loci such as those containing
mutations in genes PDE3A [5], NOS3 [6] and CYP17A1-CNNM2-NT5C2 [7]. In addition to
GWAS, admixture mapping has also been successful at identifying ancestral haplotypes signifi-
cantly associated with hypertension. Up until now, several loci have been reported to be associ-
ated with blood pressure, such as 6q24 and 21q21 [8]; within 21q21, CXADR was likely to play
arole in blood pressure in African Americans [9]; by utilizing CARe consortium data, 5p13
was identified to be associated with diastolic blood pressure (DBP), with 3 uncorrelated SNPs
within this region adequately accounting for the observed association [10]. For Hispanics,
6p12.3 was found to be associated with local African ancestry for mean arterial pressure
(MAP) and DBP, but no variants were identified that drove these associations [11]. Compared
to GWAS, admixture mapping has a much lower testing burden and thus requires much
smaller sample sizes.

In this study, we utilized the ClinSeq™ cohort exome sequencing data to identify genetic
regions where local African ancestry was associated with blood pressure phenotypes. We fine-
mapped these regions and identified genetic variants with large ancestral allele frequency dif-
ferences that drove local ancestral associations. Furthermore, we replicated these variants iden-

tified from ClinSeq™ in an independent cohort of Africans.

Materials and methods
Patient samples and exome-sequencing

The ClinSeq®™ study was approved by the Institutional Review Boards at the National Institutes
of Health and informed consent was obtained from each participant. The ClinSeq™ A2 cohort,
which consists of 503 unrelated participants of self-reported African descent, aged between
45-65, were recruited between 2012-2017 and seen at the Clinical Center of the National Insti-
tutes of Health. Participants were not ascertained based on any particular phenotype and were
interviewed and measured for various anthropometric and clinical variables. Blood samples
were collected, from which DNA was isolated and exomic regions of interest were captured
using the Integrated DNA Technologies (IDT) capture kit. Whole exome sequencing was
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performed at the NIH Intramural Sequencing Center, Rockville, MD. Variant calling was per-
formed using bam2mpg [12]. As a quality control (QC) step, single nucleotide polymorphisms
(SNPs) were filtered for GQ > 10 and GQ/DP > 0.5; only autosomal SNPs were retained;
SNPs discovered to be out of Hardy-Weinberg equilibrium (P-value < 5.7E-07) based on an
exact test [13], monomorphic SNPs, SNPs with call rate < 0.98, and SNPs with minor allele
frequency (MAF) < 0.005 were removed. In a subsequent QC step, samples with mismatched
sex, samples from related individuals and samples without phenotypes were removed. Based
on principal component (PC) plots, samples outside of + 4 standard deviations from the Afri-
can American cluster by the first two eigenvalues were removed.

Phenotypes

DBP and systolic blood pressure (SBP) were measured using a Dinamap instrument and
obtained from the left arm after five minutes of rest with the subject in a sitting position with
legs uncrossed. Two of these measurements were obtained and an average was taken for our
analysis. For patients who took anti-hypertension medication, 5 mmHg and 10 mmHg were
added to DBP and SBP, respectively [14]. MAP values were calculated as 1/3 * medically
adjusted SBP + 2/3 * medically adjusted DBP. To check that values were normally distributed,
we used a Shapiro-Wilk test. Untransformed DBP (W = 0.99528, P-value = 0.1424), MAP
(W =0.9942, P-value = 0.05881) and Logo-transformed SBP (W = 0.996, P-value = 0.2496)
were found to be normally distributed (S1 Fig).

Admixture mapping

Local ancestry was inferred using SEQMIX v0.12 [15]. For ancestry inference purposes, SNPs
were pruned differently than in the association study. All markers, regardless of MAF, were
retained. To ensure SNPs that were free of linkage disequilibrium (LD) with each other, SNPs
were further pruned based on LD and sequencing depth: within a window size of 200, each
step of 20, and r” threshold of 0.1, only one of a pair of two markers that had a higher sequenc-
ing depth was retained. After pruning, 316,761 markers were retained for local ancestry analy-
ses. The CEU and TSI datasets from the 1000 Genome Project [16] were used as European
population references; the YRI and LWK datasets were used as African population references.
Global ancestry was inferred as principal components using LASER v2.04 (Locating Ancestry
from SEquence Reads) (S2 Fig) [17]. The overall percentage of European and African ancestry
for each individual was also estimated by averaging local ancestry across the individual’s entire
exome. Correlations were calculated between European, African ancestral percentage and
principal components estimated by LASER (S3 Fig).

For admixture mapping, the following regression equation was used:

Medically adjusted BP
= Bo+ By G £ By (Gaa—Lan) + By age + B, age” + B sex + B BMI +-¢

Gaa represents global African ancestry, and L 4 represents local African ancestry at a spe-
cific locus. By definition, global ancestry and local ancestry are correlated. Therefore, we used
the difference between global and local ancestry instead of just local ancestry for the purpose
of easier interpretation of the resulting B,. B, is interpreted as the local response accounting for
the global ancestral effect, which every locus carries, and it predicts how the additional ances-
try at each particular locus would contribute to the phenotype.

To estimate the effective number of tests, we used the method described by Shriner et al.
[18]. The R package “coda” [19] was used for the estimation. More specifically, an autoregres-
sive (AR) model was fitted to the vector of local African ancestry and the spectral density at
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frequency zero was evaluated. The order of the fitted AR model is chosen by minimizing the
Akaike Information Criterion (AIC). The effective number of tests for chromosomes for each
individual was summed and then averaged across all individuals. In ClinSeq® , the total effec-
tive number of tests was equivalent to 66.84. Therefore, the genome-wide significant level o
was 0.05/66.84 = 7.48E-04 (-log;o o = 3.13), and significant regions were identified as contigu-
ous regions within 1 unit drop of the peak LOD score, which yields approximately a 95% confi-
dence interval.

Regional association study

To identify SNPs that accounted for association signals discovered by admixture mapping,
regional association studies were performed within admixture mapping significant regions.
Since associated regions show a significant correlation between local ancestry and phenotype,
we expect SNPs that drive the association signal to show a substantial allele frequency differ-
ence in different ancestral populations. Therefore, we only tested SNPs with allele frequency
differences over 0.4 (§ > 0.4) between European and African ancestral populations from the
1000 Genome Project. PLINK [20] was used to test the association between medically adjusted
BP and genotypes at these SNPs, adjusting for the first 10 principal components to account for
population structure. The following regression equation was used to perform the association
analysis:

Medically adjusted BP
= B, + B, genotype + B, age + B, age* + B, sex + B, BMI + 221 B.;PC +¢

Conditional admixture mapping

We performed conditional admixture mapping in order to estimate the degree to which asso-
ciated SNPs explained the observed admixture mapping signals. For this step, the genotypes of
significant SNPs from the regional association study were included as covariates in the admix-
ture mapping equation to test whether one or more SNPs were able to account for admixture
mapping signals. P-values for the local ancestry coefficient B, were recorded to investigate if
they remained significant after adjusting for those SNPs. If B, was not significant after inclu-
sion of a SNP, we interpreted it as the included SNPs were able to account for local ancestry
effects observed in admixture mapping.

Replication cohort description

We attempted to replicate our findings in the Africa America Diabetes Mellitus (AADM)
cohort [21]. AADM is a study of type 2 diabetes in sub-Saharan Africans. The study is com-
prised of 5,231 participants recruited from university medical centers in Accra and Kumasi in
Ghana; Enugu, Ibadan, and Lagos in Nigeria; and Eldoret in Kenya. Blood pressure was mea-
sured in the sitting position using an oscillometric device (Omron Healthcare, Kyoto, Japan).
Three readings were taken with a ten-minute interval between readings. The reported DBP
and SBP values were the average of the second and third readings. Weight was measured in
light clothes on an electronic scale to the nearest 0.1 kg. Height was measured with a stadi-
ometer to the nearest 0.1 cm. Body mass index was calculated as weight (kg) divided by the
square of height (m?). Individuals taking antihypertensive medication were excluded, leaving
2,957 individuals for analysis. For both DBP and SBP, values were inverse-normalized after
adjusting for sex, age, and age”. Genotyping was performed using the Affymetrix® Axiom™
Genome-Wide PanAFR Array Set (n = 1,808) and the Illumina Infinium MEGA BeadChip,
versions 1 (n = 3,046) and 2 (n = 377). For each array, quality control was performed as
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described previously [22]. After excluding SNPs with a minor allele frequency < 5%, a geno-
typing call rate < 90%, or a Hardy-Weinberg P-value < 0.001, principal components analysis
was performed on 124,266 SNPs common to all three genotyping arrays. For each array, impu-
tation was performed using the African Genome Resources reference panel available from the
Sanger Imputation Service, using EAGLE2 [23] for pre-phasing and PBWT [24] for imputa-
tion. Association testing was performed using a linear mixed model in EPACTS (https://
github.com/statgen/EPACTS) [25], with body mass index and the first three principal compo-
nents as fixed effects and the genetic relatedness matrix as a random effect. The reason for only
adjusting three principal components is that according to the Tracy-Widom test [26], only
three principal components were significant. The first PC separated Kenyans from Ghanaians
and Nigerians and also separated the Kenyans. The second PC separated Ghanaians from
Nigerians. The third PC separated 11 Yoruba. Additional PCs did not explain significant
amounts of variance (54 Fig). To account for the fact that AADM is enriched for cases of type
2 diabetes, we included type 2 diabetes status as a covariate in the association analysis. Ancestry
proportions were inferred by projecting genotype data onto a previously described reference
panel [27] using ADMIXTURE version 1.3.0 [28]. This study was approved by the Institutional
Review Boards at each study site, Howard University, and the National Institutes of Health
and informed consent was obtained from each participant.

Results
ClinSeq® cohort characteristics

484 individuals passed QC and were included in the final admixture mapping analyses. The
cohort characteristics are shown in Table 1. The correlation between the average African
ancestry and DBP, log;((SBP), and MAP were 0.121, 0.064 and 0.108, respectively (P-value =
0.007, 0.159 and 0.017, respectively), indicating that all three blood pressure phenotypes
increased as the percentage of African ancestry increased.

Local ancestry and global ancestry inference

The average estimated African ancestry in our study sample was 76.7+12.8%. The average
number of ancestral switch points per individual was 127. European ancestry percentage was
highly correlated with PC1, and African ancestry percentage was highly correlated with PC2,
both with a correlation coefficient of r < -0.97 (S3 Fig).

Admixture mapping

We next performed admixture mapping to identify regions where local African ancestry was
significantly associated with blood pressure phenotypes. For DBP, four regions reached

Table 1. Data description.

Characteristics ClinSeq®™ AADM
Age (SD) 56 (6) 50 (13)
Sex (Female %) 74% 63%

BMI (SD) 32 (10) 27 (6)
Diabetes 17% 50%
Anti-Hypertension Meds 45% 36%
Median African Ancestry (IQR) 79% (16%) 92% (13%)
Mean SBP (SD) 125 (14) 137 (24)
Mean DBP (SD) 73 (9) 82 (13)

https://doi.org/10.1371/journal.pone.0232048.t001
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exome-wide significance: 1q21.2-21.3 (B = 5.28, P-value = 6.39E-04), 4p15.1 (B = -7.94, P-
value = 2.07E-04), 19q12 (B = -6.82, P-value = 6.56E-05), and 20p13 (B = 5.89, P-value = 5.04E-
04) (Fig 1A and Table 2). Among these four regions, two overlapped regions where local Afri-
can ancestry was significantly associated with MAP: 1q21.2-21.3 (B = 5.86, P-value = 5.32E-
04) and 19q12 (B = -6.40, P-value = 6.37E-04) (Fig 1B and Table 2). For SBP, no region reached
exome-wide significance.

Regional association test

Since SNPs with large allele frequency differences between ancestral populations carry the
most information about ancestry, we identified SNPs that had over 40% allele frequency dif-
ferences between European and African ancestral populations from the 1000 Genome Proj-
ect within significantly associated regions. For DBP, 21 SNPs had 8 > 0.4 and for MAP, 14
SNPs had 6 > 0.4 (Table 2). These SNPs were tested for associations with DBP and MAP,
respectively. Multiple testing thresholds were calculated using a Bonferroni correction.

For DBP, the significance threshold was 0.05/21 = 0.00238 and for MAP, it was 0.05/

14 = 0.00357. For DBP, SNP rs4815428, which is a 3’ UTR variant downstream of the gene
TMC2, reached significance after Bonferroni correction. For MAP, four SNPs reached sig-
nificance after Bonferroni correction: rs3126067, rs2184953, rs58001094, and rs771205.
SNPs rs3126067, rs2184953 and rs58001094 are in high linkage disequilibrium with each
other and are all coding variants in FLG. SNP rs771205 is a missense variant in MINDY1
(Table 3).

Conditional admixture mapping test

After performing the regional association study, we tested whether significant SNPs can
explain admixture mapping signals by including SNP genotypes as covariates in the admixture
mapping model. If local African ancestry in the admixture mapping model fails to reach signif-
icance after adjusting for SNP genotypes, it indicates that the included SNPs can explain the
admixture mapping signal. For DBP, only SNP rs4815428 was significant and passed the Bon-
ferroni correction. By including rs4815428 as a covariate in the admixture mapping model, the
peak P-value at chr20:2187986 increased from 5.04E-04 to 0.025. Local African ancestry failed
to reach exome-wide significance. At the P-value < 0.05 level, the peak was still significant,
indicating that there might be other markers weakly contributing to the admixture mapping
signal (Fig 2A). For MAP, inclusion of rs3126067 increased the peak P-value from 5.32E-04 to
0.022 (Fig 2B). After adjusting for both rs3126067 and rs771205, the peak P-value increased to
0.146 (Fig 2B). This means the admixture mapping signal was completely explained by SNPs
rs3126067 and rs771205 (or variants tagged by those two SNPs).

Replication analyses

We attempted to replicate the association of five SNPs with blood pressure phenotypes in the
AADM dataset of sub-Saharan African samples. No SNPs passed the genome-wide significant
threshold used in AADM (S1 Table). We also performed an association study in the four iden-
tified admixture mapping peak regions (Table 4). In chromosome 4, the top SNP rs145765242
maps to gene PCDH7, which is most highly expressed in aorta according to GTEx [29]. The
top SNP rs145765242 has an alternative allele frequency of 0.6% in the African samples in the
Genome Aggregation Database (gnomAD) [30].
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Fig 1. Manhattan plot indicates chromosomal regions where local African ancestry is associated with DBP or

MAP. A) At chromosomal regions 1q21.2-21.3 (B = 5.28, P-value = 6.39E-04), 4p15.1 (B

-7.94, P-value = 2.07E-04),

19q12 (B = -6.82, P-value = 6.56E-05), and 20p13 (B = 5.89, P-value = 5.04E-04), local African ancestry was
significantly associated with DBP. B) Two of the above regions overlapped regions where local African ancestry was
significantly associated with MAP: 1q21.2-21.3 (B = 5.86, P-value = 5.32E-04) and 19q12 (B = -6.40, P-value = 6.37E-
04). The red bar indicates the exome-wide significance threshold of 3.13.

https://doi.org/10.1371/journal.pone.0232048.9001

Discussion

We utilized admixture mapping methods to identify genetic regions associated with blood
pressure phenotypes in African Americans. We identified four regions for diastolic blood pres-
sure and two regions for mean arterial pressure that reached exome-wide significance in our
admixture mapping study. Two MAP regions overlapped with the DBP regions, consistent
with the fact that MAP is defined partially as a function of DBP.

Table 2. Significant regions showing the association between blood pressure and African ancestry.

Chr Region Region (Mb) Top signal location Beta Std. error P-value SNPs remained after QC SNPs with 6 > 0.4
DBP

1 1q21.2-21.3 148.2-154.7 1:151499346 5.28 1.54 6.39E-04 1034 16

4 4p15.1 30.7-31.1 4:31144153 -7.94 2.12 2.07E-04 17

19 19q12 29.7-31.0 19:30020063 -6.82 1.69 6.56E-05 84

20 20p13 0.6-5.3 20:2187986 5.89 1.68 5.04E-04 636 5

MAP

1 1q21.2-21.3 148.2-153.3 1:151501906 5.86 1.68 5.32E-04 782 13

19 19q12 29.7-32.1 19:30101339 -6.40 1.86 6.37E-04 101 1

https://doi.org/10.1371/journal.pone.0232048.t002
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Table 3. Significant SNPs within admixture mapping peak regions.

Chr BP rsID Nearby genes | Std. error Beta | Al | A2 | Al frequency o P-value® | Mutation type
EUR | AFR
DBP
20 2597978 rs4815428 T™MC2 0.73 242 |G A 0.34 0.85 0.51 | 9.57E-04 | Non-coding transcript exon
MAP
1 150975108 | rs771205 MINDY1 0.67 -1.99 | T C 0.03 0.68 0.65 | 3.37E-03 | Missense
1 152276889 | rs3126067 FLG 0.74 -237 |G A 0.15 0.79 0.64 | 1.39E-03 | Synonymous
1 152280782 | rs2184953 FLG 0.73 -233 |G A 0.18 0.79 0.61 | 1.44E-03 | Missense
1 152283862 | rs58001094 FLG 0.73 -233 | C G 0.18 0.78 0.60 | 1.44E-03 | Missense

* Multiple testing thresholds were calculated as 0.05/21 = 2.38E-03 for DBP and 0.05/14 = 3.57E-03 for MAP. Bold SNPs indicate they are in high linkage disequilibrium
with each other (r* > 0.99, D’ = 1, estimated in the dataset).

https://doi.org/10.1371/journal.pone.0232048.t003

The significant admixture mapping region on chromosome 4 predominantly mapped to
protocadherin 7 (PCDH?), which is most highly expressed in aorta according to GTEx [29].
Meta-analysis of nearly 35,000 individuals with African ancestry found SNP rs11931572,
which tagged PCDH?, to be significantly associated with DBP [31]. The SNP rs11931572 has a
low alternative allele frequency of 5% in Africans according to 1000 Genomes [16] and gno-
mAD [30]. This is consistent with our finding that this genetic region was significantly associ-
ated with African ancestry in both ClinSeq™ and AADM datasets. However, utilizing
admixture mapping drastically decreased the required sample size to identify this gene.

Within admixture mapping significant regions, five SNPs that had large ancestral allele fre-
quency deviations (8 > 0.4) were significantly associated with BP. For DBP, SNP rs4815428
partially explained the admixture signal on chromosome 20. For MAP, SNPs rs3126067,
rs2184953 and rs58001094 were in high LD with each other, and along with SNP rs771205,
fully explained the admixture signal on chromosome 1.

SNPs rs3126067, rs2184953 and rs58001094 had previously been reported to be associated
with ichthyosis and atopy [32] and atopic dermatitis [33]. All three SNPs are in the coding
region of the gene filaggrin (FLG), an intermediate filament-associated protein that aggregates
keratin intermediate filaments in mammalian epidermis. Previously, this gene had been
reported to be associated with asthma [34], ichthyosis [32] and abnormal inflammatory
response [35, 36]. In a study of rheumatoid arthritis patients, first-degree relatives who were
negative for rheumatoid arthritis but were positive for antibodies to citrullinated filaggrin had
higher SBP and DBP than those who were antibody-negative [37], suggesting that there may
be a correlation, although not necessarily a causation, between blood pressure and FLG.

SNP rs771205 is in the coding region of MINDY 1, which encodes a hydrolase that removes
lysine-48-linked conjugated ubiquitin from proteins [38]. It has exodeubiquitinase activity
with a preference for long polyubiquitin chains and may play a regulatory role at the level of
protein turnover [39]. This genetic region was previously reported to be linked to late-onset
Alzheimer’s disease [40, 41].

SNP rs4815428 is located in TMC2, which encodes transmembrane channel-like protein 2.
TMC?2 is a potential ion channel required for the mechano-transduction of cochlear hair cells
[42]. A study in the Han Chinese population reported that TMC2 was among the top genes
associated with BP response to the cold pressor test (CPT), which is associated with an
increased risk of cardiovascular disease [43].

Previous admixture mapping studies of BP in African Americans were mostly performed
on genotyping chip data with imputation, without much emphasis on whole exome
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Fig 2. Conditional admixture mapping study in DBP significant region chr20:0.6-5.3 Mb and MAP significant
region chr1:148.2-153.3 Mb. A) For DBP in the region of chr20:0.6-5.3 Mb, after adjusted for SNP rs4815428, the
significant signal partially disappeared. SNP rs4815428 partially explained the significant admixture mapping signal in
this region. B) For MAP in the region of chr1:148.2-153.3 Mb, after adjusted for SNPs rs3126067 and rs771205, the
significant signal completely disappeared. These two SNPs fully explained the significant admixture mapping signal in
this region. The x-axis is not to scale due to missing intronic regions.

https://doi.org/10.1371/journal.pone.0232048.9002

sequencing (WES) data. WES data provide greater coverage of rarer variants at exonic regions

than chip data, therefore enabling us to test more variants for local ancestry association signals.
Although the five SNPs we identified were all common SNPs, it is also possible for rare variants
to drive the admixture mapping signals as well. With 484 African American samples, we could
not identify any rare variants that passed multiple testing correction (results not shown). In
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Table 4. Top associated SNPs within admixture mapping peak regions for DBP in the AADM dataset.

Chr |BP REF |ALT |rsID Nearby gene | Alt. freq |Stat |P-value | Beta |Std.error |R® Alt. freqapr | Alt. freqryur
1 150579702 | TA T rs11360645 ENSA 0.198 -3.63 | 2.84E-04 |-0.12 |0.03 0.0045 | 0.192 0.549

4 30813550 C A rs145765242 | PCDH7 0.00947 3.77 1.65E-04 | 0.48 0.13 0.0048 | 0.00794 0

19 30950681 C T rs150339768 | ZNF536 0.00118 -4.01 | 6.27E-05 |-1.45 |0.36 0.0054 | 0.00099 0.00398

20 3200824 CT C NA ITPA 0.425 -4.10 | 4.31E-05 |-0.10 |0.03 0.0057 | NA NA

https://doi.org/10.1371/journal.pone.0232048.t004

addition, utilizing WES data may leave out ancestral switch points occurring within non-
exonic regions, causing the average number of switch points to be lower than those estimated
using WGS or chip data.

Our five significantly-associated SNPs were not replicable in the AADM study, possibly
due to the following reasons. 1) The African American individuals recruited in the Clin-
Seq™ study were relatively healthy individuals, mostly without an identifiable disease trait
such as diabetes or cardiovascular disease, whereas AADM was enriched for cases of type 2
diabetes. However, the inclusion of type 2 diabetes status as a covariate made negligible dif-
ferences in the association statistics. 2) The African ancestry in the African Americans Clin-
Seq™ study might not be sufficiently matched to the Africans in the AADM study.
Participants were recruited for the AADM study from three countries: Nigeria, Ghana, and
Kenya. Individuals from Nigeria and Ghana are expected to share ancestry with African
Americans, based on historical records of the trans-Atlantic slave trade. However, the con-
tribution to African Americans from other places such as Senegal is not as well captured by
AADM. 3) The AADM participants were recruited on the African continent, while the Clin-
Seq™ participants were recruited in North America. Differences in environmental factors
between the studies may have contributed to relatively smaller effect sizes in AADM than in
ClinSeq™. 4) The causal variants may be specific to European ancestry. 5) The SNPs associ-
ated in ClinSeq™ are not the SNPs underlying differential risk in the regions identified by
admixture mapping.

To demonstrate that these five SNPs are not just ancestry-informative markers (i.e., con-
founders), we stratified samples based on their local ancestry at each SNP and performed
genotypic association within each stratum, which, by definition, cannot be confounded by
local ancestry. We then combined all strata and performed a random effects meta-analysis to
get an overall estimation of the association for each SNP. We were able to demonstrate that
genotypic association at rs4815428 was not confounded by local ancestry. This SNP has the
largest effect size among all five SNPs. We were not able to demonstrate that the rest of the
four SNPs were not confounded (S2 Table). After stratification, each stratum has a very small
sample size. We believe that increasing the study sample size may give a more definitive
answer.

In summary, we performed admixture mapping analyses on the ClinSeq™ African Ameri-
can cohort and identified four genetic regions associated with blood pressure phenotypes. We
fine-mapped these regions and identified five SNPs that are the main driving forces of associa-
tions between local African ancestry and blood pressure phenotypes at two of the four regions.
SNP 153126067, rs2184953 and rs58001094, all located in FLG, and SNP rs771205, located in
MINDY1, were significantly associated with MAP. SNP rs4815428, located in TMC2, was sig-
nificantly associated with DBP. Finally, region 4p15.1, despite containing no SNPs exhibiting
large allele frequency deviation in our dataset, maps predominantly to PCDH?7, which is most
highly expressed in aorta.
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$2 Fig. Scatter plot for ClinSeq"™ A2 dataset in HGDP panel. This figure shows principal
components 1 and 2 of the ClinSeq@® A2 dataset using the HGDP reference panel. The red
cluster represents African ancestral populations; the blue cluster represents European ancestral
populations; the yellow cluster represents East Asian populations, and the purple cluster repre-
sents Native American populations from the HGDP reference panel. The black cluster repre-
sents the ClinSeq™ study.
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S3 Fig. Correlation between global European ancestry and principal component 1 and
global African ancestry and principal component 2. This figure shows the global European
ancestry estimated by averaging local ancestry across the entire exome plotted against principal
component 1 as estimated by LASER, and the global African ancestry plotted against principal
component 2. The X axis denotes global ancestry; the Y axis denotes principal components.
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(TIFF)

$4 Fig. Principal component analysis plots of 5,231 participants from the AADM Study.
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