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Abstract

cis-Jasmone (CJ) is a natural plant product that activates defence against herbivores in model and crop plants. In this study,
we investigated whether CJ could prime defence in maize, Zea mays, against the leafhopper, Cicadulina storeyi, responsible
for the transmission of maize streak virus (MSV). Priming occurs when a pre-treatment, in this case CJ, increases the potency
and speed of a defence response upon subsequent attack on the plant. Here, we tested insect responses to plant volatile
organic compounds (VOCs) using a Y-tube olfactometer bioassay. Our initial experiments showed that, in this system, there
was no significant response of the herbivore to CJ itself and no difference in response to VOCs collected from unexposed
plants compared to CJ exposed plants, both without insects. VOCs were then collected from C. storeyi-infested maize
seedlings with and without CJ pre-treatment. The bioassay revealed a significant preference by this pest for VOCs from
infested seedlings without the CJ pre-treatment. A timed series of VOC collections and bioassays showed that the effect was
strongest in the first 22 h of insect infestation, i.e. before the insects had themselves induced a change in VOC emission.
Chemical analysis showed that treatment of maize seedlings with CJ, followed by exposure to C. storeyi, led to a significant
increase in emission of the defensive sesquiterpenes (E)-(1R,9S)-caryophyllene, (E)-a-bergamotene, (E)-b-farnesene and (E)-
4,8-dimethyl-1,3,7-nonatriene, known to act as herbivore repellents. The chemical analysis explains the behavioural effects
observed in the olfactometer, as the CJ treatment caused plants to emit a blend of VOCs comprising more of the repellent
components in the first 22 h of insect infestation than control plants. The speed and potency of VOC emission was
increased by the CJ pre-treatment. This is the first indication that CJ can prime plants for enhanced production of defensive
VOCs antagonist towards herbivores.
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Introduction

Maize, Zea mays L. (Poaceae), is the third major cereal crop in

the world after wheat and rice, and supplies 50% of the calorific

intake in sub-Saharan Africa. In some years, a farmer’s entire crop

can be wiped out by maize streak virus (MSV) (Geminiviridae:

Mastrevirus), an endemic pathogen of native African grasses and

the most important plant virus disease of maize in sub-Saharan

Africa [1]. It is acquired and transmitted by nine leafhopper

species (Homoptera: Cicadellidae) in the genus Cicadulina, in a

persistent manner. Although the ability to transmit MSV varies

between Cicadulina species, some can retain and transmit the virus

throughout their life. There are five species, C. storeyi, C. mbila, C.

arachidis, C. ghaurii and C. dabrowskii, involved in MSV transmission

in Nigeria, the first two species being the most efficient and

therefore causing most economic losses [2,3]. In Nigeria, 100%

infection has been recorded in some fields, while outbreaks of the

disease, and subsequent economic losses, have been reported in

over 20 countries [4]. The negative impact of leafhopper

populations upon maize production makes the search for

alternative control methods extremely urgent. The potential for

exploiting semiochemicals (naturally-occurring behaviour or de-

velopment-modifying chemicals) in maize/leafhopper interactions,

with a view to their deployment in leafhopper control, was

investigated in our earlier work [5].

Plants respond to insect herbivory by the release of blends of

volatile organic compounds (VOCs) that are attractive to natural

enemies of herbivores [6,7]. This aspect of plant/insect interac-

tions has received huge interest, not only because of the scientific

interest, but also for its potential application in sustainable pest

control strategies. The role of induced VOCs influencing defence

pathways in neighbouring undamaged plants has been discussed

and described previously [8,9]. Whilst induced defence VOCs can

immediately induce defence in neighbouring plants at artificially
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high levels, physiologically relevant levels of VOCs appear instead

to prime plants to prepare themselves for future pest and pathogen

attack [10]. Priming is when plant defences are potentiated so that

the response to subsequent attack is faster and stronger. Green-leaf

volatiles (GLVs) prime Z. mays for enhanced production of the

phytohormone jasmonic acid (JA) [11], and enhance expression of

defence genes and metabolites in hybrid poplar [12]. Evidence of

priming of direct and indirect defence in Z. mays, following

exposure to Spodoptera litteralis induced-VOCs, was reported [13].

Exposure to VOCs from caterpillar-infested plants primed a subset

of defence-related genes for earlier and/or stronger induction

upon subsequent defence elicitation. This priming for defence-

related gene expression correlated with reduced caterpillar feeding

and development. Furthermore, exposure to caterpillar-induced

VOCs primed for enhanced emissions of aromatic and terpenoid

compounds. At the peak of this VOC emission, primed plants

were significantly more attractive to the beneficial parasitic wasp

Cotesia marginiventris. This study showed that VOC-induced priming

targets a specific subset of JA-inducible genes, and linked these

responses at the molecular level to enhanced levels of direct and

indirect resistance against insect attack [13].

cis-Jasmone (CJ) is an oxylipin, produced naturally by plants,

that was identified in our laboratory as an activator of plant

defence, particularly in inducing resistance mechanisms in a

manner different to, and potentially more valuable than, JA

because of its ability to upregulate a specific set of defence genes

[14,15]. Since the initial discovery of CJ induced production of

defence-related VOCs, including (E)-ocimene, in bean plants, Vicia

faba [14], its effect on a number of other crop plants has been

shown. Wheat plants, Triticum aestivum, when exposed to CJ,

increased emission of (E)-ocimene, (E)-(1R,9S)-caryophyllene and

6-methyl-5-hepten-2-one, all important semiochemicals in tri-

trophic interactions, the latter of which is directly associated with

attraction of parasitoids of aphid pests of wheat [16]. The

increased production of these semiochemicals had a direct effect

on settling of grain aphids, Sitobion avenae, numbers of which were

significantly reduced on treated wheat compared to control plants

in field simulation trials [17]. Furthermore, in laboratory

development studies, the Mean Relative Growth Rate (MRGR)

and the intrinsic rate of population increase (rm) were significantly

reduced for S. avenae on treated seedlings compared to untreated

seedlings [17]. In the field, replicated experiments conducted over

four seasons demonstrated that winter wheat plots treated with CJ

showed significantly reduced cereal aphid populations when

compared to untreated control plots [17]. This was attributed to

enhanced levels of allelopathic benzoxazinoids and phenolic acids

[18]. CJ has recently been shown to induce indirect defence in

soybean, Glycine max, leading to enhanced attraction of egg

parasitoid natural enemies of stinkbug pests [19], and also to

induce defence in cotton, Gossypium hirsutum, leading to repulsion of

cotton aphids, Aphis gossypii [20]. For maize, however, there are as

yet no reports on the impact of CJ, with studies of jasmonate-

induced defence being restricted to JA [21,22]. JA has been shown

to induce production of defensive VOCs which cause repellency to

herbivores [23] and antibiotic compounds which can reduce

herbivore development [24]. However, JA, along with its volatile

derivative methyl jasmonate (MJ), has been shown to have

detrimental effects upon plants through the switching on of non-

target genes [14], causing phytotoxicity and thereby minimising

potential for their use in crop protection.

In view of our earlier studies showing a role for CJ in inducing

indirect and direct defence in Triticum aestivum, another poaceous

plant [16,17,18], and the previously reported priming of a specific

subset of JA-inducible pathways in maize by defence VOCs [13],

we investigated the ability of CJ to induce defence pathways in

maize and to prime maize for enhanced defence against the

leafhopper C. storeyi.

Results

Behavioural responses to CJ and CJ-treated plants
In a Y-tube olfactometer bioassay, the response of adult C. storeyi

to CJ itself was not significantly different from a diethyl ether

solvent control (P.0.05), at a dose of either 1 or 10 mg (Table 1).

Furthermore, there was no significant difference in the amount of

time spent by adult C. storeyi in the region of the olfactometer

containing volatile organic compounds (VOCs) collected from CJ-

treated maize seedlings, compared with the solvent control

(P.0.05) or VOCs collected from untreated seedlings (P.0.05)

(Table 1).

Behavioural responses to CJ-treated plants exposed
subsequently to C. storeyi

In a time course series of VOC collections from CJ- treated and

control-treated seedlings subsequently infested with C. storeyi,

followed by dual choice Y-tube olfactometer bioassays, adult C.

storeyi significantly preferred VOCs from control-treated infested

seedlings compared to VOCs from CJ-treated infested seedlings,

collected 0–6 h and 6–22 h after C. storeyi adult infestation

(Figure 1).

Identification of VOCs emitted by CJ-treated plants
exposed subsequently to C. storeyi

Treatment of maize seedlings with CJ followed by exposure to

either C. storeyi adults or nymphs led to a significant increase in the

emission of sesquiterpenes (Table 2). Seedlings treated with CJ

produced significantly higher amounts of (E)-a-bergamotene and

(E)-b-farnesene in the 0–6 h period after either C. storeyi adult or

nymph infestation. Seedlings treated with CJ produced signifi-

cantly higher amounts of (E)-(1R,9S)-caryophyllene and the

homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) in the

0–6 h period only after C. storeyi nymph infestation.

Identification of VOCs emitted by CJ-treated plants
exposed subsequently to JA

To standardise the post-priming stimulus, a set amount of JA

was used in initial VOC collections. GC analysis of VOCs

collected from maize seedlings exposed to CJ, followed by

wounding+JA treatment, showed there was considerable variation

in emission of VOCs across the time points (Figure 2 A–D). In the

first collection period after wounding+JA treatment (0–24 h,

Figure 2B), emission of the monoterpene myrcene, DMNT, (E)-

(1R,9S)-caryophyllene, (E)-a-bergamotene, (E)-b-farnesene and b-

sesquiphellandrene was significantly greater from CJ-treated

seedlings (P,0.05) compared to control-treated seedlings

(Figure 2). No significant difference in VOC emission was

observed between CJ-treated seedlings and control-treated seed-

lings pre-wounding, or 24–48 h and 48–72 h after wounding+JA.

Discussion

In our previous chemical ecology study of the interaction

between maize and C. storeyi leafhoppers, VOCs collected from

uninfested maize seedlings were attractive, whilst VOCs collected

from C. storeyi-infested seedlings were significantly repellent [5].

Furthermore, a number of compounds, ie. GLVs, aromatic

compounds and isoprenoids, were shown to be released from

infested seedlings, with sesquiterpenes and homoterpenes being

VOC Priming in Maize by cis-Jasmone
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either outright repellents or shown to interfere with attraction to

host volatiles [5]. In the current study, we used behavioural and

chemical approaches to investigate the potential for using the

natural plant activator CJ to activate defence pathways in maize.

Olfactometer bioassays using CJ-treated seedlings showed that CJ

did not directly induce defence VOC production in maize.

However, treatment of maize seedlings with CJ boosted produc-

tion of volatile defence isoprenoids following subsequent addition

of either C. storeyi adults or nymphs, or wounding+JA treatment.

VOCs collected from CJ-treated, C. storeyi-infested seedlings were

significantly more repellent than VOCs collected from control-

treated, C. storeyi-infested seedlings. To our knowledge, this is the

first experimental evidence demonstrating that CJ can prime

plants for production of defence VOCs antagonistic to colonising

herbivores.

The production of isoprenoids in plants is via terpene synthase

(TPS) enzymes [25] and our results suggest that their activity is

enhanced by priming maize seedlings with CJ. Many sesquiter-

pene synthase genes characterised to date are regulated by JA. For

maize, these include TPS23 and TPS4, which are involved in (E)-

(1R,9S)-caryophyllene and (E)-b-farnesene biosynthesis respective-

ly. Effects on insects of the sesquiterpenes shown here to be primed

by CJ are well known; for example, an (E)-b-farnesene synthase

gene has been heterologously expressed in Arabidopsis thaliana,

leading to repellency of aphids and recruitment of aphid

parasitoids [26], whilst DMNT is released by maize to provide

defence against stemborer moths [27]. Production of DMNT is a

two-step process, initially involving production of (E)-nerolidol,

followed by an oxidative cleavage. The first step in A. thaliana

involves TPS04/GES, a TPS gene encoding a nerolidol/

geranyllinalool synthase [28], whilst the second step involves

CYP82G1, a cytochrome P450 monoxygenase, which catalyses

the oxidative cleavage [29].

The results in our study suggest that CJ has the potential to

augment induction of genes encoding terpene synthases in maize

following herbivore damage. This extends previous work on VOC

priming of defence in maize and raises the possibility of achieving

this as a means of crop protection. VOC-induced priming has

been shown to target defence pathways that are under JA control

[11], and exposure of maize to VOCs from Spodoptera littoralis

caterpillar-infested maize enhances induction of six caterpillar-

inducible genes, which encode proteins with functions related to

Table 1. Behavioural response (mean number 6 SE) of Cicadulina storeyi leafhoppers to cis-jasmone (CJ), and VOCs collected from
CJ-treated and untreated maize (Zea mays) seedlings in a Y-tube olfactometer.

Experiment Treatment arm Control arm P

CJ (1 mg) .v. solvent (hexane) control 4.960.51 5.160.50 NS

CJ (10 mg) .v. solvent (hexane) control 4.760.26 5.360.26 NS

CJ-treated maize .v. untreated maize (control) 4.860.25 5.260.25 NS

CJ-treated maize .v. solvent (diethyl ether) control 4.860.49 5.260.49 NS

Data were analysed using a paired t-test. NS indicates no significant difference (P.0.05) between stimuli.
n = 10.
doi:10.1371/journal.pone.0062299.t001

Figure 1. Behavioural response (mean number± SE) of Cicadulina storeyi adult leafhoppers to VOCs collected from cis-jasmone (CJ)-
treated, adult C. storeyi-infested maize (Zea mays) seedlings versus VOCs collected from control-treated, adult C. storeyi-infested
maize seedlings in a Y-tube olfactometer. VOCs were collected 0–3 h, 3–6 h, 6–22 h, 22–30 h, 30–46 h, 46–54 h, 54–70 h and 70–78 h after
addition of C. storeyi. n = 10. Data were analysed using a paired t-test. ***P,0.001. White columns = control treatment, then C. storeyi infestation. Grey
columns = CJ treatment, then C. storeyi infestation.
doi:10.1371/journal.pone.0062299.g001
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plant defence [13]. In the latter study, it was proposed that the

enhanced induction of these genes could be used as markers for

primed defence expression in maize. The results from our study

suggest that CJ also has the ability to prime inducible pathways

under the control of JA, despite CJ having an independent

signalling role from JA [15]. However, the study of gene

expression in maize following CJ treatment and subsequent

exposure to JA or C. storeyi was outside the scope of this

investigation. Further studies are planned to confirm the

expression pattern of JA/C. storeyi-inducible genes in maize

following CJ priming.

Analysis of the VOCs collected from CJ-treated, C. storeyi-

infested seedlings and control- treated, C. storeyi-infested seedlings

showed that the boosting of volatile sesquiterpene production was

a temporary phenomenon. Seedlings treated with CJ and then

exposed to wounding+JA produced enhanced levels of defence

VOCs 0–24 h after wounding+JA treatment, and seedlings treated

with CJ and then subjected to C. storeyi infestation produced

enhanced levels of sesquiterpenes 0–6 h and 6–22 h after addition

of C. storeyi. Beyond these timepoints, no significant differences in

VOC levels were observed between CJ pre-treated and control

pre-treated seedlings. This is to be expected because the JA or

insect treatment would have induced VOC changes in unprimed

plants after 24 h [5].

The priming effects we discovered are similar to those reported

previously for VOC-induced priming against S. littoralis [13], in

which enhanced levels coincided with improved attraction of C.

marginiventris. Similar priming for indirect defence was also

reported in lima beans [30], in which exposure to an artificial

blend of VOCs resembling the blend from herbivore-infested

plants led to enhanced production of extrafloral nectar upon

wounding, which was attractive to predatory and parasitic insects.

Both examples strongly suggest that VOC-induced priming is an

ecologically important process, in which neighbouring intact

plants are prepared for herbivore attack by response to defence

VOCs released from nearby damaged plants.

As CJ is produced naturally by uninfested and herbivore-

damaged plants (Oluwafemi and Birkett, unpublished data, [31]),

this demonstration of enhanced defence VOC production upon

herbivore damage following CJ treatment suggests that its natural

release from herbivore-damaged plants can prime neighbouring

plants for defence, and is therefore an important ecological event.

Priming of plant defence signaling under ecologically realistic

conditions has been reported previously [32], in which release of

VOCs by sagebrush led to enhancement in neighbouring tobacco

herbivore-regulated genes. An accelerated production of trypsin

proteinase inhibitors was observed when Manduca sexta caterpillars

fed on plants previously exposed to clipped sagebrush. The ability

of CJ to prime maize for enhanced indirect defence through

modification of natural enemy behaviour was outside the scope of

this study, but laboratory and field behaviour investigations will be

undertaken to confirm this.

There is increasing interest in understanding the underlying

mechanisms of induced plant defence with a view to exploitation

in novel sustainable pest control in agriculture, particularly as it

can be exploited to provide targeted biological control through

enhanced natural enemy foraging behaviour in conservation

biological control [33]. Furthermore, constitutively expressed plant

defence can be viewed as costly for plants, potentially leading to

reduced crop yields [7]. Several studies have shown that volatile

stress signalling from plants can prime recipient plants for direct

and indirect defence [11,13,30,32], and can modify interactions

Table 2. Mean quantities (log10ng) of sesquiterpene VOCs and DMNT emitted by maize (Zea mays) seedlings following either cis-
jasmone (CJ) or control treatment and then addition of Cicadulina storeyi (adults, n = 9 or nymphs, n = 10) 24 h later.

Time (h) Treatment (E)-(1R, 9S)-Caryophyllene (E)-a-Bergamotene (E)-b-Farnesene Total sesquiterpenes DMNT

Adults Nymphs Adults Nymphs Adults Nymphs Adults Nymphs Adults Nymphs

0–6 CJ 3.157 2.091a 3.387a 1.885a 4.420a 2.662a 4.935a 3.444a 3.553 2.095a

Control 2.219 0.977b 2.155b 0.658b 3.130b 1.653b 3.730b 2.334b 2.499 1.035b

6–22 CJ 5.180 4.175 5.450 4.327 6.200 5.145 6.818 5.769 3.341 3.063

Control 5.003 4.233 4.956 4.199 5.781 5.046 6.430 5.729 3.186 3.333

22–30 CJ 5.010 4.297 4.960 4.195 5.777 5.152 6.440 5.780 3.072 3.172

Control 4.716 4.208 4.550 3.928 5.381 4.971 6.081 5.602 2.929 2.801

30–46 CJ 5.710 4.967 5.111 4.542 5.883 5.448 6.739 6.181 3.107 3.352

Control 5.897 4.865 5.164 4.335 5.985 5.292 6.876 6.038 3.215 2.853

46–54 CJ 4.857 4.401 3.999 3.793 4.914 4.743 5.810 5.515 2.537 2.775

Control 4.869 4.180 3.953 3.501 4.785 4.541 5.739 5.297 2.665 2.397

54–70 CJ 5.584 4.955 4.392 4.087 5.298 5.008 6.362 5.893 2.842 3.322

Control 5.336 4.655 4.106 3.619 5.018 4.580 6.063 5.516 3.009 2.815

70–78 CJ 4.691 4.364 3.504 3.468 4.449 5.540 5.533 5.384 2.364 2.450

Control 4.880 4.390 3.605 3.475 4.442 4.548 5.582 5.374 2.861 2.772

Time by Treatment P-value 0.083 0.125 0.064 0.119 0.086 0.323 0.044 0.163 0.076 0.065

LSD1* (5%) 1.187 0.816 1.040 0.863 1.171 0.891 1.106 0.844 1.0913 0.904

LSD2** (5%) 0.553 0.609 0.633 0.610 0.659 0.633 0.589 0.600 0.6886 0.664

VOCs were collected after C. storeyi addition during the following time periods: 0–6 h, 6–22 h, 22–30 h, 30–46 h, 46–54 h, 54–70 h and 70–78 h. Data were analysed
using a split-plot in time ANOVA. Appropriate means were compared using LSD (5%) values.
*For comparisons of treatments with or without CJ.
**For all other comparisons. For the 0–6 h collection period, means with superscript letters a and b within the same column are significantly different (P,0.05 LSD).
doi:10.1371/journal.pone.0062299.t002
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with higher trophic levels. Our investigations on the activation of

defence in crop plants show that CJ has the potential to be used as

a novel crop protection agent through induction of indirect and

direct defence [17,18,19,20]. The results in this study highlight, for

the first time, that CJ can also prime defence pathways in plants.

Future work will investigate the potential for exploiting the

priming phenomenon in field trials in maize.

Materials and Methods

Plants and leafhoppers
Maize (Zea mays cv. Delprim) seeds (Delley Samen und Pflanzen

AG, Delley Semences et Plantes SA, Le Chateau, Switzerland)

were potted in soil (Rothamsted Prescription mix) and grown

under controlled conditions (2561uC, 16 : 8 h L:D). Cicadulina

storeyi China (Homoptera: Cicadelidae) leafhoppers, from the mass

rearing colony of the International Institute of Tropical Agricul-

ture (IITA), Ibadan, Nigeria, were reared on pearl millet,

Pennisetum americanum ( = typhoides), in a quarantine growth facility

(2362uC, 40% RH, 16 : 8 h L:D). Leafhoppers and host plants

were placed in Plexi-glass cages (44 cm644 cm670 cm) with two

netted openings (12 cm612 cm) in the front, while a third netted

opening (11 cm611 cm) at the back was fitted with an electric fan

for air circulation.

CJ application
CJ (90%; Avocado, Lancaster, UK) was formulated as a 0.1%

aqueous emulsion with the non-ionic surfactant Ethylan BV (EBV)

(Acros, Manchester, U.K.) and applied to maize seedlings (10–12

day old) at a rate equivalent to 50 g ha21 using a hydraulic nozzle

(Lurmark 015-F110) at 1 ms21. Control seedlings were similarly

sprayed with a 0.1% aqueous emulsion of EBV. Treated maize

seedlings were kept in a glasshouse 24 h before being used in

priming experiments.

Volatile collection and quantification
Volatile organic compounds (VOCs) were collected from 10–12

day-old maize seedlings by air entrainment (also referred to as

dynamic headspace collection) following standard procedures [34].

Seedlings were individually confined in glass vessels (22 cm

high66.5 cm internal diameter), open at the bottom but closed

at the top except for two collection ports (one for inlet and the

other for outlet). The bottom was closed without pressure around

the plant stem by using two semicircular aluminium plates with a

hole in the centre to accommodate the stem. The plates were

clipped to a flange on the open end of the glass vessel. Air, purified

by passage through an activated charcoal filter, was pumped into

the vessel through the inlet port at 700 ml min21. Air was drawn

out at 600 ml min21 through Porapak Q (50 mg; Alltech, PA,

USA) in 5 mm diameter glass tubes (Alltech Associates, Camforth,

Lancashire, UK). The difference in flow rates created a slight

positive pressure to ensure that unfiltered air did not enter the

system, thus removing the need for an airtight seal around the

stem. All connections were made with polytetrafluoroethylene

(PTFE) tubing (Alltech Associates) and brass Swagelock fittings

(North London Valve, London, UK). Glassware, metal plates and

other equipment were washed with Teepol detergent (Herts

County Supplies, Herts, UK) in an aqueous solution, acetone and

distilled water, and then baked overnight at 180uC. Porapak Q

tubes were conditioned before use by washing with redistilled

diethyl ether (1 ml, Sigma Aldrich) and heated to 132uC for 2 h

under a constant stream of nitrogen. VOCs were eluted from the

Porapak Q with 750 ml freshly-distilled diethyl ether, and stored in

a tightly capped vial at 220uC until required for chemical analysis

and behavioural assays.

VOC samples required for CJ-treated bioassays were collected

from untreated and CJ treated seedlings up to 72 h after

treatment. For experiments where CJ-treated or control-treated

seedlings were subsequently exposed to C. storeyi, pre-treated maize

seedlings were infested with either second-fourth instar C. storeyi

nymphs or adults (100 per seedling), 24 h after treatment. VOCs

were collected at 0–3 h, 3–6 h, 6–22 h, 22–30 h, 30–46 h, 46–

54 h, 54–70 h and 70–78 h after infestation was initiated. Nine

and ten replicates were done respectively for adult and nymph

infestation. For experiments where CJ-treated plants were

subsequently exposed to wounding+JA, the undersides of two

leaves of CJ or control-treated seedlings were scratched (1 cm2) on

both sides of the central vein with a razor blade, 24 h after

Figure 2. Mean quantities (± SE) of VOCs released by
maize(Zea mays) seedlings following either CJ or control
treatment, and then wounding+JA exposure 24 h later. VOCs
were collected every 24 h over a continuous 96 h period. A = 24 h
period between CJ or control treatment and wounding+JA exposure;
B = 0–24 h after wounding+JA exposure; C = 24–48 h after woun-
ding+JA exposure; D = 48–72 h after wounding+JA exposure. (E)-4,8-
dimethyl-1,3,7-nonatriene = DMNT; (E,E)-4,8,12-dimethyl-1,3,7,11-tride-
catetraene = TMTT. Data were expressed as nanograms of VOC released
per 24 h collection period (9 plants were used per treatment) and were
analysed using paired t-tests *P,0.05. n = 4. Grey columns = CJ
treatment, then wounding+JA. White columns = control treatment,
then wounding+JA.
doi:10.1371/journal.pone.0062299.g002
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treatment. JA (250 mM in deionized water) was immediately

applied evenly over the scratched areas using forceps, n = 4 [13].

VOCs were collected for 24 h prior to wounding+JA treatment,

then at 24 h periods for up to 72 h afterwards.

VOC samples (4 ml) were analysed on a Hewlett-Packard 6890

GC equipped with a cool-on-column injector, a flame ionization

detector (FID) and a non-polar HP-1 bonded phase fused silica

capillary column (J & W Scientific, 50 m60.32 mm i.d., 0.52 mm

film thickness). The oven temperature was maintained at 30uC for

1 min, and programmed at 5uC min21 to 150uC, then 10uC
min21 to 230uC and held for 20 min. The carrier gas was

hydrogen. Quantification of VOCs identified by coupled gas

chromatography-mass spectrometry (GC-MS) was performed

using a single point internal [35] or external [36] standard

quantification method using authentic samples of standards.

GC-MS analysis of VOC samples was performed using a fused

silica capillary column (50 m60.32 mm i.d., 0.52 mm film

thickness, HP-1, J & W Scientific), attached to a cool on-column

injector, which was directly coupled to a magnetic sector mass

spectrometer (Autospec Ultima, Fisons Instruments, Manchester,

UK). Ionization was by electron impact (70 eV, source temper-

ature 250uC). Helium was the carrier gas. The oven temperature

was maintained at 30uC for 5 min, and then programmed at 5uC
min21 to 250uC. Identifications were made by comparison of

spectra with mass spectral databases [37], and comparison of

retention times/indices with those from previous analyses which

applied a fully rigorous identification procedure [5].

Y-tube olfactometer bioassays
A glass Y-tube olfactometer (2 cm internal diameter, 16 cm

stem length, 14 cm arm length) was clamped on a tripod in a black

cage (60 cm660 cm676 cm, steel frame but covered with black

cardboard paper) in an inclined position (70u from the horizontal

plane) with two fluorescent light tubes (70 W; Luminux) positioned

approximately 25 cm above the Y-tube junction. Air was pumped,

using an electric pump, through an activated charcoal filter to

remove chemical contaminants before being divided into two.

Two flow meters were used to ensure that the air streams entered

the two arms of the olfactometer at the same rate (200 ml min21).

Before entering the Y-tube, each airstream passed through a glass

jar containing a filter paper strip onto which either the treatment

or control solution was applied (1 ml). Leafhoppers were collected

from the rearing cages and kept in batches within aspirators for

two hours of fasting before each experiment. Ten adult

leafhoppers were introduced to the Y-tube and used in each

replicate, and experiments were replicated 10 times. After each

replicate, the apparatus was rotated 180u to avoid position effects.

A leafhopper was deemed to have made a final choice if it entered

into an arm and stayed there for 10 min. The bioassays were

conducted in a dark controlled environment room (2261uC, 40%

RH) fitted with an extraction fan. The following choice bioassay

experiments were carried out: (1) CJ (1 ml of a 1 mg/ml solution in

diethyl ether) versus diethyl ether solvent (1 ml); (2) CJ (1 ml of a

10 mg/ml solution in diethyl ether) versus diethyl ether solvent

(1 ml); (3) VOC sample from CJ-treated maize seedlings (1 ml)

versus VOC sample from untreated maize seedlings (1 ml); (4)

VOC sample from CJ-treated maize seedlings (1 ml) versus diethyl

ether (1 ml); (5) VOC sample from CJ-treated, C. storeyi-exposed

seedlings (1 ml) versus VOC sample from control-treated, C. storeyi-

exposed seedlings (1 ml), both samples being collected at the same

time point, ie. 0–3 h, 3–6 h, 6–22 h, 22–30 h, 30–46 h, 46–54 h,

54–70 h and 70–78 h after C. storeyi infestation.

Statistical analysis
The Y-tube olfactometer data were analysed using a paired t-

test after ensuring that data were normally distributed. VOC data

from CJ or control-treated seedlings exposed subsequently to C.

storeyi were log transformed,and analysed using a split-plot in time

analysis of variance (ANOVA) to assess the main effect of

treatment (with or without CJ treatment), time, and the interaction

of these two factors. Following ANOVA, appropriate means were

compared using least significant difference (LSD) values at the 5%

level of significance. VOC data from CJ or control-treated

seedlings exposed subsequently to wounding+JA treatment were

analysed using a paired t-test. Statistical analyses were done using

the GenStat statistical system (GenStatH 2006, Tenth Edition �
VSN International Ltd., Hemel Hempstead, UK).
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