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Analysis and validation of the potential of the MYOI1E gene in
pancreatic adenocarcinoma based on a bioinformatics approach
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Abstract. Pancreatic adenocarcinoma (PAAD) is a common
digestive cancer, and its prognosis is poor. Myosin 1E
(MYOIE) is a class I myosin family member whose expres-
sion and function have not been reported in PAAD. In the
present study, bioinformatics analysis was used to explore
the expression levels of MYOIE in PAAD and its prognostic
value, and the immunological role of MYOIE in PAAD was
analyzed. The study revealed that a variety of malignancies
have substantially increased MYOIE expression. Further
investigation demonstrated that PAAD tissues exhibited
greater levels of MYOIE mRNA and protein expression than
normal tissues. High MYOIE expression is associated with
poor prognosis in patients with PAAD. MYOIE expression
was also associated with pathological stage in patients with
PAAD. Functional enrichment analysis demonstrated that
MYOIE was linked to multiple tumor-related mechanisms in
PAAD. The pancreatic adenocarcinoma tumor microenviron-
ment (TME) was analyzed and it was revealed that MYOILE
expression was positively associated with tumor immune cell
infiltration. In addition, MYOIE was closely associated with
some tumor chemokines/receptors and immune checkpoints.
In vitro experiments revealed that the suppression of MYOIE
expression could inhibit pancreatic adenocarcinoma cell
proliferation, invasion and migration. Through preliminary
analysis, the present study evaluated the potential function of
MYOIE in PAAD and its function in TME, and MYOIE may
become a potential biomarker for PAAD.
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Introduction

PAAD is among the deadliest malignant tumors of the diges-
tive system, with a high rate of recurrence, a high fatality rate,
and a poor prognosis (1). In the early stages, there are few
characteristic clinical signs and no reliable screening tools;
up to 85% of patients with PAAD are diagnosed at advanced
stages or develop distant metastases (2), and it is the seventh
leading cause of cancer death (3). Despite ongoing advances in
therapy, PAAD is still one of the most difficult cancers to treat,
with a 5-year survival rate of less than 10% (4). The incidence
of PAAD is projected to rise to 18.6%o in 2050, with an average
yearly increase of 1.1% (5). Therefore, the underlying mecha-
nisms of PAAD should be thoroughly investigated, and the
search for potential therapeutic targets becomes crucial.

Myosins are classifiable into 24 classes based on the
amino acid sequence of the ATP hydrolytic region, and they
are involved in various cellular functions, including organelle
transport, actin recombination, and cell signal transduction (6).
Class I myosin consists of Myola~Myolh (7), an actin-depen-
dent molecular motor expressed in various organisms, from
yeast to humans (8). Class I myosins may interact with actin
filaments and cell membranes through their N-terminal motor
structural domain and C-terminal tail homology 1 (THI)
structural domain, respectively; in addition to the TH1 struc-
tural domain, class I myosins also include the proline-rich
TH2 structural domain and the SH3 structural domain (9,10).
According to previous research, MYOIE contributes to the
progression of breast cancer and affects breast tumor cell
differentiation and proliferation (11). The role of MYOIE in
PAAD has yet to be reported, and its related mechanisms still
need further investigation.

In this research, we found that MYOI1E was substan-
tially expressed in PAAD and negatively correlated with
PAAD patient survival prognosis. Functional and pathway
enrichment analyses revealed that MYOIE was linked
to tumor-associated pathways. In addition, MYOIE was
involved in multiple tumor immune cell infiltrates in the
TME. Further validation of the impact of MYOIE on the
proliferation, invasion, and migration of PAAD cells was
provided by in vitro tests. Our results reveal the clinical
significance, potential function, and immune relevance of
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MYOIE in PAAD, which may provide new strategies for the
early diagnosis and prognosis of PAAD. The study flowchart
is shown in Fig. 1.

Materials and methods

MYOIE gene expression analysis. We used RNAseq
data in FPKM format from The Cancer Genome
Atlas Project (12) (TCGA) (https://portal.gdc.cancer.
gov/, Version 35) and Genotype-Tissue Expression (13)
(GTEx) (https://www.gtexportal.org/, Version 8)
processed uniformly by the UCSC XENA (University Of
California Sisha Cruz, https://xenabrowser.net/datapages/,
July 20, 2019) database to extract the TCGA corresponding
to 33 tumors data and normal tissue data in GTEx. The
calculation was performed using the ‘stats’ package in R
(Version 4.2.1) (https://cran.r-project.org/), the Wilcoxon
rank sum test was used, and the results were visualized
using the ‘ggplot2’ package. The CPTAC module of the
UALCAN database (http://ualcan.path.uab.edu/, May 13,
2022) analyzed the total protein expression of MYOIE in
different cancers. Finally, we compared MYOIE expression
in PAAD tissues and normal tissues in the GEO (GSE16515,
GSE62165, and GSE15471) cohort (https:/www.ncbi.nlm.
nih.gov/geo/).

Tissue samples. Fifteen cases of pancreatic adenocarcinoma
and matched adjacent normal tissues were obtained from the
Affiliated Hospital of Guizhou Medical University and the
Cancer Hospital Affiliated with Guizhou Medical University.
Patients were informed and signed an informed consent form
agreeing to use their tissues for scientific research. This study
was approved by the ethics committees of the Affiliated
Hospital of Guizhou Medical University and the Cancer
Hospital Affiliated with Guizhou Medical University. All
specimens were frozen and stored at -80°C before western blot
and reverse transcription-quantitative polymerase chain reac-
tion (RT-qPCR) analysis.

Survival analysis. GEPIA2 (http://gepia2.cancer-pku.cn/,
Version 2) is a platform for gene expression analysis based
on tumor and normal samples from TCGA and GTEx data-
bases (14). We obtained the overall survival (OS) and disease
free survival (DFS) of the MYOIE gene in PAAD using the
‘Survival analysis’ panel of the GEPIA2 database with a 95%
confidence interval.

Univariate and multifactorial regression analysis. RNAseq
data and corresponding clinical information for pancre-
atic adenocarcinoma were obtained from TCGA dataset
(TCGA-PAAD, Version 35). The influence of MYOIE and
clinical features of PAAD patients (age, gender, M-stage,
pINM-stage, and grading) on ‘OS’ was evaluated using
univariate and multivariate regression models (P<0.05) using
the ‘forestplot’ package. Following this analysis's findings, we
created a Nomogram using the ‘rms’ package to forecast the
overall recurrence rate at 1, 2, and 3 years. Using the ‘stage
plot’ panel of GEPIA2, the link between MYOIE and the
pathological stage of PAAD was assessed. P<0.05 was consid-
ered significant.

Differentially expressed genes analysis.In the TCGA database,
the median expression of MYOIE was separated between high
and low expression groups, and 237 differential genes were
obtained and analyzed for differential expression using the
‘Limma’ package of R. Differentially expressed genes (DEGs)
were considered as the threshold value with log2 (fold change)
>1 and adjusted P<0.05.

String protein network analysis. We built a protein-protein
interaction network (PPI) of MYOI1E-binding proteins through
the STRING website (http://STRING-DB.org/); using the
main settings ‘evidence’, ‘experimental’, and ‘low confidence’,
the top 50 MYOIE-interacting proteins were obtained. Next,
using the ‘similar genes detection’ module of GEPIA2, the
top 100 target genes connected with MYOIE were selected.
We used an interactive Venn diagram viewer (Jvenn) (15) to
intersect the two sets of data.

Enrichment analysis. We used R's ‘clusterProfiler’, ‘enrich-
plot’, and ‘org.Hs.eg.db’ packages for Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrich-
ment analysis and ‘ggplot2’ for bubble and histogram plots.
P<0.05 is considered to be a meaningful pathway.

Immunological characterization. We downloaded RNAseq
data from the TCGA database for PAAD. We used the TIMER
algorithm for the immune scoring of B cells, CD4* T cells,
CDS8* T cells, neutrophils, macrophages, and myeloid dendritic
cells via the ‘immunedeconv’ package. We continued to
explore the expression and infiltration of MYOIE in these cells
using the ‘immunegene’ module in the TIMER?2.0 database
(https://cistrome.shinyapps.io/Timer/) (16). Immunoinfiltration
of tumor-associated fibroblasts was assessed by the
MCPCOUNTER and EPIC algorithms. In addition, TISIDB
(http://cis.hku.hk/TISIDB/) is a database that can query the
immune interactions of specific genes with tumors (17), and
we evaluated the relationship between MYOIE and chemo-
kines/receptors through the ‘chemokine’ module. Finally, we
extracted the expression of CD274, CTLA4, HAVCR2, LAGS3,
PDCDI1, PDCDILG2, TIGIT, and SIGLEC15 and analyzed the
expression of MYOIE and immune checkpoints by ‘pheatmap’
package. Adjusted P<0.05 was considered significant.

Cell culture and transfection. Human normal pancreatic
ductal epithelial cells (HPDE) from Cellosaurus cell bank
(https://www.cellosaurus.org/) and pancreatic adenocarcinoma
cell lines (ASPC-1, BXxPC-3, MIA PaCa-2, and PANC-1) were
obtained from the Chinese Academy of Sciences (https:/www.
cellbank.org.cn/). HPDE, ASPC-1, and BxPC-3 cells were
cultured in RPMI1640 (Gibco) containing 10% fetal bovine
serum and 1% P/S; MIA PaCa-2 and PANC-1 cells were
cultured in DMEM under the same conditions, and all cells
were cultured at 37°C in a 5% CO, incubator. The si-MYOIE
target sequence was si-MYOIE#1 (sense 5-CAGAAGCAA
CUACCUCUGAAA-3"; antisense 5-UUUCAGAGGUAG
UUGCUUCUG-3"), si-MYOIE#2 (sense 5'-CCUCAUAGA
GAACAAAGUGAA-3"; antisense 5'-UUCACUUUGUUC
UCUAUGAGG-3") (Sangon Biotech) were transfected using
Lipofectamine 3000 (Invitrogen; Thermo Fisher Scientific), and
all steps were performed strictly according to the instructions.
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Figure 1. Flowchart of the study design. DEGs, differentially expressed genes; EMT, epithelial-mesenchymal transition; GEO, Gene Expression Omnibus;
GEPIA2, Gene Expression Profiling Interactive Analysis 2; GO, Gene Ontology; GTEx, Genotype-Tissue Expression; KEGG, Kyoto Encyclopedia of Genes
and Genomes; MYOIE, myosin 1E; PAAD, pancreatic adenocarcinoma; RT-qPCR, reverse transcription-quantitative PCR; STRING, Search Tool for the
Retrieval of Interacting Genes/Proteins; TCGA, The Cancer Genome Atlas; TIMER?2.0, Tumor Immune Estimation Resource 2.0; UALCAN, The University

of Alabama at Birmingham Cancer Data Analysis Portal.

Reverse transcription-quantitative PCR (RT-qgPCR) assay.
PAAD tissues or cell lines were treated with TRIzol
(Invitrogen; Thermo Fisher Scientific) to extract total
RNA. RNA quality and concentration were determined
using a NanoDrop spectrophotometer (Thermo Fisher
Scientific), and reverse transcription was performed using
the PrimeScript™ RT Reagent kit (Takara). RT-qPCR
analysis was performed using TB Green® Premix Ex Taq
TM (Takara). The MYOIE primer sequence was sense
5'-GCAGCAGTCTACCAGTTC-3' and antisense 5'-GAG
CGTCATAGGCATACAA-3'. GAPDH (sense 5'-CCACAG
TCCATGCCATCACTG-3'; antisense 5'-GTCAGGTCCACC
ACTGACACG-3") was selected as the endogenous reference.

The 222 method (18) was used to calculate the experimental
results.

Western blot assay. Total proteins from PAAD tissues or cell
lines were extracted using radio immunoprecipitation assay
(RIPA) lysate (Merck Millipore), and protein quantification
was performed using the BCA kit. Then, 5x loading buffer
was added and boiled for 10 min at 95°C. The proteins were
separated by electrophoresis using 10% sodium dodecyl
sulfate-polyacrylamide gel (SDS-PAGE) and then transferred
to a 0.45 ym PVDF membrane. Five percent skim milk was
blocked at room temperature for 2 h, incubated with the corre-
sponding primary antibodies MYOIE, Cyclin E2, GAPDH,
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CDK4, CDK2, P27, E-cadherin, vimentin, N-cadherin (all
the above antibodies were from Proteintech, China) overnight
at 4°C. TBST was washed 3 times and incubated with the
corresponding species; secondary antibodies were incubated
at room temperature for 2 h, and ECL reagent (Boster) was
used for exposure imaging.

Cell proliferation, migration and invasion assays. CCK-8
experiment: CCK-8 chromogenic solution (GlpBio) was
added to 96-well plates containing 3x103 cells per well and
incubated for 2 h at 37°C, and absorbance values at 450 nm
were measured.

EDU incorporation experiment. Using the Click-iT EDU-555
kit (Servicebio), 20 uM EDU storage solution was added and
incubated for 2 h, and the fluorescent dye iF555 was used for
staining. Photographs were taken under a fluorescence micro-
scope (Nikon Japan).

Wound healing assay. When cell fusion in the 6-well plate
reached 100%, the cells were scratched using the tip of a 200 pl
pipette, and the wound area was recorded after O h, 24 h, and
48 h incubation in serum-free medium.

Cell migration assay. In an upper chamber of a Transwell plate
containing 200 ul of serum-free media (NEST Biotechnology
Co.), 1x10* cells were seeded, and 800 ul of medium containing
20% fetal bovine serum was added to the bottom chamber.
Migrating cells were stained with 0.5% crystal violet. The
same method was used for cell invasion experiments, except
that matrix gel was added at a concentration of 50 mg/l in the
upper chamber of the Transwell plate (R&D Systems).

Statistical analysis. Pan-cancer comparative analysis
was performed using the Mann-Whitney U test. A paired
Student's t-test was used to compare the RT-qPCR data for
the collected pancreatic adenocarcinoma tissues and their
adjacent normal tissues. For datasets containing multiple
groups, one-way ANOVA with Tukey and least significant
difference post hoc multiple comparison tests was used.
Survival analysis was performed using the Kaplan-Meier
method and log-rank test. The impact of MYOIE and clinical
features of PAAD on OS was analyzed using univariate and
multifactorial regression, and nomograms were constructed
to predictthe OS of PAAD at 1,2, and 3 years. The association
between MYOIE and tumor pathways was evaluated using
Spearman's correlation coefficients. All statistical analyses
were performed using R. The statistical threshold is P<0.05,
and continuous data were reported as the mean + standard
deviation.

Results

Expression analysis of MYOIE in different cancers. To explore
the expression of MYOIE in different cancers, we analyzed
the expression level of MYOIE in 33 malignancies using the
TCGA and GTEx datasets. The findings demonstrated that
MYOIE expression kurtosis was elevated in tumor tissues
relative to normal tissues in the vast majority of malignancies,
including PAAD (Fig. 2A). Next, we used CPTAC to assess

the levels of MYOIE protein expression in each tumor. The
findings indicated that MYOIE expression was higher in lung
adenocarcinoma (LUAD), glioblastoma (GBM), PAAD, colon
adenocarcinoma (COAD), breast invasive carcinoma (BRCA),
and head and neck squamous carcinoma (HNSC) than in
normal tissues (Fig. 2B). Combining the data of each database,
we found that the elevated expression of MYOIE in PAAD
was more stable; thus, we further investigated the specific role
of MYOIE in PAAD.

Expression of MYOIE in PAAD. Based on the above screening
results, to verify the expression of MYOIE in PAAD, we
collected three datasets (GSE16515, GES62165,and GSE15471)
through the GEO database. We found that MYOIE expression
was considerably greater in PAAD tissues than in normal
tissues (Fig. 3A). We verified this by RT-qPCR and western
blotting experiments using collected PAAD tissues and paired
adjacent normal tissues. We found that the mRNA and protein
expression levels of MYOIE in PAAD tissues were higher
than those in normal tissues (Fig. 3B and C). Next, we used
RT-qPCR and a Western blot assay to measure the amount of
MYOIE expression in PAAD cell lines. The findings revealed
that MYOIE was substantially expressed in PAAD cell lines
(Fig. 3D). In addition, the immunofluorescence colocalization
assay showed that MYOIE was localized in the cytoplasm
(Fig. 3E).

Clinical prognostic correlation between MYOIE and
PAAD. MYOIE is abundantly expressed in PAAD tissues,
so we wanted to analyze the relationship between MYOIE
and PAAD patients. We downloaded the RNAseq data and
clinical information of PAAD patients from the TCGA
database. Through univariate and multivariate regression
analyses, MYOIE might function as a standalone prog-
nostic factor for PAAD (Fig. 4A and B). The nomogram
further indicated that MYOIE could be used as an inde-
pendent factor affecting PAAD patients' OS and predict the
prognosis at 1, 2, and 3 years (Fig. 4C and D). To clarify
the connection between MYOIE and PAAD survival prog-
nosis, we demonstrated by Kaplan-Meier analysis that high
MYOIE expression was inversely connected with OS and
DFS in PAAD patients (Fig. 4E). In addition, the GEPIA2
database also found that MYOIE was associated with the
pathological stage of PAAD (Fig. 4F). These data indicated
that MYOILE might have a cancer-promoting function in
PAAD.

Potential function of MYOIE in PAAD. To analyze the poten-
tial biological functions of MYOIE in PAAD, we performed
enrichment analysis by DEGs. We downloaded the RNAseq
data and clinical information of PAAD patients from TCGA
database. Patients were into high and low expression groups
based on the median expression of MYOIE in PAAD. The
two groups of DEGs were compared using llog2FCI>1. We
found 237 genes with differential expression, including 236
upregulated genes and 1 downregulated gene (Fig. 5A). The
heatmap (Fig. 5B) shows the expression of these DEGs in
different tissues. As there is only one downregulated gene,
it is not being analyzed. Then, we performed KEGG and GO
enrichment analyses on the upregulated DEGs. The findings
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Figure 2. Expression levels of MYOIE in different tumor tissues and normal tissues. (A) Analysis of MYOIE expression in 33 tumors based on TCGA (version
35) and GTEXx (version 8) data using R (version 4.2.1). In some cases, statistical analysis could not be performed because only tumor tissue data but not normal
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of the KEGG enrichment analysis demonstrated that upregu-
lated DEGs were mostly related to the PI3K-AKT signaling
pathway, ECM-receptor interaction, and proteoglycans
(Fig. 5C). In addition, the GO enrichment analysis showed
that upregulated DEGs were associated with extracellular
structural organization, extracellular matrix organization,
epithelial cell proliferation, and cell-substrate adhesion
(Fig. 5D). So we analyzed the markers related to MYOIE and
cell proliferation and migration through the TCGA database.
The results showed that MYOIE was positively correlated
with CDK2, CDK4, CDK6, CCNBI1 (Cyclin B1), CCNDI
(Cyclin D1), CCNE2 (Cyclin E2), FN1, SNAIL, and VIM
(Vimentin) (Fig. 6A-C). These results indicated that MYO1E
might regulate cell proliferation and Epithelial-Mesenchymal
Transition (EMT).

Molecular interactions of MYOIE in PAAD. To further
investigate the intrinsic mechanism of MYOIE gene in tumor-
igenesis, we screened the top 50 proteins bound to MYOIE
using the STRING database (Fig. 7A) and identified the top
100 genes related to MYOIE expression in PAAD utilizing
the GEPIA2 database. Cross-tabulation examination of the
two datasets above revealed that ARPCS5 and ARPC2 crossed
each other (Fig. 7B). We performed an enrichment analysis
on both datasets. The KEGG enrichment analysis indicated
that MYOIE might participate in the Ras signaling pathway,
phosphatidylinositol signaling system, and Hippo signaling
pathway (Fig. 7C). The GO enrichment analysis showed that
MYOIE was involved in adhesion, EMT, epithelial cell prolif-
eration, and migration (Fig. 7D). Furthermore, we analyzed
ARPC5 and ARPC2 proteins. GEPIA2 database analysis
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Figure 3. Expression levels of MYOI1E in pancreatic adenocarcinoma. (A) MYOIE expression in the GSE16515, GSE62165 and GSE15471 datasets. (B) Analysis
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tissues and adjacent normal tissues using western blotting. (D) RT-qPCR and western blot analyses of MYOIE expression in PAAD cell lines (Tukey post
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myosin 1E; PAAD, pancreatic adenocarcinoma; RT-qPCR, reverse transcription-quantitative PCR; N, normal tissue; T, tumor tissue.

revealed that ARPC5 and ARPC?2 are also highly expressed
in PAAD (Fig. 7E and F). ARPCS5 and ARPC2 are members
of the actin-related protein 2/3 complex (Arp2/3) (19,20) and
are involved in tumor development. Examples include multiple
myeloma (21), breast cancer (22), and gastric cancer (23).
Notably, related literature reported the analysis of ARPCS5 and
ARPC2 in immunology, suggesting that ARPC5 and ARPC2
may be crucial for tumor immunity (24-26).

Relationship between MYOIE expression and immune
characteristics. MYOIE is a potential interacting protein of
ARPCS5 and ARPC2, and we next investigated MYOIE in
immunological aspects. As a major component of the TME,
tumor-infiltrating immune cells are essential for tumor
growth (27,28). Using the TIMER method, we evaluated
the connection between MYOIE and immune cell infiltra-
tion with the ‘immunedeconv’ package. We found that
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Figure 4. Association between MYOIE expression and pancreatic adenocarcinoma survival prognosis. (A-D) Based on TCGA (version 35) data, the association
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MYOIE was substantially linked to higher B-cell scores,
CD8'T cells, neutrophils, macrophages, and dendritic cells
(Fig. 8A). Additional investigation found that MYOIE
expression was negatively correlated with tumor purity
(cor=-0.183, P=1.61¢?) and positively correlated with
CD8*'T cells (cor=0.376, P=4.03e-07), B cells (cor=0.261
P=5.53e-04), macrophages (cor=0.29, P=1.21e-04), neutro-
phils (cor=0.437, P=2.33e-09), and dendritic cells (cor=0.475,
P=5.46e-11). At the same time, there was no significant

relationship with CD4*T. Cancer-associated fibroblasts
regulate tumor-infiltrating immune cells (29,30), and we
further confirmed whether MYOIE has a relationship with
cancer-associated fibroblasts. Using the TIMER2.0 database
with MCPCOUNTER and EPIC algorithms, we found that
MYOIE was significantly associated with cancer-associated
fibroblasts (EPIC: Rho=0.505, P=1.99¢'?, MCPCOUNTER:
Rho=0.456, P=3.69¢"'%) (Fig. 8B). Furthermore, chemokines
can be expressed by cells, including immune cells and stromal
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Figure 5. Functional enrichment analysis of DEGs based on The Cancer Genome Atlas (version 35) data. (A) Differences in genes between groups with
high and low MYOIE are shown on a volcano map. (B) Heat map analysis of MYOIE expression-related DEGs. (C) KEGG and (D) GO enrichment analysis
of upregulated DEGs. DEGs, differentially expressed genes; ECM, extracellular matrix; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and
Genomes; MYOIE, myosin 1E; AGE, advanced glycation end products; RAGE, AGE receptor; p.adjust, adjusted P-value.

cells in TME (31), regulating the phenotype and function of
immune cells by modulating their localization and cellular
interactions in lymphoid tissue and TME (32). We found
that MYOIE was positively correlated with CCL7, CCL24,
CXCL14, CCR1, CCR3, and CCRS through the TISIDB data-
base analysis (Fig. 9A and B), and MYOIE may be implicated
in immune cell migration to TME. The primary purpose of
immune checkpoint molecules associated with tumor cells
is to mediate immune evasion and play a crucial role in
maintaining several malignant tendencies (33). Finally, we
investigated the expression of high and low MYOIE groups
with immune checkpoints. We downloaded RNAseq data and
clinical information of PAAD patients from TCGA database
and used the ‘ggplot2’ package for analysis. The results showed
that CD274 (p=9.67¢*), HAVCR2 (p=1.39¢**, PDCDILG2
(p=4.26¢, and SIGLECI15 (p=5.00e%?) were significantly
elevated in the high expression group of MYOIE (Fig. 9C).

Silencing of MYOIE inhibits proliferation, invasion and
migration of pancreatic adenocarcinoma cells in vitro.
Based on the above preliminary bioinformatics analysis,
we conducted in vitro tests to further confirm the impact
of MYOIE on PAAD cells. Through the above validation
on PAAD cell lines, we selected MIA PaCa-2 and PANC-1
for experimental studies. We constructed MYOILE small
interfering RNA (Si-NC, Si-MYOI1E#1, and Si-MYOI1E#2)
and performed RT-qPCR and Western blotting for valida-
tion (Fig. 10A and B). The CCK-8 and EDU incorporation
experiment demonstrated that MYOIE downregulation
effectively suppressed the proliferation ability of PAAD cells
(Fig. 10C-E). We subsequently studied the impact of MYOI1E
on cyclins, and the Western blot analysis results indicated
that downregulation of MYOIE led to reduced expression
of Cyclin E2, CDK4, and CDK2 and increased expression
of P27 (Fig. 10F). A wound healing test and Transwell assay
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Figure 6. Based on The Cancer Genome Atlas data, scatter plots of MYOIE expression and cell proliferation and EMT marker expression were obtained using
the Gene Expression Profiling Interactive Analysis 2 (version 2) database. (A) Relationship between MYOI1E and CDK2, CDK4 and CDK®6. (B) Relationship
between MYOIE and CCNB1, CCNDI and CCNE2. (C) Relationship between MYOIE and FN1, SNAIL and VIM. CCNBI, cyclin Bl; CCNDI, cyclin DI;
CCNE2, cyclin E2; FN1, fibronectin 1; MYOIE, myosin 1E; TPM, transcripts per million; VIM, vimentin.

were conducted to confirm the impact of MYOIE on the
invasion and migration of PAAD cells. The wound healing
experiment revealed that MYOIE downregulation reduced
PAAD cell migration ability (Fig. 11A-D). The Transwell
experiment revealed that the number of invading and
migrating PAAD cells decreased when MYOIE was down-
regulated compared with the control group (Fig. 11E-H).
We validated the EMT protein by Western blot assay. The
downregulation of MYOIE resulted in decreased expression
of N-cadherin and vimentin and increased expression of
E-cadherin (Fig. 11I). These findings imply that silencing
MYOIE decreases PAAD cell proliferation, invasion, and
migration.

Discussion

PAAD is one of the solid tumors with the worst prognosis.
American Society of Clinical estimates that there will be
approximately 57,600 new cases and 47,050 PAAD deaths in
the United States in 2020, with a mortality rate almost similar
to the incidence rate and second only to colon cancer among
gastrointestinal tumors (34,35). Therefore, early diagnosis and
treatment of PAAD are crucial, and the search for efficient
biomarkers and fresh treatment targets is crucial.

MYOIE is a member of the class I myosins. Localization
studies have shown that MYOIE is present in regions of high
actin concentration (36) and can bind ATP and the motor head
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structural domain, calmodulin-binding neck region, and tail  to promote cellular endocytosis, migration, and cell motility in
structural domain of F-actin (37). MYOIE has been reported  various ways (38,39). This protein's functional abnormalities
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are found in tumor progression and various pathological states
of renal disease (40). Given the limited studies of the MYOIE
gene in tumors, we further examined the biological roles and
possible regulation mechanisms of MYOIE in PAAD using
bioinformatics and in vitro functional tests.

We evaluated the mRNA and protein expression levels
of MYOIE in several cancer types using TCGA, GTEx, and
CPTAC datasets and found that MYOIE was substantially
expressed in many tumors. This indicates that MYOIE may
have a pro-cancer function in the formation of tumors. The
GEO databases revealed that MYOIE expression in PAAD
tissues was considerably greater than in normal tissues.
We used RT-qPCR and Western blot for validation, and the
results were consistent with bioinformatics analysis. In addi-
tion, Kaplan-Meier evaluated the predictive significance of
MYOIE in PAAD. We found that MYOIE was closely associ-
ated with poor OS and poor DFS in PAAD, and MYOIE may
function as a PAAD oncogene and prognostic biomarker. We
subjected 236 upregulated DEGs to KEGG and GO enrich-
ment analysis and found that upregulated DEGs were linked
in the PI3K-Akt-mTOR signaling pathway, ECM-receptor
interaction, proteoglycan, and cell-substrate adhesion. We
further analyzed MYOIE's potential value in PAAD. We
investigated the potential binding protein of MYOIE in
PAAD through the PPI protein interaction network. The
KEGG and GO enrichment analyses revealed that MYOI1E
and its interacting proteins were mainly associated with the
Ras signaling pathway, phosphatidylinositol signaling system,
Hippo signaling pathway, adhesion class, EMT, epithelial cell
proliferation, and migration. In addition, we identified two
genes, ARPCS5 and ARPC2, by cross-tabulation analysis of the
dataset. The literature review found that ARPC2 and ARPC5
were involved in migrating invasive tumors (41,42), suggesting
that MYOIE may promote PAAD progression through related
synergistic effects.

Currently, surgery remains the only radical treatment
for patients with PAAD. However, without additional
treatment, more than 90% of patients will recur after
surgery (43). Immunotherapy, alongside surgery, radia-
tion, and chemotherapy, has been recognized as the fourth
pillar of cancer treatment (44). Therefore, we analyzed and
studied tumor-infiltrating immune cells, tumor-associated
fibroblasts, chemokines, and immune checkpoints in TME.
We evaluated the MYOIE score with immune infiltrating
cells using the TIMER method and found that high MYOI1E
expression was positively connected with B cells, CD8*
T cells, neutrophils, macrophages, and dendritic cells in
PAAD. Using the MCPCOUNTER and EPIC algorithms,
we found that MYOIE is closely related to tumor-associated
fibroblasts. Chemokines are crucial for immune cell migra-
tion; thus, we analyzed them using by TISIDB database
and found that MYOI1E was closely associated with CCL7,
CCL24, and CXCL14. MYOI1E may be involved in migrating
immune cells in the TME. Next, we evaluated immune
checkpoints and immune checkpoint inhibitors (ICIS), a
class of immunotherapies that modulate tumor immune
tolerance by blocking specific inhibitory receptor-ligand
interactions on the surface of immune cells (45). However,
this study was not performed to experimentally validate the
role of MYOIE in tumor immunology, which is a limitation

of this paper. In the future, we would like to validate the
effect of MYOIE on immune cells by flow cytometry and
immunohistochemistry experiments. These experiments can
further validate the role of MYOIE in tumor immunology.
Taken together, MYOIE is implicated in tumor immune
modulation and may provide a novel PAAD immunotherapy
method. To verify in vitro the impact of MYOIE on PAAD
cells, we found that suppressing MYOIE decreased the
proliferation, invasion, and migration of PAAD cells using
CCK-8, EDU, wound healing, Transwell, and Western blot
assays.

In this work, we initially revealed the potential functions
and possible mechanisms of MYOIE in PAAD through a
comprehensive analysis of bioinformatics and in vitro Assays,
but there are still some shortcomings of this study. First, the
MYOIE analysis was derived from tumor databases, and errors
existed between databases. Second, although we performed
functional in vitro trials, in vivo experimental confirmation is
lacking. Finally, clinical data were not assessed as there was
a small clinical sample of PAAD in the database. We will
do more research to determine the mechanism of action of
MYOIE in PAAD.

In conclusion, we performed a bioinformatics-based inves-
tigation of the expression, prognosis, and potential pathways
of MYOIE in PAAD. We found that MYOIE may regulate
the proliferation and migration of PAAD cells and partici-
pate in tumor immunology. In vitro experiments showed that
silencing MYOIE inhibits PAAD cellular proliferation, inva-
sion, and migration. MYO1E may function as a biomarker for
PAAD and provide a new strategy for diagnosing and treating
PAAD.
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