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Humans can impact the spatial transmission dynamics of infec-
tious diseases by introducing pathogens into susceptible environ-
ments. The rate at which this occurs depends in part on human-
mobility patterns. Increasingly, mobile-phone usage data are used
to quantify human mobility and investigate the impact on disease
dynamics. Although the number of trips between locations and the
duration of those trips could both affect infectious-disease dynam-
ics, there has been limited work to quantify and model the dura-
tion of travel in the context of disease transmission. Using mobil-
ity data inferred from mobile-phone calling records in Namibia,
we calculated both the number of trips between districts and
the duration of these trips from 2010 to 2014. We fit hierarchi-
cal Bayesian models to these data to describe both the mean trip
number and duration. Results indicate that trip duration is posi-
tively related to trip distance, but negatively related to the destina-
tion population density. The highest volume of trips and shortest
trip durations were among high-density districts, whereas trips
among low-density districts had lower volume with longer dura-
tion. We also analyzed the impact of including trip duration in
spatial-transmission models for a range of pathogens and intro-
duction locations. We found that inclusion of trip duration gen-
erally delays the rate of introduction, regardless of pathogen,
and that the variance and uncertainty around spatial spread
increases proportionally with pathogen-generation time. These
results enhance our understanding of disease-dispersal dynam-
ics driven by human mobility, which has potential to elucidate
optimal spatial and temporal scales for epidemic interventions.
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Modern human populations are characterized not only
by their wide-ranging spatial distribution, but also by

the behavioral travel patterns that form the basis of human-
population mobility (1). Individual-level travel is often character-
ized by short movements to few locations, with occasional travel
to distant locales, giving human-mobility patterns a long-tailed
distribution (2). The sum effect of these individual trajectories
comprises connectivity among human communities, which is a
fundamental driver of the spatial transmission of infectious dis-
eases (3–7). Infected individuals who travel into new susceptible
populations may introduce pathogens that result in disease out-
breaks (8–10). Traveling susceptibles may also result in “spatial
back spill” if encountering infecteds in a neighboring (or distant)
town. Therefore, quantifying human travel on scales relevant
for disease transmission is necessary to predict pathogen spatial
spread and populations at risk (11, 12).

In the context of spatial disease dynamics, travel encompasses
not only the number of individuals who move between loca-
tions, but also the duration of these trips. Although the number
of trips has been extensively studied by using both individual-
and population-level data, less emphasis has been placed on how
the duration of these trips impacts spatial transmission (13–17).

The amount of time an infected individual spends in a destina-
tion while traveling (trip duration) may impact the probability of
onward transmission, where longer trips increase the likelihood
of transmission in the visited location (18). Conversely, shorter
turn-around times of wayward exposed susceptibles may also
enhance spatial contagion. In either case, the trip duration mod-
ulates these aspects of spatial contagion based on the proportion
of the pathogen’s generation time spent in the destination.

Few datasets exist that can comprehensively and systemati-
cally quantify both the number of trips between locations and the
duration of those trips for populations. Census-based datasets—
including migration data (19), which measure a change in the
residence location, and journey-to-work surveys (20), which mea-
sure the frequency and location of occupation travel—have lim-
ited additional information on the time spent in these locations
(13, 14). Individual-level mobility data, such as global-positioning
system loggers and travel surveys, are able to include information
about the duration of travel, but are rarely generalizable across
large populations (21, 22). Mobility data derived from mobile-
phone records can add an additional source of information on
both locational travel and trip duration. However, these data can
be difficult to obtain and computationally intensive to process. In
previous analyses, often only the number of trips between loca-
tions has been analyzed (6, 23–26), despite the fact that other
aspects of travel can be mined from these data.

Significance

The spatial dynamics of infectious-disease spread are driven
by the biology of the pathogen and the connectivity pat-
terns among human populations. Models of disease spread
often use mobile-phone calling records to calculate the num-
ber of trips made among locations in the population, which
is used as a proxy for population connectivity. However, the
amount of time people spend in a destination (trip duration)
also impacts the probability of onward disease transmission
among locations. Here, we developed models that incorpo-
rate trip duration into the mechanism of disease spread, which
helps us understand how fast and how far a pathogen might
spread in a human population.
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Integrating data and models of human travel into disease mod-
els has been extensively used to predict or understand the spatial
spread of various infectious diseases (7, 9, 27–29). In these mod-
els, infected humans in an index location introduce pathogens
into areas where they are currently absent—either because of
previous control, previous susceptible depletion, or because they
are novel pathogens—which leads to new disease outbreaks.
The strategic deployment of public health interventions, such as
reactive vaccination campaigns (30–32), increased access to pre-
ventative and treatment options (33–35), and travel restrictions
(36, 37), all require an accurate prediction of where and when
introduction events will occur. Data describing aspects of human
travel on spatial and temporal time scales relevant to disease
transmission are often unavailable; hence, researchers and pub-
lic health officials have relied on models of mobility. However,
adding duration to these models of trip counts may help capture
aspects of travel to more realistically describe epidemiologically
relevant mobility patterns.

Here, we analyzed mobility data derived from mobile-phone
calling data in Namibia to develop a model that directly inte-
grates both the number of trips and the duration of travel.
Although these data have been studied previously (24, 26), the
importance of including duration in a more general framework
has yet to be considered. Using a hierarchical model of mobility,
we investigate how the duration of travel varies with the com-
monly used geographic variables of population size and distance
between the origin and destination. We also assess the impor-
tance of including trip duration in spatial disease-transmission
models for a range of pathogen life histories and locales of
introduction. We show that including the duration of travel into
transmission models delays the timing of spatial spread by mak-
ing transmission dynamics less coupled among locations. We
further discuss the variability of this effect across pathogens and
its implications for the timing of control and outbreak responses.

Results
We analyzed daily call data records (CDRs), which estimate
the movement of mobile-phone subscribers between 105 dis-
tricts in Namibia to build daily origin–destination travel matrices
(Fig. 1). In total, over 259 million trips made by ∼2.5 million sub-
scribers from October 1, 2010, to April 29, 2014, were analyzed.

We aggregated the data by assigning each subscriber to a daily
location (district) based on which district contained their most-
used mobile-phone tower. A “trip” was counted if the most-used
mobile-phone towers were in different districts on subsequent
days; otherwise, a subscriber was classified as staying in the same
location. For each trip, the date the trip began and the num-
ber of days the subscriber spent in the destination district (trip
duration) were recorded. We used daily trip-duration counts to
estimate the decay rate in duration for each route and then
used these estimates in a modified gravity model fitted to mean
monthly trip counts. In total, we analyzed travel between 62 of
the 105 districts that contained a minimum of 20 observations to
ensure model convergence (Materials and Methods and Fig. 1 A
and B). Districts were further classified based on their population
density, resulting in 10 high-density (>1,000 people per km2) and
52 low-density (≤1,000 people per km2) districts (Materials and
Methods and SI Appendix, Fig. S1).

The Relationship between Trip Counts and Duration with Distance
and Population. The majority of trips were made over short geo-
graphic distances and for a short duration, though the actual
trip counts were likely biased due to the distribution of the
mobile-phone towers. In terms of distance, half of the total trips
traversed less than 25 km (46%), and a moderate percentage of
the total trips were farther than 100 km (21%). Overall, these
trips lasted up to a week, with a mean of 6.4 d (95% CI: 1 to 44)
and maximum of 1,307 d. Approximately half of the total trips
remained in the destination for 1 d (47%)—the temporal scale
over which these data were aggregated—or stayed for durations
longer than 2 wk (8%; SI Appendix, Table S1). Overall, counts of
both trip duration and trip distance decayed rapidly, consistent
with an exponential distribution in the case of trip duration and
a Gamma distribution in the case of trip distance (SI Appendix,
Fig. S4).

To summarize the distribution of observed trip durations along
each route, we estimated the exponential rate of decay in trip
count as a function of trip duration using a hierarchical Bayesian
model. The model estimated the mean decay rate in trip dura-
tion at the population level (λ′) and the decay rate of each i
to j route (λij ; Materials and Methods). We estimated the over-
all mean number of trips per route lasting 1 d to be 2,220 and
the population-level decay parameter (λ′) to be 0.43 among all
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Fig. 1. The distribution of the population in Namibia and mobility data used in analyses. (A) Log-transformed population density for all districts in Namibia
with districts with lower and higher relative population density in light blue and dark blue, respectively. (B) Districts included in the analysis are shaded with
colored centroids (n = 62). Districts with low population density (n = 52) are shown in blue, and districts with high population density (n = 10) are shown in
red. (C) The log count of trips made for a given trip duration (days) and trip length (kilometers).
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Fig. 2. Results from the hierarchical Bayesian model showing that most trips are short and among high-density districts, but duration increases for longer
trip distances and low-density destinations. (A) Trip-duration decay rate (λ̂ij) plotted over time (days) for each ij route (transparent black lines) and population
mean (teal line). Inset shows close-up of the population mean for smaller values of Ndecay (y). (B) The relationship between λ̂ij and the distance separating
districts i and j. The teal line shows the trend between these two variables represented as a LOESS regression with 95% CIs (shaded region). In C and D, the
values of λ̂ij and proportion of total trips are plotted using a cutoff of 1,000 people per km2 to define the origin i and destination j, according to “high” or
“low” population density. (C) Violin plots show the distribution of λ̂ij for four route types compared to the population mean (dashed line). (D) Violin plots
show the log-scaled distribution of the proportion of total trips for the four route types over each day. Abbreviation HH indicates travel from high to high
population density, and LL indicates low to low.

districts (0.43 to 0.44 95% highest posterior density [HPD]),
which means that, on average, the number of trips decayed at the
rate of roughly 0.37% per day added to the trip duration (Fig. 2A
and SI Appendix, Fig. S4).

Estimates of the route-level trip-duration decay rate (λij ) var-
ied widely compared to the population mean and were largely
dependent on both trip distance and the population density of
the origin and destination districts. We estimated the correla-
tion between trip-duration decay parameter (λij ) and observed
trip distance to be −0.29 (−0.32, −0.26 95% CI). This sig-
nificant negative relationship—where trip-duration decay rate
decreased as trip distance increases—indicated that mean trip
length (1/λij ) increased with distance. We fit a locally estimated
scatterplot smoothing (LOESS) regression weighted by sample
size to show that the strength of this relationship varied over
distance, with an accelerated decline from 0 to 200 km and
after 600 km (Fig. 2B). Estimates of the duration decay rate
(λij ) were higher than the population mean for trips between
high-density districts (λij =0.45, 0.2 to 0.53 95% HPD), which
indicated that trips of this route type were consistently shorter
than all other route types when considering a threshold of
1,000 people per km2 (Fig. 2C and SI Appendix, Fig. S5 and
Table S2). When we used a threshold of 2,500 people per km2,
this relationship was more pronounced (λij =0.48, 0.4−−0.53
95% HPD), with an increase in λij for the low- to high-density
route type as well. Our analysis thus revealed that density of
the destination district was inversely related to trip duration,
where higher population density translated to higher decay rates
and shorter duration (SI Appendix, Fig. S5 and Table S2). For

the total observed trips taken in each route type, we found
that routes between high-density districts had seven to eight
times more trips per route per day compared to other route
types (Fig. 2D). Overall, these results suggest that trips typically
have a short duration (<1 wk) which increases with distance;
when the destination is a high-density district, the duration is
short, but when the destination is a low-density district, duration
is longer.

Updated Gravity Model Incorporating Both Trip Counts and Duration.
Spatial-interaction models of mobility, particularly the gravity
model, are commonly used to estimate the number of trips
between locations. Based on our mobility analyses, we formu-
lated a gravity model that explicitly used data from trip counts
between locations and the duration of those trips (Materials
and Methods). To compare, we also fit a basic gravity model
that used only data from trip counts. Both gravity models esti-
mate connectivity values (πij ), which are the expected proportion
of trips leaving an origin district i that travel to destination
district j . We found that the duration gravity model, like the basic
gravity model, was primarily dependent on distance to and pop-
ulation size of the destination, where πij was higher for routes
with a trip distance <250 km (SI Appendix, Fig. S8A) and routes
where the destination population density was ∼100 people per
km2 (SI Appendix, Fig. S8C). There were significant differences
in πij according to route type, with the highest values observed
for routes among high-density districts, with much lower values
estimated for routes where a low-density district was the ori-
gin, destination, or both (SI Appendix, Figs. S8D and S12). The
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lowest values of πij were fitted for routes that went from high
to low population density (SI Appendix, Fig. S8D). In addition,
there was a general pattern where districts of similar population
density had higher connectivity values (SI Appendix, Fig. S12).
These results suggest that, while the broad patterns in connectiv-
ity estimated by both the basic and duration gravity models are
similar, including information on trip duration can help model fit
for less populated routes and provide an explicit model formula-
tion that accounts for the observed dependence of trip distance
and trip duration.

We also explored differences in gravity model fit to observed
trip-count data and found that the duration gravity model pro-
vided marginally better fit to the data compared to the basic
gravity model (Fig. 3 C and D; basic gravity model: r =0.6
[−0.04, 0.98 95% CI]; duration gravity model: r =0.62 [0.1, 0.98
95% CI]). Although the mean change in model fit across all
origin districts was incremental, model fit was improved most for

districts that had lower initial fit and origins with low popula-
tion density (Fig. 3 C and E). Goodness of fit did not change for
districts with high population density where the basic gravity
model already performed well (Fig. 3 D and F). District 24
(Luderitz) was an outlier, where goodness of fit decreased dras-
tically for the duration gravity model (Fig. 3 E and F). This
particular district includes a large desert on the southwestern
coast of Namibia with a total population size of 13, 500 and
the lowest population density in the country (0.26 people per
km2). Although this district met minimum sample-size criteria,
it had the lowest number of unique observations of trip duration.
Reduced performance here was likely due to poor estimation
of the λ24· parameters in the decay model stemming from low
sample size and distance from other districts (SI Appendix, Fig.
S7 A4 and B4). Overall, this indicates that including trip duration
in the gravity model can help to improve the fit to observed trip
counts along some routes of travel more so than others and that
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this is contingent upon robust estimation of trip-duration decay
(SI Appendix, Fig. S11).

Impact of Trip Duration on Spatial Disease Dynamics. We incor-
porated trip duration decay into a stochastic disease-diffusion
model to evaluate the impact of including trip duration on
spatial-transmission dynamics. In the model, we used a Time-
Series Susceptible Infected Recovered (TSIR) framework and
calculated the spatial waiting time hazard of disease introduc-
tions to each district (Materials and Methods). We compared
the resulting spatial dynamics for simulations from a range of
pathogens and introduction events that included trip duration
(duration TSIR model) to those that did not (basic TSIR model;
Materials and Methods). Importantly, the duration TSIR model
explicitly includes an interaction between the length of a trip and
the generation time of the pathogen where trips are weighted
based on the generation time.

We simulated scenarios for six different types of pathogens
with various R0 and generation times (Materials and Methods
and SI Appendix, Table S3). Unsurprisingly, introduction events
occurred earlier for districts with high population density that
neighbor the index district. For simulations using the duration
TSIR model, peak time until introduction was generally later,
with a wider range of introduction times compared to the basic
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TSIR model (Fig. 4). Including trip duration delayed spatial
spread by reducing the spatial coupling of transmission among
districts (SI Appendix, Fig. S14), although the magnitude of this
effect varied based on the type of pathogen and initial intro-
duction district (SI Appendix, Fig. S15). For a small number of
simulations of pathogens with high R0 values, introduction times
were earlier for the duration TSIR model compared to the basic
TSIR model, which suggests that in some instances, the effect of
a higher R0 negates any impact of including duration (Fig. 5A
and SI Appendix, Fig. S17). Further, we found that the overall
magnitude of the delay caused by the inclusion of trip duration
was comparable between high- and low-density introductions (SI
Appendix, Fig. S16A); however, there were measurable differ-
ences in the uncertainty and variance of importation times to
other districts. In simulations with high-density introductions,
variability in peak importation times and uncertainty around
each peak was increased compared to simulations with a low-
density introduction (Fig. 5B and SI Appendix, Fig. S17B). That
is to say, introduction events to other locations are more spread
out over time, but the window of time in which they may
occur is longer. The magnitude of this increase was propor-
tional to the generation time of the pathogen, which suggests that
pathogens with longer generation times exhibit more variable
spatial dynamics because the mean trip duration (6.4 d) com-
prises a smaller proportion of the generation time compared to a
shorter generation time, which is more robust to degradation by
trip duration.

Discussion
Spatial infectious-disease dynamics are often driven by human
travel. Both the number of trips and duration of those trips
may be relevant, but the latter has rarely been considered to
date. Here, using a dataset of human mobility quantified from
mobile-phone calling records in Namibia, we developed a spa-
tial interaction model that incorporates both factors and assess
the impact of including duration on disease dynamics. We find
that, while the duration of trips is positively related to the dis-
tance between origin and destination, the number of those trips
is inversely related with distance. Although including trip dura-
tion in a gravity model only marginally improves model fit to the
data, we see a larger improvement in estimating trips from less-
populated areas, which is a well-known limitation of the basic
gravity model (38, 39). Overall, including duration into a spatial
disease transmission model decreases spatial coupling between
locations, resulting in longer waiting times until disease intro-
duction compared to a basic transmission model. These results
are fairly robust to the type of pathogen and the location of the
first introduction event.

The gravity model that includes the duration of trips devel-
oped here is reliant on highly detailed mobility data. One major
critique of the gravity model is that it is overparameterized, lead-
ing people to propose a parameter-free alternative named the
Radiation model (40). In scenarios where data of human mobil-
ity is lacking or unavailable, estimating fewer model parameters
is more tractable. However, availability of CDRs supports esti-
mation of additional parameters required by the gravity model
because there is a greater amount of information regarding
human movement that increases the explanatory power of the
data. Although mobile-phone data can provide highly detailed
information about travel patterns, it remains unclear to what
extent these data and models are generalizable to other countries
than those analyzed. We found that trip duration was expo-
nentially distributed in all locations and identified relationships
between model parameters and commonly available covariates,
such as distance and population size (SI Appendix, Fig. S7 B1
and D1), which suggests that a general model framework could
be defined. However, the relationship between trip duration and
available covariates may not hold in all settings due to geographic
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Fig. 5. Overall patterns in simulations of spatial transmission show a general delay in the rate of introduction when trip duration is included in the TSIR
model. (A) Changes in peak waiting-time distributions for three pathogens (Ebola, influenza, and measles) when trip duration is included. (B) Relationship
between the variance in peak introduction times and uncertainty around each peak for the 10 districts with the highest (circles) and lowest (triangles)
population density. Darker shaded regions indicate high-density introduction events, where transmission to other locations is more spread out over time
and the window of time in which each introduction is likely to occur is also longer. For example, simulations with Ebola (red) showed the largest variance in
peak introduction times (i.e., introductions are very early or very late), but they also exhibited high levels of entropy in each waiting-time distribution (i.e.,
exact timing of each introduction event is less predictable). Sq., squared.

and socio-economic differences among countries and bias intro-
duced by mobile phone ownership and coverage (12, 41). Future
work must therefore validate the generality of the duration grav-
ity model against other mobility datasets that include both the
number of trips and duration of those trips and further explore
model-selection studies to determine scenarios where duration
information is essential.

We simulated spatial disease dynamics for a range of
pathogens, but we only included differences in the generation
time, transmission rate, recovery rate, and R0 to illustrate the
impact of duration on disease spread. We did not include dif-
ferences in susceptibility, which inevitably would vary spatially,
and further impact the waiting-time distributions between loca-
tions (31, 42). Overall, we find that epidemics that begin in
high-density districts exhibit greater variability in peak introduc-
tion times and uncertainty around each peak (Fig. 5B), which
is congruent with previous findings of Colizza et al. (43) that
show decreased predictability in the initial stages of epidemics
on heterogeneous networks when they begin in a travel hub.
Predictability in the quantitative sense, however, has multiple
dimensions in the context of epidemic interventions because the
increased variance in introduction times allows us to distinguish
which locations are at risk early in an epidemic, which would
enable interventions to be prioritized and timed accordingly.
There is also more uncertainty in the waiting-time distributions,
which makes targeted interventions more challenging. In con-
trast, when the initial introduction event is in a low-density
district, waiting-time distributions are more certain for each
district. This certainty would help prioritizing and planning inter-
ventions in this scenario; however, many locations have the same
introduction time that would require deploying more resources
simultaneously. By simulating introduction events in both high-
and low-density districts, we show that the location of the first
introduction event ultimately impacts spatial spread. Therefore,
in order to fully predict the waiting-time distributions necessary
to plan public health interventions, the exact initial introduction
district would be needed.

Although often excluded from spatial models of mobility and
disease transmission, the duration of travel can be quantified

by using novel sources of data that can then be incorporated
into these models. In particular, we find that including duration
can improve model fit in places where traditional models typi-
cally perform poorly, such as those with low population sizes. As
Balcan et al. (44) note, changes in coupling can impact ini-
tial stages of disease spread; similarly, our results show that
accounting for trip duration induces differences in the waiting-
time distribution until an introduction event occurs and the
variance of those distributions, which impacts measures of
uncertainty in early spatial spread. Recent work on symbolic
entropy may provide further traction on how trip duration affects
uncertainty in endemic settings (45) and potential codependen-
cies among locations that drive predictable patterns of spatial
spread (46). Since human mobility is a crucial component of
predicting the spatial spread of many infectious diseases, models
that have a more sophisticated representation of how individu-
als contribute to the transmission process in places to which they
travel can help to elucidate the spatial and temporal dynamics of
transmission and identify the best strategy for interventions, such
as reactive vaccination campaigns and travel restrictions.

Materials and Methods
Population and Mobility Data. We analyzed CDRs from districts in Namibia
from October 1, 2010, to April 29, 2014. For each of the ∼2.5 million sub-
scribers in the dataset, a trip was counted if the most used mobile-phone
tower was in a different district compared to the previous day; other-
wise, the subscriber was classified as staying in the same location. For each
observed trip, the date the trip began and the number of days the subscriber
spent in the destination district (trip duration) was recorded. In total, over
259 million trips among 105 districts in Namibia were analyzed. Although
we analyzed data spanning 4 y, the majority of variation in trip duration
was among routes (spatial) rather than temporal; therefore, we tempo-
rally aggregated the data and analyzed the mean of the total monthly trip
counts. Trip-duration data for each route were aggregated into 1-d intervals
spanning 1,307 unique days in the 4-y period.

Preliminary models of trip duration indicated that at least 20 trips per
route were required for adequate model convergence. We constructed a
subsample of 62 of the 107 districts which contained a minimum of 20
unique observations of trip duration by sequentially removing the district
with the lowest number of observations until routes among all districts con-
tained a minimum of 20 observations. The remaining 62 districts were then
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classified based on their population density as high (>1,000 people/km2)
or low (≤1,000 people per km2). Data of district-level population sizes
was obtained from the WorldPop Project (https://www.worldpop.org), and
population density was calculated as total population size divided by the
square-kilometer area of the district.

Estimating Trip Duration with Exponential Decay. In order to incorporate trip
duration into a route-level model of travel, we reduced the trip-duration
data to a route-level summary statistic. Given the exponential distribution
of trip-duration counts (SI Appendix, Fig. S3 and Table S1), we estimated the
mean trip duration (in days) using an exponential-decay model and then
used the decay-rate parameter λij as a proxy for the mean trip duration
of each route in subsequent models. To model the exponential decay in
duration of stay for commuter trips across different routes of travel, we esti-
mated Ndecay(yij), which is the expected number of commuters making a trip
of duration y when traveling from origin i to destination j. The model fits
an exponential-decay function based upon the time spent y in destination j
to observed counts of trip duration for each ij route:

Ndecay(yij) = N0
ije
−λij yij . [1]

We estimated λij hierarchically at both the population and route levels
to facilitate comparison of decay rates across different route types and
compensate for routes that have lower sample sizes. The population-level
hyperparameter λ′ was given the uninformative prior of Unif(0,25) with
route-level λij parameters defined as the product of λ′ and a scaling factor
with the prior Gamma(2,1). The intercept term (N0

ij) is the observed number
of trips at y = 0 for each ij route (SI Appendix, Fig. S2).

Based upon preliminary models of trip duration, convergence of Markov
chain Monte Carlo (MCMC) chains was poor for routes with a low number
of observations, so we enforced a minimum sample size of 20 observations
(or unique durations of travel). For the 62 districts that met the minimum
sample size, we fit decay models to observed trip counts for each 1-d interval
in the data, and we also explored aggregation of the trip duration data
using 3- and 5-d intervals. While this shifted mean estimates of λij upward,
the relative proportions among route types remained the same, indicating
that the model is robust to temporal aggregation (SI Appendix, Fig. S5).

Gravity Model Incorporating Both Trip Counts and Trip Duration. The gravity
model is commonly used to relate covariates such as the population sizes
of locations and the distances among them to the connectivity parameter
which represents the proportion of trips or probability of movement from
origin i to destination j (39, 47, 48). We fit the basic gravity-model formula
to observed trip counts mij using a normalized connectivity parameter πij

and a Poisson error structure:

mij = Pois(πijNi)

πij ∝ θ
(

N
ω1
i N

ω2
j

dγij

)
,

[2]

where the exponential parameters ω1 and ω2 are weights that scale the
contribution of origin and destination population sizes to the numerator,
γ controls how quickly the penalty on connectivity increases with distance,
and θ is a proportionality constant.

Initial data exploration suggested that the distribution of trip duration
may be dependent upon trip distance. Therefore, we developed a for-
mulation of the gravity model that accounts for this interdependence by
incorporating the trip-duration decay parameter λij into the dispersal ker-
nel so that the probability of movement to destination j also depends on
the duration of stay at destination j:

πij ∝ θ
(

N
ω1
i N

ω2
j

f(dij |λij)

)
. [3]

The denominator of the gravity model, f(dij |λij), is a conditional dispersal
kernel, which we used Bayes’ theorem to define as:

f(dij |λij) = dγij
(
1− ECDF(λij)

αi
)
. [4]

We refer to this updated formulation as the duration gravity model and
compare it to the basic gravity model that is commonly used. When fitting
these models to the trip-count data, we first fit the basic gravity model,
which did not have any data or parameters associated with trip dura-
tion (SI Appendix). The basic gravity model used an uninformative prior

of Gamma(1,1) for θ, ω1, ω2, and γ parameters. We then fit the duration
gravity model, which includes the conditional dispersal kernel, by using the
posterior distributions of θ, ω1, ω2, and γ estimated in the basic gravity
model as priors and a Gamma(1,1) prior for αi (SI Appendix). Both grav-
ity models where fitted to mean monthly trip counts by using a Poisson
likelihood function.

TSIR Simulation with Mobility and Length of Stay. Spatial disease transmis-
sion was simulated by using a stochastic TSIR model (4, 28, 31, 49, 50). This
TSIR framework is a spatial diffusion process that operates over metapop-
ulations comprising the 62 Namibian districts analyzed in the trip-duration
decay and gravity models. We used the estimated posterior distributions
of the trip-duration decay parameter λ̂ij and connectivity parameter π̂ij to
simulate human mobility and duration of stay. These terms drive local epi-
demic dynamics through the spatial force of infection, which is the expected
number of new infections at location j and time step t + 1:

E[Ij,t+1] =
βSjt(Ijt + ιjt +κjt)

α

Njt
. [5]

The epidemic process relies on the movement of infected individuals to track
spatial diffusion of the pathogen; therefore, the change in the susceptible
population is defined as: Sj,t+1 = Sjt − Ij,t+1. Parameters governing epidemic
dynamics, such as transmission rate β and recovery rate γ, were parameter-
ized for each pathogen, where R0 = β/γ and all t time steps were set to the
generation time of the pathogen (see SI Appendix, Table S3 for parameter
values). The exponent α was set to 0.97 to relax the mass-action assumption
and allow for discrete-time approximation of the continuous transmission
process (51).

In Eq. 5, the ιjt term is a Poisson random variable with a mean equal to
mjt , which we define as the number of infected individuals migrating to
destination j from all other locations at time step t. The ιjt term is typically
used to model the effect of transient infections that arrive in location j and
remain for all of the tth epidemic generation. However, data on trip dura-
tion allow us to adjust the temporal contribution of infected individuals
traveling along each ij route based on how long individuals typically remain
in destination j.

ιjt = Pois(mjt)

mjt =
∑
∀i 6=j

(
ρ̂ijπ̂ij τ̂i Iit

)
. [6]

where mjt is the mean number of infectious individuals immigrating to
destination j at time step t scaled by three terms: the probability that an
individual leaves district i (τ̂i), the estimated probability of travel from i to
j (π̂ij), and the probability that an individual remains in destination j for a
full epidemic generation when traveling from i (ρ̂ij). Both τ̂i and ρ̂ij were
simulated by using Beta distributions fitted to the CDRs (SI Appendix).

In addition to the infectious individuals that visit district j in time t (ιjt),
there are also infectious individuals that remain in district j from previous
time steps, which we include as κjt in the spatial force of infection. The κjt

term is the number of infectious individuals that have traveled to district
j in a previous time step and remain for a full epidemic generation after
δ generations have passed (SI Appendix, Fig. S12). The summation over all
previous time steps gives the estimated mean number of remnant infectious
individuals due to previous immigration events rjt .

κjt = Pois(rjt)

rjt = ρ̄j

t∑
δ=1

(
ιj,t−δe−δλ̄j

)
.

[7]

Using this TSIR framework, we explored the impact of trip duration on the
spatial dynamics of disease spread based on different scenarios of connectiv-
ity, pathogen life history, and location of disease introduction. Specifically,
we compared the TSIR model, which includes both trip counts and trip dura-
tion in the gravity model and force of infection, to one that uses only trip
counts (SI Appendix). For both TSIR model types, we further explored the
spatial dynamics for six pathogens with different life histories (influenza,
measles, Ebola, severe acute respiratory syndrome (SARS-CoV-1), pertussis,
and malaria; SI Appendix, Table S3) and introduction of these pathogens
at each of the 62 districts in the analysis. We ran each simulation sce-
nario for 100,000 iterations and then—following Bjørnstad and Grenfell
(49)—assessed spatial spread using the time-varying spatial-hazard function
(SI Appendix). We then calculated the waiting-time distributions for each
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district over all of the time steps in each simulation and summarized the
probability of importation time over all simulations using a simple linear
combination of all simulated realizations (52) (SI Appendix, Figure S13). We
then calculated the peak of the aggregate probability of importation along
with its 95% HPD intervals.

The trip-duration decay model and gravity models were fitted to data by
using the JAGS (Just Another Gibbs Sampler) Bayesian MCMC algorithm and
the “rjags” R package (53). Posterior parameter estimates were then used
to simulate population mobility in disease-transmission simulations, which
were written in R (54).

Data Availability. Code for data analyses, model fitting, and simulations
is available in the “hmob” R package version 0.2.0 (55). The CDRs in this

study were published with permission from MTC Mobile. Strict license
agreement prohibits direct sharing of these data by the authors; however,
other researchers can request these data from MTC Mobile independently.
These data were deemed exempt from Institutional Review Board approval
because they were deidentified by the mobile phone provider and aggre-
gated within each cell phone tower catchment area prior to our analysis;
informed consent was not required.
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