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Abstract: This study was to investigate the changes in brain function due to lack of oxygen (O2)
caused by mouth breathing, and to suggest a method to alleviate the side effects of mouth breathing
on brain function through an additional O2 supply. For this purpose, we classified the breathing
patterns according to EEG signals using a machine learning technique and proposed a method to
reduce the side effects of mouth breathing on brain function. Twenty subjects participated in this
study, and each subject performed three different breathings: nose and mouth breathing and mouth
breathing with O2 supply during a working memory task. The results showed that nose breathing
guarantees normal O2 supply to the brain, but mouth breathing interrupts the O2 supply to the brain.
Therefore, this comparative study of EEG signals using machine learning showed that one of the most
important elements distinguishing the effects of mouth and nose breathing on brain function was the
difference in O2 supply. These findings have important implications for the workplace environment,
suggesting that special care is required for employees who work long hours in confined spaces such
as public transport, and that a sufficient O2 supply is needed in the workplace for working efficiency.

Keywords: EEG; breathing; machine learning; LDA; random forest; working memory task

1. Introduction

Breathing plays an important role in the vital activities of a person and affects many
areas, such as learning ability, cognitive ability, health, and sleep. Therefore, it is very
important to understand and study breathing from an ergonomic perspective. Breathing
methods are primarily divided into mouth and nose breathing. In some studies, mouth
breathing has been known to be associated with side effects, such as facial shape defor-
mation [1] and decreased learning ability [2,3], when compared to nose breathing [1,4,5].
Furthermore, when adolescents breathe through their mouths, they have substantial diffi-
culty exercising working memory and arithmetic skills due to insufficient O2 supply to the
brain compared to nose breathing [2,3].

It has been reported that breathing methods can affect brain functions in working
memory [2], but most existing research has found that the effects of breathing methods on
brain functions were indirect and were expected to take place over a long period of time.
For example, mouth breathing may be related to the learning ability of children, but its
effect may not be direct and immediate. Furthermore, sleep disorders possibly caused by
mouth breathing are also considered to affect learning ability [2]. However, recent studies
have attempted to confirm the direct and immediate effects of breathing methods on brain
function, and one of them confirmed the effects of breathing methods on working memory
through electroencephalography (EEG) data [6]. The study reported that mouth breathing
decreased the ability of working memory compared to nose breathing, suggesting that the
biggest difference between mouth and nose breathing may be the O2 supply to the brain.
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The performance of the brain is very sensitive to a reduced O2 supply, and it has
already been confirmed that the performance for single- and multi-tasking was improved
in a work environment with increased O2 supply to the brain [7]. In other words, O2 supply
is very important to improve work efficiency and brain performance. Studies have also
reported that the administration of high concentrations of O2 could lead to improvement
in cognitive ability, such as a decrease in the reaction time during the 1-back task [8].
Therefore, it can be stated that an adequate supply of O2 in the working environment has a
great influence on brain function.

In a recent study that investigated the direct and immediate effects of breathing
methods on brain function, EEG was primarily used to measure brain activity during
the working memory task [9,10]. EEG has the advantage of being able to directly and
non-invasively measure the electrical signal transmission of the brain during a specific
stimulus or task at high temporal resolution [11,12]. However, the acquired EEG signals
are vast, and it is quite complicated to process the data. Since the overall analysis of
the EEG signals is difficult, studies have been conducted through an analysis limited to
certain characteristics presented in the existing literature. This makes it difficult to analyze
measurable results objectively, thereby limiting the scope of research to the subjective
hypotheses of researchers in the existing literature. For this reason, many recent studies
have introduced statistical methods and machine learning techniques to analyze complex
EEG measurement signals [13–17].

Machine learning technology is receiving special attention as a method for effectively
analyzing EEG data because it has the advantage of finding subtle patterns, even in vast
amounts of data measured in various channel signals [9,18–20].

In fact, machine learning has been applied in several EEG-based studies, such as EEG
classification according to emotion [11,12] and EEG-based emotion recognition [21–23]. In
addition, this trend is expected to intensify, considering the recent rapid development of
machine learning technologies, such as deep learning [24–26].

In this study, we applied a machine learning technique to EEG data to distinguish the
types of performed breathing by analyzing the changes in the brain oscillatory activities
caused by breathing. Therefore, this study aimed to investigate the immediate and direct
difference between nose and mouth breathing in brain activities, as well as the effects of
additional O2 supply to distinguish the types of breathing.

2. Materials and Methods
2.1. Participants and Experimental Environment

This study was approved by the Institutional Review Board in Gachon University (IRB:
1044396-201706-HR-108-01). All EEG data were obtained from 20 subjects who voluntarily
participated and provided written consent (male: 7, female: 13, age: 23.7 ± 2.28 years, non-
smokers, right-handed). To minimize the unnecessary effect of the measuring environment
on the EEG data and to remove ambient noise, measurements were made in a soundproof
room. The EEG electrodes were attached to the scalp in accordance with the 10–20 system.
The average temperature of the data measurement environment was 22.6 ± 1.45 ◦C. The
average humidity remained constant at 23.0 ± 2.1%.

2.2. Data Acquisition and Preprocessing

Measurements were performed with an EEG (LAXTHA QEEG-32FX) in which we
obtained data from 32 channels, electrooculogram (EOG) from 2 channels, and electro-
cardiogram (ECG) from 1 channel. Using Telescan (LAXTHA), five types of EEG brain
wave frequency bands: delta (δ: 0.5–4 Hz), theta (θ: 4–8 Hz), alpha (α: 8–13 Hz), beta
(β: 13–30 Hz), and gamma (γ: 30–50 Hz) were sampled at 250 Hz. Data preprocessing was
conducted using MATLAB-based EEGLAB (SCCN). The first 1 min out of the total 5 min
of epoch measurement data was excluded (Figure 1), and only 4 min of data were used to
analyze steady state EEG signals with band-pass filtering (0.5–50 Hz). The EOG affected by
visual stimuli and ECG artifacts were removed using the independent component analysis
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algorithm provided by EEGLAB. The EEG data generated from the above preprocessing
underwent a fast Fourier transform analysis. Thus, we obtained the relative spectral density
power for the five brain waves (δ, θ, α, β, and γ).
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Figure 1. Experimental design for the rest states and n-back tasks, including nose and mouth breathing, and mouth
breathing with O2 supply. Subjects performed a total of 6 tasks, each a five-minute session, in a random order. There was a
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breathing with O2 supply.

To examine the EEG signal differences in working memory performance during
respiration, the EEG signals were measured for 5 min each in the rest, 1-back, and 2-
back task states. The subject’s brain waves were measured in two rest states with their
eyes closed and open. The n-back task state consisted of a 1-back task and a 2-back task,
representing two levels of working memory tasks. In the n-back task state, a number from 0
to 9 was presented to the subject for 0.5 s (Figure 2). Then, a fixation cross (+) was displayed
for the next 1.5 s. N-back is a task that requires a response if the currently presented
number is the same as the number given n steps before. Therefore, from a working memory
perspective, 1-back is a simpler task than 2-back. A multi-parameter patient monitor
(MSLMP03) was used to measure the physiological data, namely blood oxygen level (SpO2)
during both the resting state and the n-back working memory tasks. Also, n-back tasks
were performed with the Psytoolkit (www.psytoolkit.org (accessed on 25 February 2021)),
and the working memory (WM) accuracy and response time were measured.
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Figure 2. Schematic diagram for n-back working memory task. F refers to the target number; when
this number appears, the correct button must be pressed.

During the rest state with closed eyes, the tasks consisted of nose and mouth breathing
and mouth breathing with O2 supply. In addition, the tasks consisted of the rest state
with eyes open and the n-back states during mouth breathing with O2 (Figure 3). The O2
saturation level of the mixed air used for the O2 supply was maintained at approximately
20%. The EEG data for each of the 5-min blocks were collected in a random order with a
break of 1 min between measurements for the brain washout of the previous task.

www.psytoolkit.org
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supply were tested. Mouth breathing with O2 supply tasks (M-O2) consisted of rest with closed and open eyes and 1-back
and 2-back tasks.

2.3. Linear Discriminant Analysis Random Forest (LDARF)

The machine learning algorithm proposed in this paper is a binary classifier applied
to EEG data to determine whether the data were obtained from nose breathing or mouth
breathing. The algorithm, LDARF, combined a linear discriminant analysis (LDA) with
random forest (RF). The EEG data used for learning consisted of 160 attributes (or features),
that is, 5 frequencies (δ, θ, α, β, γ) × 32 channels. LDARF extracted effective feature
vectors from the EEG data by applying LDA based on supervised learning, and then
the machine learning model was trained with the data in the RF. The LDA learned the
distribution of EEG data and extracted the feature vectors that produced the optimal
decision boundary. The dimension of the input vector was effectively reduced using this
process. The next classification was performed by the RF classifier, which is an ensemble
technique combining multiple decision trees. This was followed by bootstrap techniques
using several decision trees, which allowed the classifier to achieve high generalization
ability and minimize over-fitting even with a small amount of learning data. Figure 4
provides a brief representation of the LDARF. The experiment used an RF classification
with 1000 decision trees. The decision trees determined each breathing and finally classified
the breathing through hard voting.
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2.4. Training of the LDARF Classifier

For the machine learning training, each EEG was processed as a vector with 160 elements
consisting of the relative spectral density power of five brain waves in 32 channels. To
train the LDARF classifier to differentiate between mouth and nose breathing through
brain waves, the signal recorded at rest with closed eyes was used. By preprocessing the
EEG data obtained from the closed eyes rest state, the values of the five brain waves in the
32 channels were converted to a 160-dimensional vector. After the LDARF classifier trained
the individual EEG data, it individually determined whether the EEG sample, especially
mouth breathing with O2 supply, was mouth or nose breathing. In detail, cross-validation
(CV) method is utilized for the classifier, in which CV divides the datasets into data folds,
for example, 10-fold CV means dividing the entire datasets into 1 test fold and 9 training
folds so that the 10 folds can be a test fold and 10 iterations can be performed to train the
model. In this study, the repeated 10-fold CV estimator was applied to improve the accuracy
of the datasets [27]. That is, 10-fold CV was repeated 50 times to verify the performance of
the trained LDARF classifier. A total of 500 LDARF classifiers were generated after training
with 500 different training sets through the repeated CV, and they were verified with the
test sets which were not seen during the training. Lastly, the state of the test EEG datasets
was individually determined regarding mouth or nose breathing, and the results were
evaluated with accuracy.

The LDARF classifier was trained using only the EEG signal of closed eyes rest with
mouth and nose breathing. Thus, the difference in brain waves between nose breathing
and mouth breathing in a stable condition was extracted, and this was used to distinguish
between the breathing methods. Figure 5 provides a brief overview of the EEG data used
in learning and data used in the inference in the LDARF classifier model.
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2.5. Identification of EEG Data with Mouth Breathing by the Trained LDARF Classifier

The LDARF classifier could distinguish the signals between mouth and nose breathing
in the closed eyes rest condition with high accuracy through learning with steady state
EEG signals. Then, the inference was estimated using the EEG data obtained during mouth
breathing with O2 supply during the four tasks: closed eyes rest, open eyes rest, 1-back,
and 2-back. These tasks may have different O2 demands according to their difficulty. In
500 LDARF classifiers obtained through fifty 10-fold CVs, inferences to these EEG data
were performed. In addition, the accuracy of each classifier was measured.

3. Results

The analysis for O2 saturation (SpO2) and behavioral performance (WM accuracy)
were performed for examining the physiological effects according to breathing types
(Tables S1 and S2). The O2 supply via mouth was significantly higher for SpO2 than others
breathings without additional O2 supply (p < 0.001, F = 11.118 for 1-back task in ANOVA;
see also in the Supplementary Tables S1–S3 for details). However, O2 blood saturation of
mouth breathing did not differ from that of nose breathing (p = 0.945). In addition, the WM
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accuracy did not differ significantly from each group (p = 0.711, F = 0.585 in ANCOVA).
Therefore, due to their subtle effects on behavioral performance, machine learning analysis
had to be used to investigate whether the breathing types could be detected in brain
oscillatory activity.

The performance of the LDARF classifier trained with the EEG data collected during
mouth and nose breathing in the closed eyes rest condition was sufficiently high, as shown
in Table 1. To determine the possible influence of muscle artifacts, the analysis in the
absence of the gamma waves was also conducted, and the results showed that they had
no effect on differentiating breathing types (Table 1). The LDARF classifier differentiated
the EEG data between the nose and mouth breathing classes with very high accuracy,
suggesting that the LDARF classifier successfully extracted the differences of mouth and
nose breathing from the EEG signals. Figure 6 shows the accuracy and standard deviation
per CV for the 10-fold CV. At 10-fold CV, LDARF showed a high accuracy of 0.984. Figure 7
shows the receiver operating characteristic (ROC) curve and the area under the curve
(AUC) of the trained LDARF classifier. The AUC value was 0.991, indicating that the
LDARF classifier performed well.

Table 1. Results of 50 iterations of 10-fold cross-validation. Inference performance by the linear
discriminant analysis random forest (LDARF) classifier with test data subsets (closed eye rest dur-
ing mouth and nose breathing) in each cross-validation is presented using accuracy, precision,
and sensitivity.

With Gamma Wave Without Gamma Wave

Mean ± SD Mean ± SD

Accuracy 0.984 ± 0.005 0.992 ± 0.001
Precision 0.975 ± 0.011 0.990 ± 0.001

Sensitivity 0.994 ± 0.005 0.995 ± 0.001
Abbreviations: SD, standard deviation.
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were significantly less distinguishable, suggesting that the LDARF classifier was affected 
by the O2-related changes in the EEG signals used for distinguishing between mouth and 
nose breathing. Oxygen was thought to be more adequately supplied at higher levels of 

Figure 7. Receiver operating characteristic (ROC) curve and area under the curve (AUC) graph from
the condition of rest with closed eyes and mouth and nose breathing, trained with linear discriminant
analysis random forest (LDARF) classifier. The AUC of 0.991 confirmed that the LDARF classifier
performed well.

Table 2 shows the results of tasks with different demands of O2 supply, which were
obtained by applying the previously trained LDARF classifier to the EEG data of those
tasks. In Figure 8, the LDARF classifier, which had high accuracy in the closed eyes rest
state with mouth and nose breathing, showed a substantially poor performance in mouth
breathing with O2 supply during the rest with open eyes state. The accuracy of the classifier
dropped from 98% for the rest state with closed eyes to 50% for rest with open and closed
eyes and mouth breathing with O2 supply in the presence of gamma waves. When the
LDARF classifier for mouth breathing was trained for O2 supply situations, the results
were significantly less distinguishable, suggesting that the LDARF classifier was affected
by the O2-related changes in the EEG signals used for distinguishing between mouth and
nose breathing. Oxygen was thought to be more adequately supplied at higher levels of
oxygen demand (1-back and 2-back working memory tasks) than in the rest state. These
mouth breathings with O2 supply were determined to be nose breathing during 67% of
the 1-back task and 75% of the 2-back task. Furthermore, when the O2 demand increased
(from 1-back to 2-back working memory tasks), and sufficient O2 was supplied through the
mouth, the EEG signal patterns might be more similar to that of nose breathing than mouth
breathing. Therefore, the LDARF classifier determined it consistently as nose breathing,
even though it was mouth breathing.

Table 2. Results of inferences by the linear discriminant analysis random forest (LDARF) classifier
during mouth breathing with O2 supply. The results of the inferences on the electroencephalography
(EEG) data in three different levels of oxygen demand obtained using the LDARF classifier are shown.
The classifier was trained with 500 data from closed eyes rest state during mouth breathing. It should
be noted that the precision was always equal to one because O2 was supplied through mouth and
that the sensitivity was the same as the accuracy.

With Gamma Wave Without Gamma Wave

Inference Accuracy ± SD Accuracy ± SD

Closed eye rest state 0.506 ± 0.024 0.554 ± 0.003
Open eye rest state 0.500 ± 0.000 0.355 ± 0.007

1-back 0.331 ± 0.018 0.354 ± 0.007
2-back 0.252 ± 0.004 0.200 ± 0.006

Abbreviations: SD, standard deviation.
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Figure 8. Results of inferences by the linear discriminant analysis random forest (LDARF) classifier.
Inference results for electroencephalography (EEG) data of the tasks with three different levels of
oxygen demand obtained using 500 LDARF classifier trained with the data recorded during the rest
with closed eyes condition.

The LDARF classifier could quantify which channels and brain waves were more
important in distinguishing between mouth and nose breathing with respect to their
relative spectral density power while performing dimension reduction through LDA. In
terms of machine learning, LDARF could quantitatively calculate the feature importance
for 160 input features, as shown in Table 3, which shows the top and bottom five features
that were important in distinguishing nose and mouth breathing. The results of Table 3 and
Figure 9 show that the gamma brain wave had the greatest influence on the determination
of respiratory types from the EEG data. In addition, the ranking of the EEG features (δ,
θ, α, β) obtained in the presence of gamma waves was the same as that obtained in the
absence of gamma waves (Table S3).

Table 3. The absolute values of the five important upper positive and negative weight vector channels.
These channels have a significant influence on the determination of nose or mouth breathing.

With Gamma Wave Without Gamma Wave

Wave/Location Absolute Value Wave/Location Absolute Value

Upper positive
weight vector

Gamma/C3 2.755 Beta/FC6 1.400
Gamma/T8 2.292 Beta/AF4 1.010

Gamma/Fp1 1.835 Beta/O1 0.657
Gamma/CP6 1.600 Beta/AF3 0.646
Gamma/F8 1.511 Theta/C4 0.630

Upper negative
weight vector

Gamma/T7 2.586 Beta/F4 0.571
Gamma/F7 2.478 Beta/AF3 0.611
Gamma/P3 1.576 Beta/P3 0.733

Gamma/FC5 1.454 Theta/F7 1.092
Gamma/Fp2 0.817 Beta/FC5 1.169
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4. Discussion
4.1. Confirmation of the Effect of O2 Supply during Mouth Breathing through Machine Learning

This study aimed to extract the characteristics of the breathing method from EEG
signals using machine learning technology. Furthermore, this study demonstrated the
direct and immediate changes in brain function due to lack of O2 supplied by mouth
breathing. Unlike previous studies limited to the existing otolaryngology treatment for
mouth breathing, this study aimed to confirm the necessity of additional O2 supply in a
work environment that requires extensive brain function and to show that additional O2
supply can alleviate or prevent brain function decline caused by mouth breathing. The
results showed no differences in behavioral performance depending on the breathing types,
but differences in brain activity were clearly detectable through machine learning analysis.

In this study, inferences were performed using the EEG data from the condition with
additional supply of O2, with different O2 demands for different working memory tasks.
Each inference was evaluated for accuracy. The complexity level of the inferences for the
different states increased in the following order: rest with open eyes, 1-back, and 2-back
with mouth breathing with O2 supply. Therefore, the O2 demand should increase with
the level of complexity of the operation; a previous report [10] has concluded that as the
cognitive load increases, the brain’s demand for O2 increases, and O2 supplied in high
concentrations is used more efficiently.

This study has shown that machine learning using EEG signals can sufficiently deter-
mine the immediate and direct effects of oral and nasal breathing on cognitive function. In
addition, mouth breathing affected the working memory performance due to the possi-
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ble lack of oxygen as the task difficulty increased, but when additional O2 was supplied
through the mouth, the discriminator, with increasing complexity of the task, increasingly
identified mouth breathing as nose breathing.

Moreover, in complex tasks that require more oxygen from the brain, O2 supply more
effectively reduced the characteristic differences between EEG signals in nose and mouth
breathing. These results support the fact that the main difference between the EEG signals
in nose and mouth breathing may be due to the extent of O2 supply to the brain [1] and
that the breathing method has an immediate and direct effect on brain function [2–5].
Furthermore, machine learning techniques, such as LDA and RF, can be trained with
very high performance in EEG signals. In addition, they can be used in EEG studies as
an effective analysis method to measure the extent and type of factors (or features) that
affect the classification results because they can simplify the measurement of the relative
importance of each feature [18,28,29].

A variety of machine learning methods are used in EEG studies: random forests, as
well as support vector machines, have been used by researchers to analyze EEG signals
and perform dimensionality reduction through principal component analysis [11,14,15,22].
Unlike conventional statistical research methods, machine learning enables inference to
determine brain donor status from a single EEG data. Therefore, it can be applied to
monitor the state of brain function in an actual work environment.

4.2. Side Effects and Various Risks of Mouth Breathing on Working Efficiency

Mouth breathing is very common in adolescents and causes morphological defor-
mation of the face [4,5]. It has also been reported that children breathing through their
mouths have significantly lower reading ability and working memory performance in
arithmetic than children breathing through their noses [2]. In allergic rhinitis patients,
mouth breathing is associated with an increase of approximately 30% in asthma preva-
lence compared to nose breathing [4]. A high incidence of obstructive sleep disorders
in adolescents with mouth breathing has also been reported [6]. Compared to healthy
adolescents, adolescents with obstructive sleep apnea syndrome had poorer learning ability,
more behavioral problems, and worse concentration ability [2,3]. Similarly, children with
respiratory problems during sleep had low language processing and learning ability [3].
As such, various side effects of mouth breathing have been reported, but they were mostly
indirect interpretations of the side effects on brain function. Therefore, the aspects of direct
and immediate brain functional changes that occur over a long period of time due to mouth
breathing also need to be considered.

4.3. Additional O2 Supply to Avoid Hazards of the Working Environment

The results showed that if additional O2 supply is provided during mouth breathing,
it is recognized as nose breathing, at least by the brain waves. This means that brain
function degradation, such as working memory performance reduction, can be improved
through additional O2 supply. Prior research has thoroughly investigated differences in
brain regions where changes in brain function occur due to breathing. However, there
has been no research to show whether the distinction could be made based on the type
of breathing. Once machine learning models become more advanced and can distinguish
and analyze EEG signals of different breathing conditions effectively, it will be possible to
predict the effect of breathing changes on the brain and to prevent breathing habits that
damage brain function. Even in the field of cognitive ability, such as working memory
tasks related to breathing, the machine learning model can be a very effective approach
to analyze EEG signals. This will also allow the field of cognitive science to customize
personalized treatment plans and initial interventions for patients based on predictions
from EEG signals. Personalized treatment plans can have a significant effect on clinical
management transitions [29].



Brain Sci. 2021, 11, 293 11 of 13

5. Conclusions

The present study showed that the management of O2 supply could affect brain per-
formance. Similar to this result, other studies have also shown improved work efficiency
in working environments where O2 supply was increased [7]. An increase in cognitive
abilities, such as a decrease in reaction time during the 1-back task, was observed in envi-
ronments with high-concentration of O2 [8]. Oxygen supply affecting brain function will
also have a great effect on improving the efficiency in the working environment. However,
there were some limitations to this study. First, EEG data with three different levels of O2
demand were tested through inference using the LDARF classifier. However, only the data
from the condition of mouth breathing with an additional supply of O2 were examined,
whereas the effect of O2 supplied by the nose should also be examined. Further improve-
ments to the generalized performance of LDARF should be made because the data were
obtained from a limited number of subjects, although the generalized performance was
strictly verified with 50 10-fold CVs. Further research should be conducted to investigate
how O2 supply will help improve work efficiency in various working environments and
why there had no differences in cognitive performance in the current design. In order to
draw definite conclusions, participants, such as patients with long-term mouth breath-
ing or cognitive impairment, should be also included in future studies. In addition, the
LDA and RF classifiers were used in this study. In future studies, EEG signals need to
be analyzed using different types of machine learning models, such as support vector
machine, principal component analysis, and independent component analysis. Also, it
is necessary to determine which machine learning models are effective in analyzing EEG
signals for a specific task. Moreover, considering that the ensemble technique of combining
different models in machine learning is superior to one model-based method, the study
of the application of the ensemble technique is also of great importance. Furthermore,
this study could provide the basis for future research, including the effects of insufficient
O2 supply on structural brain development and academic performance in children, the
effects on cerebral activity while further supplying O2 supply to the brain, the effects of
gas exchange in the lungs, and/or the respiratory effects of degenerative brain diseases
such as vascular dementia, Alzheimer’s, or Parkinson’s disease.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-342
5/11/3/293/s1, Table S1: SpO2 difference between groups, Table S2: Behavioral result of working
memory (WM) accuracy between groups; Table S3: The absolute values of the five important upper
positive and negative weight vector channels. Note that the ranks were the same when gamma
wave excluded.
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