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Simple Summary: SMARCA4 mutations were over-representative in cisplatin resistance and metastatic
triple-negative breast cancer (TNBC). Additionally, SMARCA4 inactivation induced the mesenchymal-
like subtype TNBC. The epithelial-to-mesenchymal transition and Hippo-YAP/TAZ pathways were
activated in SMARCA4 inactivation samples of both SMARCA4 knockout cell lines and TNBC
patients. In SMARCA4 knockout cells, the YAP1 inhibitor verteporfin suppressed YAP1 target genes.
This study depicts the clinical importance of SMARCA4 depletion in TNBC and suggests YAP/TAZ
as a novel target for cisplatin-resistant patients.

Abstract: The role of SMARCA4, an ATPase subunit of the SWI/SNF chromatin remodeling complex,
in genomic organization is well studied in various cancer types. However, its oncogenic role
and therapeutic implications are relatively unknown in triple-negative breast cancer (TNBC). We
investigated the clinical implication and downstream regulation induced by SMARCA4 inactivation
using large-scale genome and transcriptome profiles. Additionally, SMARCA4 was knocked out in
MDA-MB-468 and MDA-MB-231 using CRISPR/Cas9 to identify gene regulation and a targetable
pathway. First, we observed an increase in SMARCA4 mutations in cisplatin resistance and metastasis
in TNBC patients. Its inactivation was associated with the mesenchymal-like (MSL) subtype. Gene
expression analysis showed that the epithelial-to-mesenchymal transition (EMT) pathway was
activated in SMARCA4-deficient patients. Next, the Hippo pathway was activated in the SMARCA4
inactivation group, as evidenced by the higher CTNNB1, TGF-β, and YAP1 oncogene signature
scores. In SMARCA4 knockout cells, EMT was upregulated, and the cell line transcriptome changed
from the SL to the MSL subtype. SMARCA4 knockout cells showed cisplatin resistance and Hippo-
YAP/TAZ target gene activation. The YAP1 inhibitor verteporfin suppressed the expression of YAP1
target genes, and decreased cell viability and invasiveness on SMARCA4 knockout cells. SMARCA4
inactivation in TNBC endowed the resistance to cisplatin via EMT activation. The YAP1 inhibitor
could become a novel strategy for patients with SMARCA4-inactivated TNBC.

Keywords: triple-negative breast cancer; cisplatin resistance; molecular subtype; SMARCA4;
epithelial-to-mesenchymal; Hippo-YAP/TAZ pathway

1. Introduction

Triple-negative breast cancer (TNBC) is known to have an aggressive nature with a
higher recurrence rate, and more heterogeneous genomic characteristics than other breast
cancer subtypes [1,2]. Over 30% of TNBC patients present metastases during the disease
course or become refractory to treatment [3,4]. Unfortunately, there is no effective target
therapy for metastatic TNBC [4]. Moreover, 90% of therapy including cisplatin failed
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in TNBC metastasis, so chemotherapy resistance is a significant hurdle for metastatic
TNBC treatment [5]. Although novel and combinatorial immunotherapies have been
recently proposed, the platinum-based drug cisplatin remains a first-line treatment for
TNBC patients [3]. After metastasis, the mutations presented after chemotherapy are not
markedly different compared with primary TNBC [6]. These characteristics increase the
difficulty of treating cisplatin-relapsed TNBC.

TNBC is the most heterogeneous type among breast cancers. TNBC has been classified
into several molecular subtypes based on the gene expression profile [7]. Various TNBC
subtypes have been proposed with distinct characteristics [7–9], but there are at least
four main subtypes, which are as follows: mesenchymal-like (MSL), which shows EMT;
basal/stem-like (SL), which exhibits stemness and rapid cell cycle progression; LAR is
AR positive; and immune activation (IM) shows immune cell infiltration [7–10]. The IM
and LAR types were clearly considerable for immune checkpoint inhibitor or AR-targeted
treatment, respectively. The global pathway regulation or drug sensitivity of the subtypes
were investigated, and it was revealed that platinum-based treatment, such as cisplatin,
was sensitive in the SL type [8–10]. In contrast, MSL exhibited resistance in cisplatin.
However, it is unclear which upstream regulators are involved in cisplatin resistance and
what the next therapy for overcoming resistance could be.

The epigenetic regulator SMARCA4 is a member of the SWI/SNF chromatin remodel-
ing family that has been implicated in loss-of-function (LoF) mutations or downregulation
in various cancers [11–13]. Similarly, biallelic SMARCA4 mutations are drivers of ovarian
carcinoma [12]. Fusions and deletions are detected in approximately 5~10% of lung can-
cer [14]. In non-squamous lung cancer, SMARCA4 LoF is associated with worse overall
survival (OS) and increased sensitivity to platinum-based chemotherapy [15,16]. It is
clear that most SMARCA4 mutations are involved in LoF to decrease expression [15,16].
However, the downstream regulation according to SMARCA4 mutation is unclear and
controversial in various cancers [13]. A TCGA pan-cancer meta-data analysis suggested
that SMARCA4 does not consistently function as a tumor suppressor across various cancer
types [17]. Additionally, another previous study revealed roles for SMARCA4 in telomere
organization, binding topologically associating domain (TAD) boundaries, and regulat-
ing extracellular matrix (ECM) genes from the human mammalian epithelial cell line
MCF-10A [18]. However, clinical and therapeutic studies of SMARCA4 are still lacking
for TNBC.

Here, we investigated the clinical relevance of SMARCA4 mutations in our cohort
(n = 37) who received cisplatin therapy, and an additional large-scale cohort of TNBC
patients collected from multiple cohorts (n = 3455) [19–22]. More recurrent variants were
interrogated in cisplatin resistance and metastatic TNBC patients. Next, regulated path-
ways according to SMARCA4 activities were explored from a large-scale gene expression
profile (n = 957) [7]. Additionally, we identified that SMARCA4 activities determine the
TNBC molecular subtype. To evaluate previously identified downstream pathways, we
generated SMARCA4 knockout (KO) TNBC cell lines using the CRISPR/Cas9 system,
and analyzed gene expression from RNA-seq. Finally, we explored targetable pathways
that were sensitive to SMARCA4 depletion. Our investigation delineates that SMARCA4
inactivation induces a specific TNBC molecular subtype and is associated with cisplatin
resistance. Moreover, we suggested a sensitive drug for cisplatin-resistant TNBC to inhibit
the downstream pathway regulated by SMARCA4 KO.

2. Materials and Methods
2.1. TNBC Patient Cohort and Sample Preprocessing

Tumor and matched blood samples (n = 37) were obtained from advanced refractory
TNBC patient cohort. All patients had undergone cisplatin chemotherapies in the metastatic
setting (Table S1). DNA was isolated from tumor tissues and paired blood samples using
AllPrep DNA Mini Kit and QUAamp DNA Blood Mini Kit according to manufacturer’s
protocol (Qiagen, Valencia, CA, USA). Sequencing libraries were generated using the
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SureSelectXT Library Preparation Kit (Illumina, San Diego, CA, USA) for analysis on the
HiSeq2500 system (Illumina, San Diego, CA, USA). Cisplatin responder was defined as
a case in which the response was stable disease or higher (complete response or partial
response) and lasted for more than 6 months. This study was approved by the National
Cancer Center Institutional Review Board (IRB No. NCC2016-0221).

2.2. Variant Analysis of Cisplatin-Treated TNBC Patients

To identify genomic variants, whole-exome sequencing (WES) of 37 TNBC patients
was performed. FASTAQ files were aligned to the human reference genome hg19 using
BWA after low-quality trimming using Trimmomatic [23,24]. Alignments were marked for
duplicates, recalibrated, and realigned using PICARD [25]. Next, we executed Mutect2
and Oncotator to call and annotate somatic mutations [25,26]. Copy number variant
(CNV) analysis was performed by EXCAVATOR2 version 1.1.2, and the peak regions were
identified using GISTIC2 [27,28]. Variant enrichment according to cisplatin response was
evaluated using the chi-square test. In addition to our cohort, we obtained the frequency
of mutated genes in primary and metastatic breast cancer from public datasets, including
TCGA (n = 1084), the MSK cohort (n = 1918), the INSERM cohort (n = 216), and the MBC
project (n = 237) [19–22]. Finally, mutation profile was acquired from 2002 primary and
1453 metastatic TNBC patients. We interrogated mutation genes observed significantly
more in metastasis by chi-squire test. For survival analysis, patients were divided by
cisplatin response, and survival curves were fitted using the Cox regression model in the R
package ‘survival’.

2.3. Gene Expression Analysis Based on SMARCA4 Activity and BC Subtype

To ascertain the downstream effects according to SMARCA4 inactivation, we analyzed
gene expression profiles from a TNBC patient cohort (n = 957) inclusive of the four subtypes
(MSL: luminal androgen receptor (AR)-positive; LAR: immunomodulatory; IM; SL) [7].
First, we divided samples by SMARCA4 mRNA expression into inactivation and activation
groups. Next, we confirmed that two SMARCA4 groups show the enrichment of subtypes
using Fisher’s exact test. Pathway activity scores for each sample were estimated by gene set
variation analysis (GSVA) based on the MSigDB hallmark gene set collection including EMT,
stemness, and cisplatin resistance [7,29–31]. We classified patients into inactivation and
activation groups by SMARCA4 gene expression upper (log-scale expression > 9.71, n = 244)
and lower (log-scale expression < 9.08, n = 237) tertile. Then, we analyzed the pathway and
cisplatin resistance GSVA score difference by limma according to SMARCA4 groups [32].
To interrogate oncogene scores, we additionally selected 41 oncogene signatures from
MSigDB after excluding those with a low number of genes (<20), duplicates, or cancer
type-specific pathways, such as those specific to lung and prostate cancer; the oncogene
signatures’ GSVA scores were compared between two SMARCA4 groups by the limma
test [32]. Next, we also tested, by the oncogene signatures’ score difference, for SL and MSL
types. In addition to patient meta-dataset analysis, we investigated downstream regulation
of TNBC cell lines according to SMARCA4 activation and inactivation groups. We acquired
the expression profiles of 19 TNBC cell lines, and classified these into activation and
inactivation groups by median SMARCA4 expression value (median = 6.69; Figure S1C).
EMT, cisplatin resistance, and oncogenic signal score were calculated similarly to previous
meta-dataset analysis to refer equal signature gene sets. The difference in scores was tested
by Wilcoxon rank sum test.

2.4. SMARCA4 Knockout Cells and Cisplatin Response
2.4.1. Cell Culture and Reagents

The human TNBC cell lines MDA-MB-468 (HTB-132) and MDA-MB-231 (HTB-26)
were obtained from ATCC (Manassas, VA, USA) and cultured in DMEM (Gibco, Grand Is-
land, NY, USA) supplemented with 10% fetal bovine serum (Gibco, Grand Island, NY, USA)
and 1% penicillin/streptomycin (15140-122; Gibco, Grand Island, NY, USA) at 37 ◦C and in
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5% CO2. HEK293FT cells used for lentivirus production were grown and maintained in
DMEM supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin (Gibco,
Grand Island, NY, USA). Cisplatin was purchased from Sigma-Aldrich (C2210000; St. Louis,
MO, USA), and the YAP inhibitors (sitravatinib: S8573; crizotinib: S1068; verteporfin: S1786;
CA3: S8661) were purchased from Selleckchem (Houston, TX, USA).

2.4.2. Generation of Stable SMARCA4 KO Cell Lines Using CRISPR/Cas9

The following short guide RNA (sgRNA) targeting exon 4 of the human SMARCA4
gene (NM_001128849) was designed on the CRISPR design website (https://design.
synthego.com, accessed on 4 November 2019): forward: 5′-ATGGTCCCTCTCGCAGCCCA-
3′, and reverse: 5′-TGGGCTGCGAGAGGGACCAT-3′. Then, 25 bp DNA oligos containing
the 20 bp target sequence and the BsmBI sticky end were annealed and inserted into the
lentiCRISPR-v2 plasmid (52961; Addgene, Watertown, MA, USA) digested with BsmBI
(0580S; NEB, Ipswich, MA, USA). The resulting lentiCRISPR-v2-sgRNA plasmids were
then cotransfected with the lentiviral packaging vectors pCMV-VSV-G and pCMV-dR8.2
into HEK293FT cells in Opti-MEM (31985-070; Gibco) using the Lipofectamine LTX Reagent
(15338-100; Invitrogen, Carlsbad, CA, USA) to generate lentivirus particles. The viral super-
natants were harvested 48 h after transfection and filtered through a 0.45 µm filter. Subse-
quently, MDA-MB-468 and MDA-MB-231 cells were transduced by the lentivirus for 48 h
and then polyclonal SMARCA4 KO pools were selected for at least 2 days with puromycin
(A11138-03; Gibco, Grand Island, NY, USA) (2 µg/mL) containing DMEM medium. To
confirm KO, genomic DNA from SMARCA4 sgRNA-transduced cells was extracted using
the DNA Mini Kit (51304; Qiagen, Valencia, CA, USA) according to the manufacturer’s
instructions and amplified using primers (forward: 5′-TCCCGGGTGGTAGAAGATGA-3′,
and reverse: 5′-CAGTAAGTTCCTGGGTGGCA-3′) for the sgRNA target site. The PCR cy-
cling conditions were as follows: one cycle at 95 ◦C for 1 min, followed by 35 cycles of 95 ◦C
for 15 s, 59 ◦C for 15 s, and 72 ◦C for 30 s with the final elongation step at 72 ◦C for 5 min.
The PCR products were analyzed using tracking of indels by sequence decomposition
(TIDE) [33].

2.4.3. Cell Viability Analysis

Cell viability was assessed with the cell counting kit-8 (CCK-8; CK04; Dojindo Labora-
tories, Kumamoto, Japan). MDA-MB-468 and MDA-MB-231 cells were seeded in 96-well
plates at 2.5 × 104 and 1 × 104 cells/well, respectively. After 20 h, the cells were treated for
48 h with DMSO (vehicle control), cisplatin (1–50 µM), sitravatinib (1–20 µM), crizotinib
(1–20 µM), verteporfin (0.5–10 µM), or CA3 (0.1–4 µM). Then, 10% CCK-8 solution was
added to each well, and cell viability was determined by measuring the absorbance at
450 nm with a microplate reader (VersaMax, Chester, PA, USA). In the reconstitution of
SMARCA4, control and SMARCA4 KO cells were transiently transfected with/without
SMARCA4 plasmid (65391; Addgene, Watertown, MA, USA) using Lipofectamine LTX
reagent for 48 h, and cell viability of cisplatin was determined using CCK-8. Cell viability
and IC50 µM values were calculated using dose response curves, plotted using GraphPad
Prism 7.0 software (San Diego, CA, USA).

2.4.4. Quantitative Reverse Transcription PCR (RT-qPCR) and Immunoblot Analysis

Total RNA was isolated from MDA-MB-468 and MDA-MB-231 cells with RNeasy
mini kit (74106; Qiagen, Hilden, Germany) according to the manufacturer’s instructions,
and 1 µg RNA was converted to cDNA using the SuperScript™ IV Reverse Transcriptase
cDNA Synthesis Kit (18090050; Invitrogen, Carlsbad, CA, USA). RT-qPCR assays were
performed using SYBR Green I Master Mix (04707516001; Roche, Mannheim, Germany)
and a real-time PCR system (05815916001; Roche). Glyceraldehyde 3-phosphate dehy-
drogenase (GAPDH) mRNA was used as a normalization control. RT-qPCR primers are
shown in Table S2. For immunoblot assays, cell lysates were prepared using TAP lysis
buffer (25 mM Tris, pH 7.4, 140 mM NaCl, 0.5% NP-40, 10 mM NaF, 1 mM DTT, 1 mM
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PMSF, 1 mM EDTA, 1 mM Na3VO4, 1 mM β-glycerophosphate, 10% glycerol, and protease
and phosphatase inhibitors), and protein concentration was determined by the Bradford
assay (23225; Thermo, Waltham, MA, USA). Proteins were separated by SDS-PAGE and
transferred to nitrocellulose membranes, which were incubated overnight at 4 ◦C with pri-
mary antibodies against SMARCA4 (ab110641; Abcam, Cambridge, UK) at 1:2000 dilution
and β-actin (A5441; Sigma, St. Louis, MO, USA) at 1:5000 dilution or with the Epithelial-
Mesenchymal Transition (EMT) Antibody Sampler Kit (9782; CST, Beverly, MA, USA)at
1:2000 dilution; horseradish peroxidase (HRP)-conjugated anti-rabbit IgG (111-035-144;
Jackson ImmunoResearch, West Grove, PA, USA),and anti-mouse IgG (315-035-045; Jackson
ImmunoResearch) at 1:2000 dilution were used as secondary antibodies, and the results
were visualized and imaged using Fusion Solo 7S (Vilber Lourmat, Collegien, France).

2.4.5. Flow Cytometry

MDA-MB-231 and MDA-MB-468 cells were detached by incubation with 0.2% trypsin-
EDTA (15400-054; Invitrogen) for 1–3 min, washed with PBS containing 1% FBS, and
incubated for 30 min at 4 ◦C with a phycoerythrin (PE)-conjugated EpCAM antibody
(118215; Biolegend, San Diego, CA, USA). After a final wash, the cells were resuspended
in 1% FBS in PBS and analyzed with a FACSCalibur machine (BD Biosciences, San Jose,
CA, USA). FACS data were analyzed using FlowJo software version 10.6 (Tree Star Inc.,
Ashland, OR, USA).

2.4.6. Cell Migration Assay and Wound-Healing Assay

Cell migration assays were performed by using 24-well plates containing cell culture
inserts with 8 µm pore PET membrane Transwell chambers (3464; Corning Inc., Corning,
NY, USA). Briefly, cells were plated at 1 × 105 cells/well in 200 µL culture medium con-
taining 1% FBS in the upper chamber of permeable Transwell supports, and cell migration
was tracked for 24 h. Then, cells on the upper surface of the membranes were carefully
removed with a cotton swab. Migration cells on the lower side of the membrane were
stained with 0.1% crystal violet and then counted in three randomly selected fields per
well under a light microscope. For the wound-healing assay, cells were seeded at a density
of 5 × 104 cells on both sides of an Ibidi culture insert (81176; Ibidi, Munich, Germany).
Cells were permitted to attach and grow for 24 h, after which the insert was removed.
The cell-free gap was photographed at 0, 24, 48 and 72 h with a ZEISS Axio Observer 7
microscope (Carl Zeiss, Jena, Germany) using a 10× objective.

2.4.7. Immunofluorescence Assay

The human TMA (tissue microarray) paraffin sections of human breast carcinoma
were purchased from US Biomax (BR802C; Biomax, Rockville, MD, USA). The tissue slide
was deparaffinized in xylene (4322; BBC biochemical, McKinney, TX, USA) and rehydrated
in a serial concentration of ethanol (from 100 to 80%), and rehydrated in PBS. Subsequently,
tissue antigens were unmasked by heating in citrate buffer with pH 6.0 (C9999; Sigma-
Aldrich, St. Louis, MO, USA). Tissue was permeabilized with 0.4 M glycine and 0.5% Triton
X-100(X-100; Sigma-Aldrich), and nonspecific binding was blocked with 2.5% normal goat
serum (S-1012-50; Vector Laboratories, Burlingame, CA, USA). The antibodies for tissues
are as follows: SMARCA4 (dilution at 1:100), secondary antibody for immunofluorescence
was Alexa Fluor 488 rabbit IgG (A-21206; Invitrogen, Carlsbad, CA, USA). Finally, sections
were washed with PBS and mounted with VECTASHIELD mounting medium with DAPI
(H-1200; Vector Laboratories). Then, samples were optically scanned using ZEISS Axio
Observer 7 (Carl Zeiss, Jena, Germany)

2.5. RNA-Seq Analysis of SMARCA4 KO TNBC Cells

For RNA-seq analysis, SMARCA4 KO-induced MDA-MB-468 and MDA-MB-231 cells
were cultured at 70% confluency and then harvested with trypsin-EDTA. The cells were
washed by centrifugation in PBS and re-suspended in 500 µL TRIzol reagent (15596018;
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Invitrogen, Carlsbad, CA, USA) at a concentration of about 1 × 106 cells/mL. Then, cells
were sent to Macrogen (Macrogen Inc, Seoul, South Korea) for RNA isolation and library
preparation/sequencing.

To extract gene expression profile, we trimmed the reads using Trimmomatic, and
STAR (version 2.5.2a) in two-pass mapping mode was used to align reads against the
hg19 reference genome [34]. Next, we generated gene expression profiles using RSEM
v1.1.13 [35]; genes with low expression or low variability (average FPKM < 1 or SD < 1)
were eliminated. Differentially expressed genes (DEGs) between wild-type (WT) and
SMARCA4 KO cell lines were extracted by limma with adjusted p-value (<0.05) and log-
scaled fold-change (FC > 0.5) cutoffs. Pathway gene set enrichment analysis was performed
using the Cytoscape ReactomeFIViz plug-in [36]. Hippo pathway and YAP/TAZ target
gene signatures were collected from the literature [37]. Next, we computed YAP/TAZ
scores by the average gene expression of signature gene set. The YAP/TAZ score differences
between the KO and WT cell lines were tested by Welch’s t-test.

3. Results
3.1. Progression-Associated Driver Gene Variants Identified in Samples from TNBC Patients
Treated with Neoadjuvant Cisplatin

To understand the driver variants and their biological process in refractory TNBC,
progression-associated driver genes were identified from our TNBC cohort and large-
scale TNBC cohorts [19,20,22,38]. We extracted mutation genes that increased in cisplatin
nonresponder and metastasis patients, and clarified concurrent pathways of mutation
genes. First, we analyzed WES from 37 advanced refractory TNBC patients (Table S1) who
received cisplatin therapy, and identified somatic mutations and copy number variants. We
extracted variants of 116 genes previously identified in breast cancer and pan-cancer driver
gene studies [39]. TP53 (76%) and PIK3CA (24%) were the most recurrently mutated genes
identified in our TNBC cohort, and ATM, BRCA1 and NF1 mutations were present in more
than 10% of the samples (Figure 1A). MYC and RAD21 amplifications were identified (22%;
peak at 8q23.1, q-value = 2.14 × 10−5), as were CDKN2A deletions (8%; peak at 9p21.3,
q-value = 0.003). Next, we investigated mutations at the pathway level, after classifying the
patients by cisplatin response (nonresponder n = 14 and responder n = 20). The mutations
of genes in the PI3K signaling pathway were significantly enriched in the responder
group (chi-square test p = 0.078; Figure 1A), whereas the mutations in genes related to the
SWI/SNF complex (p = 0.056) and protein homeostasis/ubiquitination (p = 0.007) were
more frequent among nonresponders (Figure 1A). Interestingly, SMARCA4 was the most
frequently mutated gene (n = 3) that was unique to nonresponders in our dataset.

To validate the gene mutation findings in our small cohort of TNBC patients, and
to ascertain whether there is an overlap among the genes implicated in metastasis and
cisplatin response, we analyzed gene mutation frequencies in four large-scale breast cancer
cohorts including primary and metastatic samples (n = 3455) [19,20,22,38]. TP53 mutations
were present in a high proportion of metastases (63.4%), but were also quite dominant in
primary tumors (50.5%; odds ratio (OR) for metastases/primary = 1.32). NF1, STAG2, ATM
and SMARCA4 mutations (chi-square test p < 0.01, OR > 1.68) were remarkably increased in
metastases compared to primary samples (Figure 1B). PIK3CA mutations (OR = 0.97) were
less common in metastatic TNBC than in primary TNBC (Figure 1B). Among the five genes
related to epigenetic regulation in our analysis (Figure 1B, purple dots), ARID2 (OR = 2.32)
and SMARCA4 (OR = 1.90) mutations showed an association with metastasis. Interestingly,
these chromatin SWI/SNF-related genes demonstrated progression-free survival (PFS),
and patients (n = 8) harboring SWI/SNF gene mutations exhibited a shorter progression
time than wild-type patients (HR = 2.45 and PFS p = 0.09; Figure 1C). Also, there were
significant differences in the PFS of our TNBC patients according to cisplatin response
(HR = 3.97 and PFS p = 0.01; Figure 1C). This suggests a relationship between the SWI/SNF
pathway mutation and cisplatin resistance that influences patient outcomes.
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is the odds ratio (OR) of metastatic-to-primary TNBC, and the Y axis is the p-value calculated by Fisher’s exact test from
the contingency table of metastasis and gene mutation cases. (C) Progression-free survival (PFS) curves of the TNBC
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R: responder), respectively. The hazard ratio (HR) and p-value were calculated by Cox proportional regression analysis.

3.2. Transcriptional Characteristics and Subtypes of TNBC Are Regulated by SMARCA4

Given the association of SWI/SNF pathway mutations with cisplatin response, we
aimed to further characterize the TNBC samples in terms of the activity of this pathway. To
accomplish this, we analyzed the gene expression profiles (n = 957) from Gene Expression
Omnibus (GEO), classified by molecular subtype (MSL, LAR, IM, and SL), based on
machine learning methods [7]. For this analysis, we focused on SMARCA4 as the most
recurrent mutation gene in our TNBC cohort, and as relatively unknown compared to
ARID1A and ARID2. The somatic mutation of SMARCA4 leads to LoF, and its down-
expression concurrently plays the same role in the tumor [11–13]. Therefore, we performed
gene expression analysis according to SMARCA4 expression. First, we classified the TNBC
samples into activation and inactivation groups based on SMARCA4 gene expression,
and investigated the association with TNBC subtype. The SMARCA4 activation group
was enriched in the SL subtype, whereas the inactivation group was enriched in the MSL
subtype (Fisher’s exact test p = 1.83 × 10−24, SMARCA4 log2 FC = 1.32 between MSL
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and SL; Figure 2A). The AR and IM subtypes were interspersed among the samples with
intermediate SMARCA4 expression.

Figure 2. Global gene regulation according to SMARCA4 activation status. (A) A waterfall plot of sorted SMARCA4 gene
expressions of TNBC samples (n = 957). Y-axis indicates log2-scale SMARCA4 mRNA expression. Each sample is colored
according to TNBC subtype (MSL: pink; LAR: light green; IM: orange; SL: light blue). The p-value denotes the enrichment of
subtypes by SMARCA4 activation group as determined by chi-square analysis. (B) Boxplots of gene signature activity scores
in the SMARCA4 inactivation (orange) and activation (teal) groups. Two groups were classified by upper and lower tertile of
SMARCA4 gene expression. The EMT and stemness scores are indicative of the MSL and SL subtypes, respectively, and the
cisplatin resistance score is also shown. p-values were calculated by t-tests. (C) Bar plot of log-scale p-values for GSVA limma
test for the SMARCA4 inactivation (orange) and activation (teal) groups. (D) Scatter plot of the oncogene signature scores.
The X- and Y-axes indicate the log2FC in the average scores between the SMARCA4 activation and inactivation groups
and between the MSL and SL groups, respectively. Circle size indicates the rescaled p-value for the GSVA of oncogene
signatures between subtypes (MSL vs. SL), and circle color indicates the rescaled p-value according to SMARCA4 group
(inactivation vs. activation).

MYC, cell cycle-related pathways, and cancer stemness are associated with the SL
subtype, and EMT and TGF-β pathway activation is implicated in the MSL subtype [7–10].
Consequently, cisplatin nonresponders showed over-representative of both EMT activation
and the MSL subtype [7], so we also considered the cisplatin resistance score next. We
verified the signature scores of the EMT for the MSL subtype and stemness for the SL
subtypes, respectively, and found significant differences (EMT p = 8.67 × 10−33, stemness
p = 7.30 × 10−14) depending on the SMARCA4 activation status (Figure 2B). Moreover,
SMARCA4 inactivation was associated with cisplatin resistance (p = 2.2 × 10−8; Figure 2B).
To further verify these associations, we looked deeper at the biological processes enriched
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in the two SMARCA4 groups. The global biological processes identified in each SMARCA4
group corresponded to pathways that were representative of the MSL and SL subtypes
(Figure 2C); the apoptosis, myogenesis and EMT pathways activated in the MSL subtype
were enriched in the SMARCA4 inactivation group, whereas typical SL processes, such
as MYC targets, G2M checkpoint, and DNA repair, were upregulated in the SMARCA4
activation group (Figure 2C) [7]. In the investigation categorized by SMARCA4 activity, we
consistently verified that SMARCA4 inactivation is associated with the MSL subtype, in
EMT activation and cisplatin resistance.

To identify targetable oncogenes, we estimated the activity of 41 oncogene signa-
tures (Materials and Methods), and tested their ability to discriminate SMARCA4 activity
and TNBC subtype. The activation of CTNNB1, LEF1, TGF-β, and YAP1 signatures was
over-represented in the MSL (p < 2.85 × 10−4) and SMARCA4 (p < 1.58 × 10−6) inac-
tivation group (Figure 2D); CTNNB1, TGF-β, and YAP1 promote cell invasion [40] to
implicate the MSL subtype and SMARCA4 inactivation. In contrast, the E2F1, MYC and
mTOR pathways were enriched in both the SL subtype and SMARCA4 activation groups
(Figure 2C,D). The cisplatin resistance score [7] showed a positive correlation with EMT
activation (p = 9.89 × 10−26, R = 0.45; Figure S1A). Lastly, previously identified oncogenic
signatures, including LEF1, TGF-β, TBK1, and YAP1, showed positive correlations with
cisplatin resistance (Figure S1B). These results of patient meta-expression profile analysis
were consistent in TNBC cell lines (n = 19). The cell lines were classified into SMARCA4
inactivation (n = 11) and activation (n = 8) by the median mRNA expression (Figure
S1C). Unsurprisingly, the EMT pathway was activated in the inactivation group (p = 0.12;
Figure S1D) and cisplatin resistance increased in the inactivation group (p = 0.13). The
oncogenic signals VEGF, YAP1, TGF-β1, and LEF1 were also activated in the inactivation
group (p < 2.49 × 10−22). In summary, SMARCA4 inactivation is involved in LEF1, TGFR1,
and YAP1 oncogenic signal activation, the MSL subtype among four subtypes, and the
resistance of cisplatin in TNBC.

3.3. SMARCA4 Knock-Out to Evaluate Cisplatin Resistance

Given the potential implication of SMARCA4 inactivation to induce the MSL subtype
in TNBC and the therapeutic response to cisplatin, we aimed to evaluate the downstream
molecular response to SMARCA4 inactivation by using the CRISPR/Cas9 system to knock-
out (KO) SMARCA4 in TNBC cell lines. We selected two different human breast cancer cell
lines, MDA-MB-468 and MDA-MB-231, for these functional experiments; MDA-MB-468
cells are classified as SL, and MDA-MB-231 cells represent the MSL subtype [10]. To verify
successful interruption of the SMARCA4 genomic sequence, we sequenced SMARCA4
gRNA-specific amplicons in genomic DNA derived from MDA-MB-468, and its SMARCA4
KO cells. As expected, increased aberrations in SMARCA4 KO gRNA target sequences
were observed in SMARCA4 KO cells relative to the control cells (Figure 3A). Next, we
verified that CRISPR/Cas9-mediated SMARCA4 KO considerably decreased SMARCA4
protein expression in both MDA-MB-468 and MDA-MB-231 cells (Figure 3B). To assess
the effect of SMARCA4 KO on cisplatin sensitivity, the cells were exposed to various con-
centrations of cisplatin (1–50 µM) for 48 h, and then a viability evaluation was performed.
MDA-MB-468 SMARCA4 KO cells exhibited the highest cisplatin resistance, with a 1.5-fold
higher IC50 than the control cells (Figure 3C). The IC50 for cisplatin was higher in the
MSL-type MDA-MB-231 cells than in the MDA-MB-468 cells (Figure 3C). To further vali-
date the function of SMARCA4, we rescued SMARCA4 by overexpressing it in SMARCA4
KO cells. As expected, we observed a reconstituted exogenous and endogenous protein
level of SMARCA4 in both MDA-MB-468 and MDA-MB 231 cells (Figure 3C, right). The
results showed that overexpressed SMARAC4 in SMARCA4 KO attenuates the resistance
to cisplatin in both MDA-MB-468 and MDA-MB-231 SMARCA4 KO cells (Figure 3C, left).
These data suggest that SMARCA4 LoF promotes cisplatin resistance to varying degrees,
depending on the molecular characteristics of the TNBC cells.
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Figure 3. Effect of SMARCA4 KO on the cisplatin response of malignant breast cancer cells.
(A) Sequence-based validation of genome editing using SMARCA4 sgRNA with the CRISPR/Cas9
system in MDA-MB-468 cells. (B) Western blot analysis of SMARCA4 protein expression in parental
(WT) and genome-edited cell lines exposed to the CRISPR/Cas9 nontargeting control vector (control)
or CRISPR/Cas9 SMARCA4 KO vector (KO). Representative Western blots from three independent
biological replicates are shown. Bar plots show SMARCA4 protein expression for WT, control and
KO. (C) Cisplatin drug response curves after 48 h in both MDA-MB-468 and MDA-MB-231 cells. Cell
viability was examined under the following conditions: control or SMARCA4 KO or in combination
with SMARCA4. Exogenous SMARCA4 expression in these rescued cell lines was analyzed by
Western blot. β-actin was used as the loading control. All experiments were performed in triplicates,
and the data have been presented as mean ± SD. Statistical analyses were carried out using Graph
Pad Prism v7.0, data were analyzed by unpaired t-test; ** p < 0.01, *** p < 0.001.

3.4. SMARCA4 KO Transforms Basal-like MDA-MB-468 Cells to an EMT Activated Cell Line

To pinpoint the pathways affected by SMARCA4 LoF, we explored global gene reg-
ulation in SMARCA4 KO cells by DEG analysis (adj. p < 0.05 and log2 FC > 0.5; limma
test) from three replicate KO samples compared to controls for each cell line. We identified
156 DEGs between the MDA-MB-468 cell groups and 289 DEGs between the MDA-MB-231
cell groups (Figure 4A). Two upregulated DEG sets in the KO cell lines denoted the activa-
tion of the following EMT-associated pathways: ECM organization and Hippo signaling
pathways (FDR < 0.05; Table S3). In particular, the TGF-β1, PIM1, CDKN1A and BIRC3
genes, which promote EMT, were upregulated by more than two-fold in the MDA-MB-
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468 KO cells compared to the control cells (Figure 4A and Table S3). Additionally, the
expression of an EMT signature also presented the increase in only MDA-MB-468 KO
(FC = 1.23; Figure 4B) [31]. As MDA-MB-231 cells, which are characterized as the MSL
subtype, showed no drastic change (FC = 0.93) in EMT gene expression after KO, we
concluded that the global expression of genes in this pathway is important for maintaining
MSL characteristics.

Figure 4. EMT characteristics induced by SMARCA4 KO. (A) Volcano plots of DEGs based on RNA-seq analysis of control
and SMARCA4 KO cells. The X-axis indicates the log2FC between SMARCA4 KO and control cells. The Y-axis is the −log10-
scaled p-value calculated using the limma test. DEGs involved in EMT and the TGF-β pathway are labeled. (B) Boxplot of
the fold change (FC) in EMT signature score between the KO and control versions of MDA-MB-231 and MBA-MD-468 cells.
EMT scores were calculated from signature genes (n = 42) [31], and fold changes in scores were acquired to compare WT



Cancers 2021, 13, 5474 12 of 19

and KO for two cell lines. (C) The mRNA expression of the EMT markers Snail, Twist, N-cadherin, Slug, and Claudin-1
was calculated using real-time PCR data for both control and SMARCA4 KO MDA-MB-468 and MDA-MB-231 cells; the
expression value in the control group was set to 1. The p-values were indicated by each asterisk. (D) Immunoblot analysis
of EMT (Snail, Claudin-1, Vimentin, and N-cadherin) and epithelial (E-cadherin) marker expression levels in SMARCA4
KO and control cells. (E) Flow cytometry analysis of EpCAM expression in MDA-MB-468 and MDA-MB-231 cells. The
percentage of PE-positive cells was determined from analysis of 10,000 events. Data are the average of 3 independent
experiments performed and presented in a bar plot. (F) Relative wound width in control and SMARCA4 KO MDA-MB-468
cells. The bar plot shows the FC in migration distance after gap distance at 0 h was set to 1. Representative images of
three independent experiments are shown on the left. (G) Transwell migration of MDA-MB-468 control and KO cells.
Representative images are shown on the left (scale bar, 100 µm). Cell migration events across the membrane were stained
and counted. Moreover, FC in cell migration compared with control is presented in the bar plot (right). All experiments
were performed in triplicates, and the data have been presented as mean ± SD. Statistical analyses were carried out using
Graph Pad Prism v7.0, and data were analyzed by unpaired t-test; * p < 0.05, ** p < 0.01, *** p < 0.001, N.S. = not significant.

We inferred that MDA-MB-468 KO undergo a transition from the SL to MSL subtype
due to changes in the EMT pathway. Therefore, we additionally interrogated the EMT
pathway by assessing changes in the mRNA and protein expression. As expected, the
mRNA expression of EMT signature genes, including Snail, Twist, N-cadherin, Slug, and
Claudin-1, was increased in MDA-MB-468 SMARCA4 KO more than the control (p < 0.05;
Figure 4C). Consistently, immunoblotting showed increased Snail, Claudin-1, N-cadherin
and E-cadherin expression in SMARCA4 KO MDA-MB-468 cells compared with control
cells (Figure 4D). In contrast, no significant changes were observed in the expression of three
proteins in MDA-MB-231 KO, and N-cadherin and Slug even decreased (Figure 4C,D).

To confirm the subtype switch in MDA-MB-468 KO from WT, we performed FACS
analysis to assess the epithelial cell population as determined by EpCAM positivity. The
MDA-MB-468 cell population clearly had a higher proportion (15.8%) of EpCAM-positive
(epithelial) cells than the MSL-type MDA-MB-231 (1.46%) (Figure 4E). In the SMARCA4
KO groups, EpCAM positivity markedly decreased among MDA-MB-468 cells (control:
15.8%, KO: 2.01%), but showed no considerable change among MDA-MB-231 cells (control:
1.46%, KO: 3.29%; Figure 4E). To confirm this molecular change using functional assays,
we evaluated the migration and invasion according to SMARCA4 KO. MDA-MB-468 cell
migration, as determined by wound-healing assays, increased in SMARCA4 KO in a time-
dependent manner (0 to 72 h) (Figure 4F). Consistently, the migration ability across a
Transwell membrane was increased in SMARCA4 KO MDA-MB-468 cells more than the
control (Figure 4G). Additionally, to confirm the clinical and biological significance of
SMARCA4 in breast cancer patients, we compared the expression profiles of SMARCA4 in
non-invasive breast cancer tissue versus invasive breast cancer tissue. Immunofluorescence
staining results revealed that SMARCA4 expression was decreased to a greater extent in
invasive breast cancer tissues compared with that in non-invasive breast cancer tissues
(Figure S2). These results indicate that SMARCA4 LoF induces EMT, invasiveness, and a
change in subtype from SL to MSL.

3.5. Hippo Pathway Activation in Response to SMARCA4 KO and the Response to
YAP/TAZ Inhibitor

The Hippo pathway targets YAP, promotes EMT, and enhances in vitro invasion [41].
In a previous KO cell line expression analysis, we identified extracellular matrix organiza-
tion and Hippo signaling pathways (Table S3). YAP was also identified as a regulator of
the MSL type in the TNBC patient meta-expression analysis (Figures 2D and S1B). Thus,
disrupting YAP function has the potential to decrease metastatic burden, so it presents
a promising target [41]. Therefore, we further evaluated the Hippo-YAP/TAZ pathway
activity and the sensitivity of YAP inhibitors. Basal expression of Hippo pathway compo-
nents and YAP/TAZ target genes was maintained in MDA-MB-231 cells upon SMARCA4
KO (p = 0.5; Figure 5A), whereas significant increases were observed in MDA-MB-468 cells
(Hippo pathway, p = 0.2; YAP/TAZ, p = 0.09; Figure 5A). This implies that the transcrip-
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tional change in SL-type cells’ EMT genes is more dramatic than the MSL type. We could
infer that there is an alteration of TNBC subtype from SL to MSL. From YAY/TAZ target
genes identified from a previous study [37], nine target genes were chosen for an evaluation
of up-regulation in SMARCA4 KO MDA-MB-468 cells. IGFBP3, NT5E, GADD45A, and
TGF-β1 mRNA expression was drastically upregulated in SMARCA4 KO cells compared
with control cells (FC > 1.5) (Figure 5B). These results suggest that SMARCA4 LoF induces
the activation of Hippo-YAP/TAZ signaling.
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(KO) MDA-MB-468 and MDA-MB-231 cells. p-values were calculated using Welch’s t-test. (B) Bar plot of YAP target gene
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expression. The fold change (FC; Y-axis) in mRNA expression of each gene (Y-axis) was determined by real-time PCR
analysis of MDA-MB-468 control and KO cells. (C) Drug response curves based on the viability of MDA-MB-468 SMARCA4
KO and control (Con) cells treated with the YAP/TAZ inhibitors sitravatinib, crizotinib, verteporfin and CA3. The IC50

for each drug in each cell line is provided in each panel. (D) FC in the gene expression of YAP/TAZ target (left) and EMT
marker (right) genes in SMARCA4 KO and control MDA-MB-468 cells before and after treatment with verteporfin (1 µM,
48 h) or DMSO. (E) Transwell migration assays according to verteporfin and DMSO treatment for SMARCA4 KO and
control. The fold increase in the number of migrated cells is presented in the bar plot. The p-values were indicated by each
asterisk. All experiments were performed in triplicates, and the data have been presented as mean ± SD. Statistical analyses
were carried out using Graph Pad Prism v7.0, and data were analyzed by unpaired t-test; * p < 0.05, ** p < 0.01, *** p < 0.001,
N.S. = not significant.

To explore the targetability of the Hippo-YAP/TAZ signal, we examined the cell
inhibitory effects of four YAP pathway inhibitors. Sitravatinib and crizotinib inhibit the
phosphorylation of multiple receptor tyrosine kinases (RTKs), including YAP-AXL [42,43],
and verteporfin and CA3 were selective inhibitors of the YAP/TEAD cascade [44]. The IC50
values of sitravatinib and crizotinib were not different between SMARCA4 KO and control
MDA-MB-468 cells (Figure 5C). Interestingly, verteporfin (IC50 FC = 1.35) and CA3 IC50
(FC = 1.24) were more sensitive to cancer cell viability in the KO group than the control
group (Figure 5C). We performed the next studies using verteporfin, an FDA-approved
drug. We aimed to determine whether verteporfin inhibits the SMARCA4 KO-mediated
YAP/TAZ target genes and the EMT pathway. The expression levels of the YAP/TAZ target
genes and EMT were consistently increased in MDA-MB-468 SMARCA4 KO cells compared
with the control, and verteporfin suppressed the YAP/TAZ target genes and EMT pathway
(Figure 5D). We also conducted normal human fibroblast cell-based tests to determine the
human-specific toxicity of verteporfin. As expected, verteporfin-associated toxicity was not
observed in the range of our experiment, which suggests that it does not have a response in
breast cancer cells (Figure S3). As a functional readout, Transwell migration assays showed
that verteporfin abolished SMARCA4 KO MDA-MB-468 cell migration (Figure 5E). Taken
together, our findings suggest that the SMARCA4-YAP cascade may facilitate cisplatin
resistance, and regulate YAP target and EMT-related genes.

4. Discussion

Cisplatin resistance is a critical problem to TNBC treatment, so 22 clinical trials have
been proposed [45]. Here, we revealed the clinical importance and biological role of
SMARCA4 in the cisplatin resistance of TNBC patients. SMARCA4, similarly to other
oncogenes, plays dual roles of a dichotomy according to the activation status [17]. In our
result, the LoF status of SMARCA4 mutations was also over-representative in metastasis.
In the transcriptome, SMARCA4-inactivated TNBC patients exhibited the MSL subtype.
Consequently, the EMT pathway and oncogenic signals of CTNNB1, LEF1, TGFβ, and YAP1
were activated in SMARCA4 inactivation patients. Therefore, we concluded that SMARCA4
depletion induces EMT upregulation and metastasis in TNBC. We also evaluated the
findings from cell line experiments, then observed the cell invasiveness, migration, and the
Hippo-YAP/TAZ signal upregulation. Especially, we demonstrated the ability of the YAP
inhibitor verteporfin to suppress YAP/TAZ target genes. It was suggested as a therapy
for cisplatin-resistant TNBC patients. In another study of SMARCA4, which involved
an additional regulator and down-stream signals, SOX4 was revealed to cooperate with
SMARCA4, to regulate PI3K-Akt signaling, and to target TGFBR2 [46]. This finding was
relevant with our result (Figure 2D) to extract TGF-β signal activation, and, additionally,
suggested that PI3K is regulated by SMARCA4. Our histologic and molecular findings
provide a novel insight into prognostic indicators according to SMARCA4, and therapeutic
predictors for TNBC patients.

TP53, NF1, ARID1A and KMT2C mutations increased in metastasis compared with
primary TNBC [22]. However, 58% of patients with metastatic breast cancer in this dataset
had no actionable target [21]. Among the highly mutated driver genes are the epigenetic
regulator ARID1A, which is an SWI/SNF family member whose inactivation leads to
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endocrine therapy resistance and stem-like (SL) features in estrogen receptor-positive breast
cancer [47], and a LoF variant of the histone methyltransferase KMT2C, which reduces
PFS and sensitivity to antiestrogen therapy [48]. ARID1A, ATR and KDM6A mutations’
epigenetic roles are relatively well known [47,48]. However, SMARCA4 mutations were
relatively unknown in TNBC. We reveal that SMARCA4 exhibited invasiveness and cell
migration by upregulation of the Hippo-YAP/TAZ signal in TNBC.

Hippo-YAP/TAZ signaling is a key factor in tumor progression and metastasis; in
particular, YAP1 promotes the EMT and invasion of breast epithelial cells [49,50]. How-
ever, YAP1 amplification and gain-of-function mutations are rarely detected in pan-cancer
studies [37,41]. Therefore, it is inadequate for an upstream marker to identify the Hippo-
YAP/TAZ signal. In this study, we found that SMARCA4 is an upstream suppressor of
Hippo-YAP/TAZ signaling associated with cisplatin resistance in TNBC. Additionally,
among the YAP/TAZ targets, IGFBP3, NT5E, GADD45A, TGF-β1, and TGF-β2 showed
the largest increases in expression FC (Figure 5B). Interestingly, the following target
genes were the known prognostic factors, and support EMT, progression, and metasta-
sis: IGFBP3 (recurrence-free survival p = 0.0068), NT5E (OS p = 0.011), and GADD45A
(OS p = 0.041) [51–53]. Although the prognosis of previous studies was investigated,
functional studies using large-scale cohorts were not fully performed by SMARCA4 or
YAP/TAZ target genes, as well as cisplatin resistance.

To propose targeted therapy for MSL-type TNBC harboring SMARCA4 downreg-
ulation, we evaluated four YAP1 inhibitors. Sitravatinib and crizotinib, two multi-RTK
inhibitors that inhibit the YAP–AXL axis, among others, are used extensively to treat
cancer [54,55]; unfortunately, they showed no effective response in SMARCA4 KO cells,
whereas verteporfin and CA3, which decrease YAP1 expression [56,57], exhibited activity
in this context. Verteporfin showed the greatest sensitivity, suppressing the expression of
the YAP1 target genes IGFBP3, NT4E, and GADD45A, and decreasing cell invasiveness.
Verteporfin has been evaluated in clinical trials of various cancer types, including cutaneous
metastatic breast cancer, and in vitro and in vivo experiments in human glioblastoma stem
cells and xenograft models identified verteporfin as a therapeutic candidate in EGFR-
variant glioblastoma [58]. Therefore, we propose verteporfin as a promising therapeutic
agent for metastatic or refractory TNBC with SMARCA4 LoF.

Our evaluation of SMARCA4, identified from a large-scale clinical dataset analysis,
was performed by an in vitro test, and lacked in vivo testing. Nevertheless, previous stud-
ies revealed that the loss of SMARCA4 resulted in increases in both the number and size
of tumors when compared with controls [59]. Also, SMARCA4-null heterozygous mice
spontaneously develop mammary tumors, and specific alleles of SMARCA4 are associated
with cancer predisposition in humans [60]. Furthermore, verteporfin reduced the expres-
sion of YAP in the ZNF367-overexpressing breast cancer MDA-MB-231 and 4T1 cells, and
significantly reduced lung metastases in mouse models [61]. This finding provided indirect
support to our finding in the clinical data and cell culture model. However, our result
primarily focused on the clinical and biological role of SMARCA4 from multiple resources,
such as mutation and gene expression profiles from large-scale cohorts. Therefore, we are
convinced that our data provide good evidence for the role of SMARCA4 inactivation in
exhibiting metastasis and cisplatin resistance for the induction of transcriptome changes
from the SL to the MSL subtype in TNBC, and can, thus, be a good origin for further
animal studies.

Our studies investigated the clinical and biological role of SMARCA4 from multiple
resources, such as mutation and gene expression profiles from large-scale cohorts. To hypo-
thetically sum up, the depletion of SMARCA4 promotes the transcription factor YAP/TAZ
to regulate the activation of EMT genes in TNBC cells (Figure 6). Verteporfin selectively
inhibited YAP, and EMT genes were consequently down-regulated. Unfortunately, our
experiment includes limitations in the usage of restricted TNBC cell lines without epige-
nomic evidence from ATAC-seq or ChIP-seq. In spite of these limitations, we employed
the representative TNBC cell lines for the MSL and SL subtypes. The tumor-associated
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functions are better explained than in the previous experiment using a mammalian ep-
ithelial cell line [18]. However, it will improve our observation to use the extensive cell
lines in our next experiment. Currently, the transcriptional change in our KO cell line was
investigated from only gene expression profile. Additional sequencing approaches could
explain more details, such as chromatic organization or transcription factor binding by
SMARCA4 deficiency. In clinical aspects, the pathologic and therapeutic profile should be
supported to prove the oncogenic role by SMARCA4 deficiency.
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Figure 6. Hypothesis illustration to describe EMT regulation by SMARCA4 deficiency, and verteporfin to inhibit YAP
in TNBC.

5. Conclusions

In summary, our studies reveal the clinical and therapeutic importance of SMARCA4
depletion to exhibit metastasis and cisplatin resistance in TNBC. We successfully identified
EMT and Hippo-YAP/TAZ signal regulation by SMARCA4 depletion. Following our
finding, SMARCA4 could be an important regulator and a diagnostic marker in TNBC.
Further, the expansion of clinical evaluations and survival analyses is required. The
advanced therapeutic strategy using the YAP inhibitor also remains for a better outcome.
We believe that our finding improves the diagnosis and therapy for TNBC patients.
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