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Abstract
Purpose Cancer-associated fibroblasts (CAFs) expressing fibroblast activation protein (FAP) have been associated with the
aggressive nature of head and neck cancers (HNCs). These tumours grow diffusely, leading to extremely challenging differen-
tiation between tumour and healthy tissue. This analysis aims to introduce a novel approach of tumour detection, contouring and
targeted radiotherapy of HNCs using visualisation of CAFs: PET-CT with 68Ga-radiolabeled inhibitors of FAP (FAPI).
Methods FAPI PET-CT was performed without complications prior to radiotherapy in addition to contrast enhanced CT (CE-
CT) and MRI on 14 patients with HNC. First, for tissue biodistribution analysis, volumes of interest were defined to quantify
SUVmean and SUVmax in tumour and healthy parenchyma. Secondly, using four thresholds of three-, five-, seven- and tenfold
increase of FAPI enhancement in the tumour as compared with normal tissue, four different gross tumour volumes (FAPI-GTV)
were created automatically. These were compared with GTVs created conventionally with CE-CT and MRI (CT-GTV).
Results The biodistribution analysis revealed high FAPI avidity within tumorous lesions (e.g. primary tumours, SUVmax 14.62 ±
4.44; SUVmean 7.41 ± 2.39). In contrast, low background uptakewas measured in healthy tissues of the head and neck region (e.g.
salivary glands: SUVmax 1.76 ± 0.31; SUVmean 1.23 ± 0.28). Considering radiation planning, CT-GTV was of 27.3 ml, whereas
contouring with FAPI resulted in significantly different GTVs of 67.7 ml (FAPI × 3, p = 0.0134), 22.1 ml (FAPI × 5, p = 0.0419),
7.6 ml (FAPI × 7, p = 0.0001) and 2.3 ml (FAPI × 10, p = 0.0001). Taking these significant disparities between the GTVs into
consideration, we merged FAPI-GTVs with CT-GTVs. This resulted in median volumes, that were, as compared to CT-GTVs,
significantly larger with FAPI × 3 (54.7 ml, + 200.5% relative increase, p = 0.0005) and FAPI × 5 (15.0 ml, + 54.9%, p = 0.0122).
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Furthermore, FAPI-GTVs were not covered by CE-CT-based planning target volumes (CT-PTVs) in several cases.
Conclusion We present first evidence of diagnostic and therapeutic potential of FAPI ligands in head and neck cancer. Larger
studies with histopathological correlation are required to validate our findings.
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List of abbreviations
18F-FDG 18F-fluorodeoxy-D-glucose
68Ga-FAPI 68Ga-fibroblast activation protein inhibitor
CE-CT Contrast-enhanced computer tomography
CT Computer tomography
EORTC European Organisation for Research and

Treatment of Cancer
FAP Fibroblast activation protein
GTV Gross tumour volume
HNC Head and neck cancer
HPV Human papilloma virus
IMRT Intensity modulated radiotherapy
MRI Magnetic resonance imaging
PET Positron emission tomography
PTV Planning target volume
SCC Squamous cell carcinoma
SUV Standardised uptake value

Introduction

Head and neck cancers (HNC) are the sixth most common
malignancy in the world with over 650,000 cases and
330,000 deaths annually [1]. The incidence rates are on the
rise over the last years and the patient population is getting
younger, especially in the USA and Europe [2].

Radiation therapy (RT) is well established as one of the
most important modalities of treating HNC and has immense-
ly contributed to improvements in overall survival of HNC
patients. The opportunities of precise RT are growing, e.g.
intensity-modulated radiation therapy (IMRT) allows steep
gradients. Inescapably, there is a growing necessity for higher
precision in diagnostics and differentiation between tumour
and adjacent healthy tissue [3]. This is directly relevant for
target volume definition for RT and thus decides about tumour
recurrence patterns and toxicity to healthy tissue [4]. At the
same time, tumour recurrence is often observed within the RT
target volume or at its margins [5]. Hence, resistance to RT
remains a great challenge.

Most HNCs tend to grow in an invasive and diffuse manner
with infiltration of the originating or neighbouring small, del-
icate and anatomically complex structures such as the
otorhinolaryngeal cavities, brain, muscles, bones etc. CT and
MRI imaging, despite the application of contrast agents, often
fail to demarcate HNC. Positron emission tomography-CT
(PET-CT) using 18F-fluorodeoxy-D-glucose (18F-FDG) tracer

is already well recognised for staging, as well as treatment
response imaging [4]. However, FDG PET-CT bears several
limitations for use in HNC as the technique lacks high con-
trast. In addition, high glucose uptake and consequently FGD-
PET positivity is seen in several crucial healthy tissues such as
salivary glands, brain, cervical muscles or lymph nodes [4].
Moreover, false-positive uptake in inflamed peritumour tissue
or after surgery and radiotherapy is also very common [6].
With all these weaknesses of FDG PET-CT, it remains diffi-
cult to precisely circumscribe the tumours.

Epithelial carcinomas may consist of more than 90% stro-
ma, including also fibroblasts. These carcinoma-associated
fibroblasts (CAFs) have recently been identified as key
players of tumour invasiveness, progression and therapy resis-
tance [7]. Fibroblast activation protein (FAP) is overexpressed
by CAFs of several cancer entities, including HNCs and on
the other hand, FAP expression in healthy tissue is relatively
low [8].

Thus, visualisation of CAFs using the recently discovered
quinoline-based PET tracers, which act as FAP inhibitors
(FAPI), is ground-breaking. First in human studies, they have
already demonstrated high-contrast tumour imaging using
68Ga-FAPI PET-CT [8–12]. In this pioneering study, we are
investigating the use of FAPI PET-CT to precisely detect and
innovatively delineate HNCs for RT planning.

Table 1 Patient characteristics

Total patients 14

Median age 68.5 (48–83)

Sex

Male 12 86%

Female 2 14%

Pre-treatment

Biopsy only 12 86%

Resection 2 14%

Radiotherapy 100%

Radiotherapy only 6 43%

Radio-chemotherapy 7 50%

Radio-immunotherapy 1 7%

Histology

Squamous cell carcinoma (SCC) 12 86%

Mucoepidermoid carcinoma 1 7%

Undifferentiated 1 7%
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Materials and methods

Patient cohort

This analysis was done using an existing database of 14 HNC
patients with age > 18 years (Table 1). They were referred to
our Department of Radiation Oncology of the Heidelberg
University Hospital, Heidelberg, Germany between July 2017
and August 2018 by their primary otorhinolaryngologists, oral
and maxillofacial surgeons or oncologists due to the challeng-
ing complexity of the tumours. This complexity required ad-
vanced and experimental diagnostic imaging and treatment
planning for which we referred them to our collaborating
Department of Nuclear Medicine for the FAPI PET-CT.

Most of the patients received radiotherapy in definitive
setting and only with a prior biopsy for histological confirma-
tion (85.7%). Two patients (14.3%) received additive radio-
therapy after surgical resection with macroscopic residual tu-
mour. All patients had histologically confirmedHNCs, where-
as squamous cell carcinoma (SCC) was the most common
histology (85.7%). Radiotherapy was performed alone or con-
comitant with chemo- or immunotherapy (Table 1).

FAPI-PET imaging and biodistribution analysis

All patients gave written informed consent for undergoing
68Ga-FAPI PET-CT. The radiopharmaceutical was adminis-
tered intravenously (80 nmol/GBq) followed by image acqui-
sition 30 min after tracer administration. The PET/CT scans
were performed with a Biograph mCT Flow PET/CT-Scanner
(Siemens Medical Solutions). A low-dose whole body CT
scan (130 keV, 30 mAs, CareDose; reconstructed with a
soft-tissue kernel to a slice thickness of 5 mm) was used for
attenuation correction and image fusion. A 3-D emission scan
(matrix 200 × 200) was performed, subsequently using
FlowMotion (Siemens). The emission data was corrected for
randoms, scatter and decay. Reconstruction was performed
with an ordered subset expectation maximisation (OSEM)
algorithm with two iterations/21 subsets and Gauss-filtered
to a transaxial resolution of 5 mm at full width at half maxi-
mum (FWHM).

Circular volumes of interest were used inside tumour lesions
and healthy tissues to quantify the radiotracer biodistribution in
patients. This resulted in SUVmax and SUVmean.

Target volume delineation

Syngo.via software (VB10B, Siemens Healthineers) was used
for target volumetric analyses. For PET-based GTV definition
(FAPI-GTV), we compared SUVs of the primary tumour to
healthy appearing surrounding tissue. First, we quantified
SUV of healthy tissue using region-of-interest method for every
patient. This resulted in an individual background value, which

was used to define different thresholds of FAPI uptake in the
primary tumour. As there is no experience so far in target vol-
ume delineation using 68Ga-FAPI PET-CT,we used four thresh-
olds of three-, five-, seven- and tenfold increase of FAPI en-
hancement (SUVmax) in the tumour as compared with normal
tissue to automatically create four different-sized FAPI-GTVs.

These experimental FAPI-GTVs were then correlated with
anatomical CT/MR imaging, checked for plausibility and if
needed, corrected for false-positive/negative FAPI uptake by
two nuclear medicine physicians and two radiation oncolo-
gists, experienced and board certified respectively in their
fields. Radiation field delimitation is characteristically a sub-
jective task, thus consensus of experts in the field is consid-
ered the best standard of reference.

All patients also received contrast-enhanced CT (CE-CT)
in combination with an MRI for the conventional radiation
treatment planning. GTVs here (CT-GTV) were defined by
board-certified radiation oncologists using the latest EORTC
guidelines [13] on CT/MR images without the help of PET
imaging. Furthermore, by adding a 5-mm margin while re-
specting anatomical borders, clinical target volumes (CT-
CTVs) were created. As a last step, planning target volumes
(CT-PTVs) were defined by adding another 5 mm margin to
the CT-CTVs. GTVs on their own were often used for apply-
ing additional radiation dose (boost) to the tumour.

For better evaluation of discrepancies, we merged FAPI-
GTVs with CT-GTVs and compared the merged GTVs with
CT-GTVs. Lastly, we also compared FAPI-GTVs with CE-
CT-PTVs as PTV is the last boundary that provides therapeu-
tic radiation dose for tumour control.

Statistics

Wilcoxon matched-pairs signed rank test was used to check
for significant differences (p < 0.05).

Results

Radiopharmaceutical safety

All patients tolerated 68Ga-FAPI PET-CT without any com-
plication. No symptoms were reported during injection and
the 1.5-h follow-up.

Biodistribution analysis

In a first step, we performed biodistribution analyses for 68Ga-
FAPI for evaluation of imaging resolution quality and
standardisation. SUVmax and SUVmean were used for this pur-
pose (Figs. 1 and 2).

The highest activity concentration was measured in the
primary tumour (SUVmax 14.62 ± 4.44; SUVmean 7.41 ±
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2.39), followed by lymph node metastases (SUVmax 9.42 ±
5.72; SUVmean 5.08 ± 2.12) and bone metastases (SUVmax

7.51 ± 1.75; SUVmean 4.1 ± 0.9). Compared with the primary
tumour and the locoregional lymph node metastases, consid-
erably low background uptake was measured in the head and
neck region, namely the brain (SUVmax 0.30 ± 0.22; SUVmean

0.06 ± 0.03), oral mucosa (SUVmax 2.57 ± 1.00; SUVmean

1.55 ± 0.55), muscles (SUVmax 1.76 ± 0.6; SUVmean 1.09 ±
0.39) and salivary glands (SUVmax 1.76 ± 0.31; SUVmean

1.23 ± 0.28).

Automated target volume delineation

These findings were directly translated into radiation treat-
ment planning for tumour volume delineation (an examplary
RT plan is shown in Fig. 3). Conventional CT-GTVs showed
a median volume of 27.3 ml (range 9.1–266.5 ml). On the
other hand, contouring with 68Ga-FAPI PET-CT resulted in
significantly different GTVs in all SUV thresholds of FAPI ×
3: 67.7 ml (p = 0.013, range 6.0–292.7); FAPI × 5: 22.1 ml
(p = 0.042, range 0.9–215.5); FAPI × 7: 7.6 ml (p = 0.0001,

range 0.0–168.9); and FAPI ×10: 2.3 ml (p = 0.0001, 0.0–
105.3) (see also Fig. 4).

Comparison of FAPI-GTVS and CT-GTVs and CT-PTVs

Taking these significant disparities between CT-GTVs and
FAPI-GTVs into consideration, we merged FAPI-GTVs with
CT-GTVs. This resulted in median volumes that were, as
compared with CT-GTVs, significantly larger with FAPI × 3
(+ 54.7 ml, + 200.5% relative increase, p = 0.0005) and
FAPI × 5 (+ 15.0 ml, + 54.9%, p = 0.012) (Fig. 4).

In a next step, to see whether FAPI-GTVs were included in
the radiation treatment plan or not, we added them to CE-CT-
based planning target volumes (CT-PTVs). Several patients
showed FAPI-avid primary tumour regions that were not cov-
ered by CT-PTV but were a part of the FAPI-GTV.

Discussion

We achieved high-contrast images with 68Ga-FAPI PET-CT
due to very specific and high tracer uptake in tumours and low

Fig. 1 Example of a 64-year-old male patient with mucoepidermoid
carcinoma of the left parotid gland receiving FAPI-PET CT and
radiation treatment. a, b MIP and CT-fused FAPI-PET images showing
precise tracer uptake by the parotid carcinoma and very low background
noise. c, d Conventional CE-CT and CE-MR imaging showing diffuse

tumour infiltration making differentiation between tumour and healthy
tissue enormously difficult and subjective. Abbreviations: CE, contrast
enhanced; FAPI-PET, 68Ga-fibroblast activation protein inhibitor PET-
CT
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background noise. Especially in the refine head and neck area
we saw very low uptake in healthy parenchyma adjacent to the
tumour, including in the brain, oral/laryngeal mucosa, salivary
glands (e.g. parotid gland) and muscles (Figs. 1 and 3). In
addition, in the context of peritumoural inflammation or status
post-resection or biopsy, no false-positive uptake was seen
adjacent to the tumours. Hence, we could emphasise current
discoveries about the high sensitivity and specificity of FAPI-
PET [8, 9].

Considering these findings and in light of the biological
background of FAPI-PET, based on visualisation of CAFs,
new dimensions for targeted therapy were revealed.We imple-
mented this innovative technology in target volume delineation
for radiation therapy and could automatically generate biolog-
ical target volumes based on different experimental tumour-to-
healthy tissue FAPI-SUVs ratios (Fig. 3). The alternate method
that uses %-SUVmax threshold produced similar GTVs: e.g. 3-
fold background cut-off is equivalent to 20–25% SUVmax and
5-fold background cut-off is equivalent to 40–50% SUVmax.
For validation, board certified specialists for nuclear medicine
and radiation oncology worked together in 14 oncologically
challenging cases of HNC. With the automated, FAPI-based
contouringmethodology, we aimed to find a universal SUVmax

threshold for tumours (based on individual SUVmax of healthy
tissue) that radiation oncologists can easily use to contour
HNCs automatically and if needed, manually adjust in com-
parison with anatomical imaging.

Surprisingly, all FAPI-based GTVs were significantly dif-
ferent than the conventional CT-GTVs (Fig. 4). In consensus
with our team of experienced nuclear medicine physicians and
radiation oncologists, FAPI × 3 threshold emerged to be ideal
for precise tumour detection and for sparing healthy tissue.
The three other thresholds instead appeared to deliver insuffi-
ciently small GTVs where parts of tumour were omitted.
However, merging FAPI-GTV with CT-GTV revealed that
even FAPI × 5, FAPI × 7 and FAPI × 10 thresholds contained
vital, FAPI-avid tumour extents that were not part of CT-GTVs.
The merged FAPI × 3 and FAPI × 5 GTVs for instance were
significantly larger by 200.5 and 54.9%, respectively. This find-
ing was further highlighted when we saw parts of FAPI-GTV
not even encompassed in CT-PTV in several patients. Hence,
with conventional radiation treatment planning, these vital and
possibly more aggressive parts of the tumours (see below)
would have received insufficient radiation dose, as they were
not included in the GTV boost or would have received no
radiation at all as they were not included in the PTV.

Our findings have substantial implications as tumour recur-
rence is seen in 15 to 50% of patients with HNC [5, 14]. The
main causes of recurrence have been reported as radiation
resistance in tumour cells or inadequate initial treatment such
as insufficient radiation dose, volume or fractionation [15].
Furthermore, heterogeneity in intra-tumour malignancy has
been disregarded in radiation dose application resulting in
possible radiation under- and overdosing. This leads to the

Fig. 2 Biodistribution analysis of
68Ga-FAPI PET-CT in whole
body imaging with maximum and
mean standard uptake values
(SUVmax/mean) of the tumour,
metastases and healthy tissues.
Prominently high SUVs in
tumorous lesions as compared
with healthy tissues are seen
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many cases of tumour recurrence within GTV [16]. Inter-
physician variability in radiation target volume definition is
another major source of uncertainty in HNC treatment.
Deficiency in reproducibility and inconsistency of manual tar-
get volume delineation has direct consequences for tumour
recurrence [17]. All of these causes behind tumour relapse
are directly associated with increased mortality and poor sur-
vival rates [5, 14]. Thus, recurrent disease remains the main
obstacle to long-term survival. In addition, salvage treatment

options are often limited because of multiple reasons, includ-
ing restrictions due to first therapy; higher morbidity caused
by the retreatment, especially re-irradiation and commonly the
multifocal nature of recurrent disease [18].

On the other hand, long-term survival rates of patients with
HNC have improved over the years. The predominant reasons
are early detection of tumours, improved treatment options
and a shift in tumour aetiology. From 1988 to 2004, an in-
crease of up to 225% has been reported for human papilloma

Fig. 3 Radiation treatment plan of the patient presented in Fig. 1 with: a
axial, b coronal and c sagittal dose distribution and the d dose-volume
histogram. After partial resection of the tumour, the patient received
IMRT with photons with a total dose of 50 Gy in 25 fractions, followed

by a carbon-ion boost on the GTV with a total dose of 24 Gy (RBE) in 8
fractions. Abbreviations: MIP, maximum intensity projection; Gy, Gray;
IMRT, intensity-modulated radiotherapy; RBE, relative biological
effectiveness
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virus (HPV) associated tumours. These tumours develop in
younger patients and show significantly improved survival
rates than their counterparts which emerge in older patients
and are associated with smoking and drinking [19, 20]. Hence,
it is even more essential to reduce late toxicities by sparing
healthy tissue during RT.

All of the above data suggest the inevitable necessity to im-
prove the initial radiation therapy plans. In comparison with
conventional anatomical CT and MR imaging, 18F-FDG PET-
CT has shown the possibility to detect FDG-avid primary tu-
mours, lymph node metastases and distant metastases with high
sensitivity. Hence, target volume sizes can possibly be decreased
by only including involved regions [21]. This upgrade has sev-
eral limitations as FDG PET-CT is less specific due to false
positive findings. Thus, especially in the head and neck region,
it is unable to precisely assess local tumour spread in correlation
with delicate and complex peritumoural structures [4].

This preliminary study with 14 patients cannot sufficiently
calculate sensitivity, specificity and accuracy of the new trac-
er. Yet, FAPI PET-CT crystallises as a promising candidate
for effective and non-invasive visualisation of specifically the
tumour stroma, which can make up to 90% of the tumour and
mainly consists of CAFs [7]. CAFs with especially the sub-
types expressing FAP have been reported not only to physi-
cally support cancer cells but also to be key players of tumour
angiogenesis. They produce several growth factors such as
vascular endothelial growth factor (VEGF) or fibroblast
growth factor (FGF). These factors lead to tumour formation,
proliferation and metastasis [22]. In addition, resistance of
many cancer cells to radiation and chemotherapy is also

contributed by CAFs [23, 24]. Recent studies have further
revealed that CAFs with high FAP expression not only lead
to resistance to the body’s own immune response but also to
resistance to immune-checkpoint inhibitor therapy [25].

Hence, directly targeting CAFs which are made visible by
FAPI-PET, with a radiation boost emerges as a new perspec-
tive of treatment not only because the cancer is more accurate-
ly targeted but also because the precise elimination of CAFs
can sensitise the entire tumour to radiation, chemo-
immunotherapy and the body’s own immune system [7, 25].
Moreover, excluding FAPI-negative areas from target vol-
umes would spare toxicity.

The next promising advancement appears in the knowledge
that intra-tumoural uptake-intensity of PET tracers reflects the
grade of malignancy [26, 27]. Molecular biological analyses
have shown that higher density of stroma with CAFs and FAP
overexpression within the tumour is associated with increased
tumour migration, invasion and therapy resistance [7, 28, 29].
Furthermore, higher FAP expression is seen in invasive areas of
tumours such as tumour borders and microscopic tumour cell
protrusions, also known as invadopodia [30, 31]. These elements
and areas of higher malignancy are linked with increased therapy
resistance, likelihood of tumour recurrence and consequently
worse survival. FAPI-PET non-invasively and conveniently vi-
sualises this valuable biologic information through different
SUVs and can subsequently enable innovative, precise and tai-
lored radiation dose escalation or de-escalation plans for tumour
subvolumes, also known as dose painting.

Another potential of FAPI imaging lies in the update of early
response evaluation during and after therapy. Radiotherapy in-
duces biological and molecular changes in the tumour microen-
vironment which can be visualised by PET tracers [32, 33].
Thanks to this information, plans could be adapted during treat-
ment and follow-up regimens could be personalised.

The limitation for dose painting and therapy adaptation is the
finite resolution of PET which might not mirror the
microregional spatial distribution of cells in the tumour [34].
Hence, further studies with histopathological gold standard are
warranted after this hypothesis, generating analysis. It is essential
to evaluate the impact of FAPI PET-CT in the staging of head
and neck tumours and to observe the rate of false-positive and
false-negative imaging findings with this novel radioligand as
compared with the above-mentioned imaging modalities and
histology. Especially, intra-individual comparison between
FAPI PET-CT and the current standard in oncology, FDG-
PET would show if FAPI-PET is truly non-inferior or even
superior.

Due to limited experience with therapeutic implication of
FAPI-PET for radiotherapy of HNCs, target volume delinea-
tion should be performed in combination of anatomical imag-
ing and in close cooperation of experienced nuclear medicine
physicians and radiation oncologists. Further studies with
higher patient numbers are needed to evaluate the optimal

Fig. 4 aComparison of GTVs based on CE-CT/MRI and FAPI with four
different thresholds in relation to uptake in the healthy tissue.
Throughout, significantly different FAPI-based GTVs are seen. b CT-
GTVs fused with FAPI-GTVs showing significant increase in volumes
with FAPI × 3 and × 5 as compared with CE-CT. *Significant.
Abbreviations: GTV, gross tumour volume; CT-GTV, GTV based on
CT/MRI; FAPI-GTV, GTV based on 68Ga-FAPI PET-CT
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threshold not only to specify precise tumour volume but also
the healthy tissue volume to reduce side effects of radiation
therapy. Optimally, this advancement would enable us to au-
tomatically and uniformly delineate tumour volumes with
lower inter-physician variability.

Further studies should also include pattern of failure anal-
yses and verify the survival impact of individual dose adapta-
tion of tumour subvolumes based on FAPI-PET, particularly
when using advanced radiation techniques.

Conclusion

We present first evidence of diagnostic and therapeutic potential
of FAPI-PET CT in head and neck cancer. Larger studies with
histopathological correlation are required to validate our findings.
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