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Staphylococcus aureus is a versatile pathogen that is capable of causing
infections in both humans and animals. It can cause furuncles, septicaemia,
pneumonia and endocarditis. Adaptation of S. aureus to the modern hospital
environment has been facilitated, in part, by the horizontal acquisition of
drug resistance genes, such as mecA gene that imparts resistance to methicil-
lin. Horizontal acquisitions of islands of genes harbouring virulence and
antibiotic resistance genes have made S. aureus resistant to commonly
used antibiotics. To decipher genomic islands (GIs) in 22 hospital- and 9
community-associated methicillin-resistant S. aureus strains and classify a
subset of GIs carrying virulence and resistance genes as pathogenicity and
resistance islands respectively, we applied a host of methods for localizing
genomic islands in prokaryotic genomes. Surprisingly, none of the frequently
used GI prediction methods could perform well in delineating the resistance
islands in the S. aureus genomes. Rather, a gene clustering procedure exploit-
ing biases in codon usage for identifying horizontally transferred genes
outperformed the current methods for GI detection, in particular in
identifying the known islands in S. aureus including the SCCmec island
that harbours the mecA resistance gene. The gene clustering approach also
identified novel, as yet unreported islands, with many of these found to
harbour virulence and/or resistance genes. These as yet unexplored islands
may provide valuable information on the evolution of drug resistance
in S. aureus.

1. Introduction

Staphylococcus aureus is a Gram-positive coccus and an important human patho-
gen responsible for nosocomial and community-acquired infections. It colonizes
mucous membranes and skin, and can survive even in harsh environmental
conditions. Earlier treatment options for S. aureus infections included penicillin
G. However, an increase in the emergence of strains resistant to methicillin
made treatment very difficult for S. aureus infections [1-6]. These methicillin-
resistant S. aureus (MRSA) strains have since become resistant to other
antibiotics including macrolides, lincosamides and all beta-lactams. More
recently, multi-drug-resistant MRSA strains have acquired resistance against
vancomycin [7,8].

Acquisitions of drug resistance factors are facilitated by horizontal transfer
of plasmids, transposons and other mobile genetic elements. For example, the
resistance to methicillin was gained by the acquisition of an ‘island’ of genes,
namely the staphylococcal chromosome cassette methicillin-resistance
(SCCimec) island. SCCmec carries the PBP2a-encoding mecA gene, which is
responsible for methicillin resistance. Several studies have, therefore, focused
on identifying these genomic islands (GIs) to understand the underlying mech-
anisms of the emergence of complex antibiotic resistance patterns mediated by
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horizontal gene transfer (HGT) [3]. These islands and the
other mobile genetic elements such as phages, transposons
and chromosomal cassettes together constitute the auxiliary
or accessory genome of S. aureus. The core genome has pre-
viously been reported to be composed of approximately
95% or more of all S. aureus genes [9]; recent studies have
revealed recombination hotspots for mobile elements even
within the S. aureus core genome [10]. The S. aureus
genome backbone is composed of genes present in all or
most S. aureus strains, whereas the accessory genome har-
bours genes that are unique to a strain or are present in
only a few strains and are likely a consequence of acquisitions
from distantly related or unrelated organisms through HGT.
Besides helping gain resistance to antibiotics, foreign genes
have also aided S. aureus in causing infections and proliferat-
ing in a community setting. For example, the acquisition of
Panton-Valentine leucocidin gene by MRSA has given rise
to community-acquired MRSA (CA-MRSA) [1,2]. Although
S. aureus has traditionally been classified as a nosocomial
agent and was believed to cause only hospital-associated
infections, the cases of CA-MRSA infection have been increas-
ing owing to the emergence of new CA-MRSA strains as a
consequence of HGT [7,11].

Quantifying resistance and virulence-associated Gls is
central to understanding the emergence and evolution of
hospital-associated (HA) and CA-MRSA strains. In our
quest for a robust method for GI detection in MRSA among
the currently available GI detection methods, we first
assessed their ability to detect known islands in MRSA. The
methods displayed varying levels of sensitivity in identifying
the known GIs in MRSA, with none found satisfactory in
localizing the SCCmec resistance island. We therefore
explored an information-entropy-based gene clustering
method that uses codon usage bias to identify genes originat-
ing from different sources [12]. Although a bottom-up
approach (i.e. gene-by-gene analysis) and not usually rec-
ommended for detecting large acquisitions, it displayed
remarkable success in localizing resistance and other
known islands in MRSA in comparison with the existing
methods. This is a significant development as more robust
detection of MRSA GIs is a precursor to an effective down-
stream analysis for understanding the emergence and
evolution of MRSA strains through GI acquisition. In what
follows, we briefly describe the methods used in this study,
discuss their performance on localization of known GlIs in a
representative set of HA- and CA-MRSA genomes, highlight
our novel predictions, and conclude with remarks on the
impact of this study and future directions.

2. Material and methods

2.1. Methicillin-resistant Staphylococcus aureus
genomes

The complete genome sequences and gene coordinates for
22 HA- and 9 CA-MRSA strains were obtained from GenBank
(https://www.ncbi.nlm.nih.gov/genbank/). We referred to
the previous studies to compile a high confidence set of
known MRSA GIs [5,13,14]. The coordinates of known
MRSA GIs, their codon and GC features, and supporting
evidence from the corresponding studies are given in table 1
and the electronic supplementary material, tables S1 and S2.

2.2. Genomic island detection methods

We used the following GI prediction methods at their default
parameter setting unless mentioned otherwise (see §3.2).

2.2.1. Alien_Hunter

Interpolated variable order motifs (IVOM) [15] or Alien_Hunter
uses an interpolated Markov model accounting for varia-
ble order motifs to assess the compositional difference
between a region within a moving window and the genome.
Compositionally atypical regions are identified as GIs.

2.2.2. PredictBias

PredictBias examines genomic regions within a moving
window and annotates successive ORFs with atypical
codon usage bias and either atypical GC composition or
dinucleotide composition as GIs [16]. PredictBias also exam-
ines the presence of virulence-associated genes within
clusters of eight contiguous ORFs; if four of these genes
have significant BLAST hits in the virulence factor database
(VFDB), the cluster is an annotated GI even if it does not
display atypicality in dinucleotide or codon usage bias.

2.2.3. SeqWord

SeqWord uses oligonucleotide usage (OU) patterns to assess
compositional differences in the genome [17]. Genomic
islands are identified as compositionally divergent regions
based on local and global OU patterns.

2.2.4. IslandViewer

This integrated visualization tool provides predictions from
three programs, IslandPath-DIMOB, SIGI-HMM, and Island-
Pick along with the visualization of GIs.

2.2.5. Zisland Explorer

This program uses cumulative GC profile to segment the
genome first, assesses the GC heterogeneity to exclude
the core (vertically inherited) segments, and finally uses the
codon usage bias to identify putative GIs [18].

2.2.6. GlHunter

Genomic Island Hunter (GIHunter) [19] uses a decision tree
to identify GlIs. It builds a GI/non-GI gene classifier using
the dataset of known GIs and non-GlIs. GI features, such as
sequence composition, presence of mobility genes and
integration sites, are used as classification features.

2.2.7. MSGIP

Mean Shift Genomic Island Predictor (MSGIP) is a clustering
method based on mean shift algorithm, a non-parametric
method that calculates mean shift vector and moves the den-
sity estimation window in the direction of local density
maxima, until the convergence is reached [20]. Following
clustering, MSGIP identifies GIs as clusters of atypical
windows with length not exceeding 200 kbp.
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2.2.8. GEMINI

GEMINI is a genome-mining tool based on a recursive seg-
mentation and clustering procedure [21]. GEMINI segments
a genome recursively into compositionally homogeneous
segments within a statistical hypothesis testing framework
and then groups similar segments within the same frame-
work. Additionally, GEMINI exploits segment context
information to achieve more robust clustering. Potentially,
vertically inherited or native segments representing the
genome backbone are identified by the largest cluster har-
bouring segments of ‘typical’ composition. Segments of
‘atypical’ composition, representing putative horizontally
acquired DNAs, are assigned to the numerous smaller clus-
ters each representing a likely donor source. Large atypical
segments, 8 kbp or more in size, are predicted as Gls.

2.2.9. Gene clustering (JS-(B)

JS-CB is a gene clustering method for identifying putative
horizontally acquired genes [12]. Although not designed
specifically to detect Gls, we tested its ability to identify
Gl-borne genes in MRSA genomes [12]. Briefly, JS-CB uses
Jensen—Shannon (JS) divergence measure [22,23] to assess
the difference in codon usage bias between two genes.
Genes with similar codon usage bias are grouped together
using an agglomerative hierarchical clustering. JS-CB begins
with all individual genes as single-gene clusters, followed
by pairwise comparison of the clusters. The two most similar
gene clusters (in terms of JS divergence) are merged itera-
tively within a statistical hypothesis framework. If the
p-value, computed based on an analytic approximation of
the probability distribution of JS divergence, is less than a
preset significance level (default: 0.005), the gene classes are
deemed different, otherwise they are merged. The process
is performed recursively resulting in clusters of genes with
similar codon usage bias. The largest cluster represents the
native genes, while the numerous smaller clusters harbour
putative alien genes, each representing a potential donor.
The clusters of highly expressed genes, e.g. the ribosomal
protein genes, are identified and merged with the native clus-
ter. Eight or more contiguous alien genes are annotated GlIs.

2.3. Assessment of genomic island prediction methods

To assess the performance of GI prediction tools, we obtained
the recall (sensitivity), precision, F-measure (harmonic mean
of recall and precision), and performance coefficient (PC) in
identifying GIs for each method, as defined below.

TP
Recall = TP—}-—FI\I ;
Precision — P
recision = D
Mean accuracy — recall + grecision,
Fom o — 2TP
CASHIC = TP + FP + EN
P
PC=——— .
and  PC =15 T N

Here, TP = true positive, FN = false negative, FP = false
positive.

A predicted GI is deemed a match or true positive if it
overlaps with a known GI (see also §3.1 for further details),
otherwise it is called a false positive. A misclassified known
GI is annotated false negative.

3. Results and discussion

3.1. Comparison of genomic island prediction tools

To understand the contributions of GIs in the evolution of
drug-resistant MRSA, we first assessed the published GI
detection methods for their ability to identify the well-
characterized GIs in the MRSA genomes. These methods
were applied to a representative set of MRSA genomes that
included three HA-MRSA and two CA-MRSA genomes
with known GlIs (table 2). Results from the application of cur-
rent methods, namely JS-CB (gene clustering based on codon
usage bias) [12], GIHunter (DGI-database of Gls of 2000 bac-
terial genomes) [19], IslandPick (automated comparative
genomics approach) [24], Zisland Explorer (based on a seg-
mentation algorithm) [18], IslandViewer (database of
predicted Gls from three methods) [25], PredictBias (based
on G+ C content, dinucleotide composition, codon usage
bias, and the presence of virulence genes) [16], SeqWord
(based on oligonucleotide usage) [17], Alien_Hunter (based
on an interpolated Markov model accounting for variable
length k-mers and a hidden Markov model) [15], SIGI-
HMM (based on a hidden Markov model of codon usage)
[26] and MSGIP (clustering using a mean shift algorithm)
[20], to MRSA strains MW2, USA300_ FPR3757, COL,
Mu50 and N315 are shown in figure la—e. The known Gls
are shown in red on the innermost track in figure la—e.
The number of predicted GIs overlapping the known GlIs,
with overlap spanning over half of the known GI and the pre-
dicted GI not greater than twice the size of the known GI, is
listed in the electronic supplementary material, table S3 for
each method. PredictBias identified 27 GIs and JS-CB
detected 23 GIs, while GIHunter, SeqWord, Zisland Explorer,
IslandViewer and Alien_Hunter identified much fewer
known GIs. MSGIP did not identify any known GIs.
Although PredictBias identified more islands compared to
JS-CB, this was achieved at the expense of potentially many
false positives (PredictBias predicted 260 Gls, while JS-CB
predicted only 66). We quantified a method’s ability to ident-
ify maximum known GIs with fewer predictions by
computing the recall and precision in identifying known
islands in the five selected MRSA strains (table 2). If a
method generated numerous segments spanning parts of a
known GI, the largest segment, i.e. the segment with largest
overlap with the GI, was considered the predicted GI corre-
sponding to the known GI. If a prediction overlapped more
than one known GI, then each overlap of the predicted seg-
ment with the known GIs was considered. In addition to
the 50% overlap cut-off for GI identification, the recall and
precision were also obtained at cut-offs 75% and 95%
(table 2, cut-off N% means that at least N% of a known GI
needs to be identified as an alien segment for the prediction
to be deemed a success). We thus assessed the ability of a
method in identifying GIs as singular units that are mobilized
across genomes in single evolutionary events through HGT.
The mean values of the performance metrics (averaged over
the five strains) are given in table 3. At the cut-off of 50%,
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Table 2. Assessment of GI prediction tools: Recall and precision in identifying known Gls in five MRSA strains are shown for GI prediction methods. Highest [}
values of recall and precision among all methods are shown in red; recall N%: (number of known Gls with at least N% of nucleotides classified correctly)/
(number of known Gls); precision N%: (number of known Gls with at least N% of nucleotides classified correctly)/(number of Gls predicted). JS-CB, Jensen—
Shannon Codon-Bias; MSGIP, Mean Shift Genomic Island Predictor.

&
Gl tool é
assessment Predict Zisland §
strain metric Bias GlHunter  IslandViewer  SeqWord  Explorer Alien_Hunter %
USA300 recall 5 066 077 0.55 0.44 0.1 0.22 0 0 ‘5
e vk om om v m . Y 6
95 033 04 0.1 0.22 0 0.22 0 0 ~§
prec|5|on ......... 0 o o L P o o . S ;
R L 0 w7 0 05 o o3
95 02 0.08 0.2 0.25 0 0.5 0 0 5
MWz reall Q0o 0e 05 07 B L o g
75 05 0.62 0 0.37 0 0 0 0 ‘
95 037 037 0 0.25 0 0 0 0
wp‘rétis‘idﬁ e e s PP oo o
75 03 009 0 05 0 0 0 0
e 0w . S 5 . Y Y
oL recall 5 028 057 0.14 0.14 0.28 0 0 0
e o o . o . . .
% 0 0.28 0.14 0 0 0 0 0
prec|5|on ......... o os om n o s . . .
75 0 0.05 0.2 0 0.16 0 0 0
w0 w n . 5 o Y Y
Mu50 recall 5 062 062 0.37 0.37 0.37 0.37 0 0
0w e s o 0 . .
95 05 0.12 0.12 0.25 0 0.12 0 0
prec|5|on o w u om s w0
75 033 006 0.28 02 0 033 0 0
e on 0w o S 5 o1 5 Y
N315 recall 5 066  0.66 033 0.16 0.16 0.16 0 0
e 0 o . e . e . .
95 05 0.16 0 0.16 0 0.16 0 0
prec|5|on ......... o om om s e o e . .
75 017 0.03 0 0.09 0 0.5 0 0
e or oo . e 5 Iy 5 5

JS-CB outperformed the next best performing tools Predict-
Bias, GIHunter and IslandViewer by at least approximately
4% each in the mean accuracy. At the cut-off of 75%, JS-CB
performed marginally better than the next best performing
tools. At the stringent cut-off of 95%, JS-CB outperformed
PredictBias, GIHunter and IslandViewer by approximately
10%, approximately 17%, and approximately 5% respectively
in the mean accuracy. We observed similar trend with
F-measure and performance coefficient (table 3). Apparently,
JS-CB balances recall and precision better than any
other methods resulting in overall higher accuracy (tables 2
and 3). JS-CB and PredictBias performed much better in
identifying the known GlIs than the other methods, as indi-
cated by higher recall values; however, PredictBias predicts

substantially more GIs than JS-CB and hence suffers from
the low precision values (tables 2 and 3).

As many methods often over-segment (i.e. predict more
than one segment spanning parts of a GI) or under-segment
(i.e. predict a segment that spans whole or parts of more than
one GI), we also evaluated their performance through a
different assessment criterion—now considering all spanning
segments not just the segment having the largest overlap
with the GI for the former, and similarly considering all
GIs that are spanned wholly or partially by a predicted seg-
ment with the restriction that the size of the predicted
segment is not more than twice the GI size now removed
for the latter. This allowed a known GI to be deemed ident-
ified by a method at N% cut-off if the overlaps together
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Figure 1. Gls predicted in five Staphylococcus aureus MRSA strains by different methods. From the outside inward: first seven circles show the Gls predicted by
MSGIP (blank as no island identified), PredictBias, Alien_Hunter, GIHunter, Zisland Explorer, IslandViewer, SeqWord and JS-CB; known islands are shown in the
eighth circle with arrows pointing to their names. Mosaic Gls predicted by JS-(B have their distinct segments shown in different shades of blue colour. Ninth
circle represents GC skew in green and violet colour. The reference S. aureus strains used were (@) MW2, (b) USA300_FPR3757, (c) (OL, (d) Mu50 and

(e) N315. The figure was generated using CGviewer 3.0 [27].

exceeded N% threshold for the former, and similarly multiple
known GlIs were deemed identified if the predicted segment
overlapped each of these GIs by over N% of their size. While
this raised the recall of these methods, the over-segmentation
(identifying a GI as many fragments) was penalized by con-
sidering all predicted segments and the under-segmentation
(identifying many GIs as one segment) by considering both
GI and non-GI regions spanned by the predicted segment
in computing the precision of the methods (Case A in the
electronic supplementary material, table S4). Alternatively,
for under-segmentation, only one GI with the highest per
cent overlap among all GlIs spanned by a predicted segment
was considered in obtaining the recall and precision of a
method (Case B in the electronic supplementary material,
table S4). This is a reasonable approach that ensures that
over-segmenting or under-segmenting methods never reach
perfect accuracy (100% recall and 100% precision) as one
would expect them not to. JS-CB outperformed other
methods for these evaluation criteria. JS-CB yielded the best
overall performance, with highest mean accuracy, F-measure,
and performance coefficient for all five reference strains at all
three cut-offs. The next best performing methods were
GIHunter (at 50% cut-off), IslandViewer (at 75% cut-off)
and Zisland Explorer (at 95% cut-off) (electronic supplemen-
tary material, table S4). Because the complete set of actual Gls
in any strain is yet to be determined, these results should be
interpreted with caution; in fact, some of the ‘false positives’

could indeed be true positives. However, the relative
performance of the methods could still be assessed based
on their ability to identify the already-known GIs with
fewer predictions; a method balancing this trade-off well,
reflected in terms of highest accuracy among the compared
methods, could be deemed most successful among the
methods.

We performed an additional assessment of the methods
by constructing artificial MRSA genomes as described below.
The artificial genomes enabled a more objective assessment as
the evolutionary history of the segments in these genomes is
already known. To construct an artificial recipient MRSA
genome, we selected the S. aureus subsp. aureus MW2 genome
and purged it of all known GlIs as well as sequences that were
predicted GIs by any of the nine methods considered in this
study. We thus obtained the backbone S. aureus MW2 genome
that was identified as core genome by all methods. Artificial
donor genomes were similarly constructed, using the genomes
of Alkaliphilus metalliredigens QYMF (NC_009633.1), Erysipelo-
thrix rhusiopathiae str. Fujisawa (NC_015601.1), Macrococcus
caseolyticus JCSC5402 (NC_011999.1) and Salinicoccus halodurans
H3B36 (CP011366.1), which were chosen to represent a broad
range of phylogenetically related donors. M. caseolyticus and
S. halodurans represent the genera Macrococcus and Salinicoccus
respectively within the family Staphylococcaceae that S. aureus
belongs to. A. metalliredigens and E. rhusiopathiae represent the
classes Clostridia and Erysipelotrichi respectively within the
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phylum Firmicutes that S. aureus belongs to. We then simulated
the transfer of islands into this conservative core of the MW2
genome. Six DNA segments, between 40 and 50 kbp in size,
were sampled from the donor genomes and inserted into the
artificial MW2 genome, yielding approximately 82% native
and approximately 18% alien composition. Ten random trials
of this experiment yielded ten artificial genomes on which to
assess the methods. Among the assessed methods, JS-CB
yielded the highest values for all performance metrics, e.g. the
values of F-measure (averaged over 10 artificial genomes) for
JS-CB were 0.85, 0.81 and 0.55 at 50%, 75% and 95% cut-offs,
whereas those for the next best performing methods were 0.4,
0.31 and 0.29 (Alien_Hunter), 0.37, 0.27 and 0.25 (SeqWord),
and 0.29, 0.27 and 0.23 (IslandViewer), respectively (electronic
supplementary material, table S5). Similarly, JS-CB outper-
formed other methods when the methods were evaluated
through a different assessment criterion as discussed
above (for both Case A and Case B, electronic supplementary
material, table S6). The next best performing methods were
IslandViewer, Alien_Hunter and SeqWord. We were unable to
run PredictBias and GIHunter on artificial genomes; GIHunter
returned errors for both artificial and the five reference strains
(GI predictions for the reference strains were earlier retrieved
from GIHunter’s pre-computed database), and PredictBias
could not recognize the GenBank annotation files of the artificial
genomes). It should be noted that methods such as JS-CB have
previously been assessed on simulated genomes of varying
complexity [12]. GIs predicted by each method are shown in
figure 1, and the performance of the methods on each
representative MRSA genome and their ability to identify
SCCmec are summarized below.

3.1.1. Staphylococcus aureus strain MW2

Both Alien_Hunter and PredictBias predicted over 50 islands
(including both pathogenicity islands and other GIs). By con-
trast, IslandViewer and GIHunter predicted only five islands
in this strain. SCCmec was identified by JS-CB, IslandViewer,
Alien_Hunter and PredictBias, but was completely missed by
Zisland Explorer and SeqWord. JS-CB predicted 13 GlIs iden-
tifying seven out of the eight known islands (SCCmecA, vSac.,
vSa3, ¢Sa2, vSaB, ¢Sa3 and vSa4). Of the seven known
islands that overlapped with JS-CB predictions, six could be
identified at the 50% cut-off, whereas at this cut-off GIHunter
could identify only two known islands, and IslandViewer
and Alien_Hunter could detect only one known island.
Although PredictBias has the highest recall in identifying
the known islands, JS-CB outperformed other methods in
terms of precision as is also obvious from the comparison
of coordinates of known and predicted islands (table 1 and
figure 1).

3.1.2. Staphylococcus aureus strain USA300_FPR3757

The number of predicted islands varied between three
(Zisland Explorer) and 50 (PredictBias). SCCmec was ident-
ified by JS-CB, Zisland Explorer, GIHunter and PredictBias
at the 50% cut-off. JS-CB predicted 15 islands, overlapping
with eight of the nine known islands (SCCmec, ACME,
vSaa, SaPI-5, ¢Sa2, vSaB, ¢Sa3 and vSa4). At the 50% overlap
cut-off, JS-CB was most successful, identifying seven of the
nine known GIs. PredictBias and GIHunter were the next
best, each identifying five of the nine known GlIs.

3.1.3. Staphylococcus aureus strain COL

Of the seven known islands, JS-CB’s predictions overlapped
with six (SCCmec, vSaa, vSaB, vSa4 (remnant), ¢COL,
vSal); however, only four (SCCmec, vSa4, ¢COL, vSal) had
over 50% overlap with the predictions. JS-CB predicted an
additional 11 GIs in this strain. SCCmec island was also ident-
ified by PredictBias and SeqWord. At the 50% overlap cut-off,
PredictBias had higher recall than JS-CB but at the cost of
many false positives; Zisland Explorer and MGSIP failed to
identify any known islands at this cut-off.

3.1.4. Staphylococcus aureus strain Mu50

JS-CB could identify six of the eight known GlIs in Staphylo-
coccus aureus strain Mub50, with five overlapping the
respective predicted GIs by over 50%. SCCmec was identified
by JS-CB and PredictBias at the 50% cut-off. At the 50% cut-
off, Alien_Hunter and MGSIP failed to identify any known
GIs in this strain.

3.1.5. Staphylococcus aureus strain N315

Of the six known islands in this strain, JS-CB identified four
islands at the 50% cut-off. SCCmec was identified by JS-CB,
IslandViewer, GIHunter, Alien_Hunter and PredictBias. Zis-
land Explorer was able to detect only one of the known
islands. Alien_Hunter could not identify any GI at the 50%
cut-off. MGSIP failed to localize any of the known islands.
Our analysis shows that JS-CB has the highest recall for
Mu50 and N315 strains at all cut-offs. PredictBias has highest
recall for USA300, MW2 and COL (table 2). JS-CB outper-
forms all other GI prediction methods by approximately 5%
or more in mean recall at the 95% cut-offs, and is outper-
formed by PredictBias by approximately 11% in mean recall
at the lower cut-offs (table 3). PredictBias incurs false posi-
tives at much higher rate (mean precision ranges from
approximately 4% to 10%, table 3) than JS-CB (mean pre-
cision ranges from approximately 18% to 32%, table 3).
IslandViewer displays lower recall but higher precision in
comparison with JS-CB. GIHunter and Seqword have much
lower recall, with a mean recall of 34% and 21% respectively
at the cut-off of 50% (table 3); If an island lacks mobility genes
or genes required for integration, e.g. ¢Sal, vSaa, vSaf, vSavy,
GIHunter does not perform well in identifying such islands.
By contrast, JS-CB solely relies on codon usage bias for GI
identification, and is, therefore, able to identify islands
which might have lost their mobility or integration genes.
However, the long-term resident islands such as vSaP,
which are likely to have their composition ameliorated to
that of the host, were difficult to detect using JS-CB. Com-
pared with JS-CB, PredictBias uses two criteria, namely
dinucleotide bias and codon usage bias to delineate GIs; aty-
picality in either is considered a GI signature. Thus, clusters
of ORFs showing atypical dinucleotide bias but not atypical
codon usage bias were also annotated as GIs. Furthermore,
JS-CB identifies atypical genes by assessing the similarities
of the genes against each other rather than assessing the dis-
parities against the genome background, thus identifying
even clusters of weakly atypical genes. This may explain
the better performance of JS-CB in comparison with the
other methods of GI detection. Notably, JS-CB achieves
overall highest accuracies by considering only codon
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usage bias as the discriminant criterion, outperforming the
methods that use multiple criteria, such as PredictBias that
uses pathogenicity-related gene information in addition to
dinucleotide bias and codon usage bias to identify islands.

3.2. Comparison of JS-CB and GEMINI

We further compared JS-CB with a just-published genome
mining tool, GEMINI, that performed well in delineating
GlIs in the Liverpool epidemic strain of Pseudomonas aerugi-
nosa [21]. In application to the P. aeruginosa LESB58
genome, JS-CB identified wholly or partially all four verified
islands at its default parameter setting (table 4). By contrast,
GEMINI robustly identified three out of the four verified
islands (VI-1, VI-2, VI-4) but missed completely VI-3 [21].
This level of performance was achieved by JS-CB by predict-
ing 35.5% of the LESB58 genome as alien, while that by
GEMINI by predicting approximately 13% of the genome
as alien. When we readjusted the threshold of JS-CB (cluster-
ing threshold now set to 1E-28, see [12]) to obtain a
conservative estimate of alien DNAs, same as that observed
with GEMINI, JS-CB could still detect all four verified
islands, with approximately 54% of the total nucleotides
from the four verified islands classified as alien, while
GEMINI classified approximately 84% of the nucleotides of
the verified islands as alien. Both JS-CB and GEMINI
identified three of four verified islands at the 50% overlap
cut-off. The overall higher sensitivity of GEMINI could be
attributed to its segmentation approach that enables detection
of large islands with high precision; VI-4 is a large GI with
101 genes, approximately 98% of this island was detected
by GEMINI, while JS-CB could detect only approximately
44%. By contrast, the application of GEMINI to MRSA gen-
omes revealed its inability to localize the SCCmec island in
N315, Mu50 and COL strains. GEMINI could identify only
approximately 500 nucleotides of the SCCmec island for
USA300 and MW?2 at its default parameter setting. GEMINI
predicted approximately 7% of the genome as alien for the
five MRSA strains (table 4). When we readjusted the algor-
ithm parameters for GEMINI (segmentation threshold and
two-step clustering thresholds now set to 1E-11, 1E-13 and
1E-4 respectively; the default thresholds were earlier set
based on P. aeruginosa genome analysis, see [21]), so that
GEMINI predicts a similar proportion of a MRSA genome
as alien as does JS-CB (approx. 27%). GEMINI was still not
able to robustly identify the SCCmec island in all strains;
only approximately 23%, approximately 50%, approximately
76%, approximately 92% and approximately 26% of SCCmec
were identified in USA300, MW2,N315, Mu50 and COL strains
respectively, while these numbers were approximately 99%,
approximately 99%, 100%, approximately 99%, approximately
51% for JS-CB (tables 1 and 4).

SCCmec is characterized by several ORFs with atypical
codon usage and GC content at the third codon position
[4,28,29]. As JS-CB clusters genes based on codon usage
bias, it is better able to exploit codon-specific information and
therefore was able to localize SCCmec in the MRSA genomes.
By contrast, GEMINI identifies GIs independent of codon
information, by examining higher order oligonucleotide com-
positional biases, and therefore it may miss islands with
atypical codon usage biases that are not reflected as atypical-
ity in oligonucleotide composition. GEMINI, by virtue of
its ability to analyse multiple genes simultaneously through

a recursive segmentation process, localizes large islands
more efficiently, which may appear fragmented in the predic-
tions by bottom-up, gene-by-gene analysis methods such as
JS-CB that may misclassify weakly atypical genes or compo-
sitionally ambiguous genes. Our results from the application
of JS-CB and GEMINI to MRSA genomes reveal the comp-
lementary strengths of these two methods, which provides
a basis for further future research towards the integration of
complementary methods for attaining still better accuracy
in GI prediction. We also noted that the performance of the
GI prediction methods varies genomewise, reinforcing the
need to develop methodologies for exploiting the comple-
mentary strengths of the prediction methods. An integrative
approach to GI detection holds the promise to raise the
accuracy bar across all genomes.

3.3. Identification of novel islands in HA- and CA-MRSA
strains

JS-CB was able to identify many of the known islands,
namely SCCmec, ACME, vSaa, SaPI-5, ¢Sal, ¢Sa2, ¢Sa3,
vSa4, vSal, vSa3 and ¢COL, in the five strains we studied
(table 1). However, the compositionally similar islands,
such as SCCmec and ACME, and ¢Sa3 and vSa4 (electronic
supplementary material, table S1), were identified as one
combined island instead of two separate islands (table 1).
JS-CB missed vSaP island in N315 and MU50, and vSay
island in all five strains we examined. This may likely be a
consequence of the amelioration process [30], whereby an
island loses its inherent evolutionary signatures, after being
subjected to the mutational processes of the host genome,
over the passage of time since its acquisition. As JS-CB
performed comparably or outperformed the current
methods in localizing known GlIs in five MRSA strains, we
applied JS-CB to completely sequenced 22 HA-MRSA and
nine CA-MRSA genomes to decipher yet unknown GIs in
the MRSA strains. We discuss below our analysis of the JS-
CB'’s novel predictions for the five reference strains, followed
by the analysis of novel predictions for the remaining 26
strains.

JS-CB’s ability to more robustly identify the known
islands in the MRSA strains motivated us to further explore
and analyse the novel islands predicted by it. In the five
strains that, we examined, JS-CB-identified 42 novel islands
(electronic supplementary material, table S7). Several pre-
vious studies have enlisted features that typify Gls, e.g.
atypical composition, presence of tRNA genes, direct repeats,
integrase and transposase genes, and genes that may be
imparting novel traits such as those encoding virulence or
antibiotic resistance or other novel metabolic traits. To but-
tress our novel GI predictions, we collected further
evidence in support of our predictions (electronic supplemen-
tary material, table S7). Of these, seven islands had either
transposase or integrase genes, including N315_GI1,
N315_GI7, Mu50_GI1 and Mu50_GI6 (figure 2a—d, electronic
supplementary material, table S7). Fifteen islands harboured
genes encoding virulence or antibiotic resistance factors (elec-
tronic supplementary material, table S7), including
N315_GI3, N315_GI10 and US300_GI7 (figure 3a—c). Several
islands included repeat regions, e.g. N315_GI1, N315_GI7,
Mu50_GI1 and Mu50_GI6. While Mu50_GI1 has a repeat
region in an internal site preceding a transposase gene,
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Figure 2. Gene maps of: (@) N315_GI1: transposase gene imparting mobility to the island has been highlighted in red; (b) N315_GI7: the presence of a transposase
gene in the Gl is indicated; (c) Mu50_GlI1: the presence of a gene encoding transposase of insertion element is indicated; and (d) Mu50_Glé: the presence of a

transposase gene and genes involved in metabolism in the Gl is indicated.

MU50_GI6 has repeat regions upstream of the island and at
an internal site prior to a transposase gene. Likewise,
N315_GI1 has a repeat region at an internal site before the
transposase genes, while N315_GI7 has a repeat region just
upstream of the island. The presence of transposase genes
and repeat regions that are often associated with GI inte-
gration provides further evidence in support of our novel
predictions. Some novel Gls predicted by JS-CB also har-
boured genes encoding virulence factors (electronic
supplementary material, table S7). N315_GI3 (figure 3a) car-
genes encoding fibrinogen-binding protein and
coagulase, which were previously reported to be involved

ries

in virulence [31,32]; this island also harbours a transposase
gene. While fibrinogen-binding protein helps S. aureus to
colonize its hosts by facilitating attachment to a surface
[33], coagulase, also a surface determinant involved in adher-
ence, helps in converting fibrinogen to fibrin [34]. Both
N315_GI10 (figure 3b) and USA300_GI7 (figure 3c) have
genes encoding intracellular adhesion proteins. These pro-
teins are critical in biofilm formation and adhering to
surfaces [35]. USA300_GI7 also harboured an integrase/
recombinase gene.

In addition to these five reference strains, we analysed
novel predictions by JS-CB for the remaining 26 strains. The
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Figure 3. Gene map of: (a) N315_GI3: this Gl possesses multiple copies of transposase genes (shown in red) and genes required for adhesion (i.e. virulence genes),
namely fibrinogen-binding protein A and coagulase encoding genes (shown in blue); (b) N315_GI10: the presence of intercellular adhesin genes in the Gl with a
role in virulence is indicated; and (c) USA300_GI7: virulence genes (shown in blue) and a gene required for Gl integration (shown in red) are indicated in this Gl,

suggesting a potential role in pathogenicity.

full list of putative GIs localized by JS-CB in the completely
sequenced HA-MRSA and CA-MRSA genomes is given in
the electronic supplementary material, table S8. ]JS-CB
predicted 338 Gls across these 26 genomes. As little infor-
mation is available about the locations of GIs including
SCCmec in these strains, we first attempted to identify
SCCmec in the 26 genomes. If a predicted island harboured
SCCmec marker genes, namely the mecA and ccr genes, we
annotated the predicted island as SCCmec. JS-CB could
localize SCCrmec in all 26 strains. The approximate location
and size of these islands are conserved across all 26
strains, similar to the conservation observed in the five refer-
ence strains. If the marker genes were not found in the
predicted islands, the sequence alignment program BLAST
[36] was used to characterize the islands. Pairwise nucleotide
sequence alignment of the predicted islands in 26 strains and
the known islands (as in the five reference strains, table 1)
was performed using BLAST. vSaa, vSaB, ¢Sal, ¢Sa2 and
¢Sa3 were identified based on significantly high similarity
of the predicted islands with these islands (query coverage
greater than 60% and nucleotide identity greater than 80%).
We thus identified 57 known islands across the 26 strains
(electronic supplementary material, table S8). Among the

remaining 281 predicted islands, 111 contain Gl-specific
features such as transposase, integrase or phage genes.
Among these, 62 islands harbour either virulence or anti-
biotic resistance genes or both. To identify GIs shared
among strains, we grouped the 281 GIs based on sequence
similarity using CD-HIT [37]. GIs with high similarity
(nucleotide identity greater than 80%) were grouped in a clus-
ter. This yielded in total 22 clusters, each with five or more
GlIs (electronic supplementary material, table S8).

Several previous studies have reported GIs in MRSA
strains [3,4,6,13,14], which were identified based on typi-
cal features of GIs, such as mobility genes, transposase,
flanking tRNA genes which act as insertion sites, phage
genes, insertion sequence elements and direct repeats flank-
ing the Gls. However, with this approach we may miss Gls
that lack these features yet have been mobilized through
HGT or several long-time resident islands that may have
lost some or all of such features. A comprehensive analysis
of genomes for the presence of Gls thus requires a combi-
nation of complementary methods, including phylogenetic
and composition-based or parametric methods. The novel
MRSA GIs lacking typical Gl-associated features therefore
require further investigation.
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3.4. Mosaicism of SSCmec

The SCCrmec island carries a mec gene complex and chromo-
some recombinase (ccr) gene complex, and is integrated at
integration site sequence (ISS) for SCC [38]. The mec gene
complex includes mecA gene, its regulatory genes and inser-
tion sequences [38]. The ccr gene complex includes ccrA,
ccB, ccrC genes, and the flanking regions [38]. Depending
on the allotype of the genes in the mec and ccr gene com-
plexes, eight types of SCCmec islands have been identified.
Of the five reference strains analysed, genes within the
SCCmec island were segregated into two or more clusters
by JS-CB (electronic supplementary material, table S9),
revealing the mosaic structure of SCCmec and the likely dis-
tinct ancestries of the disparate segments composing the
SCCmec island. Interestingly, methicillin resistance gene
mecA and recombinase gene ccr (ccrA, ccrB, ccrC) were
assigned to different clusters for N315 and Mu50 strains.
GlIs structurally similar to SCCmec, carrying ccr genes but
lacking mecA gene have been reported previously in Staphylo-
coccus hominis [39]; these islands were also shown to
spontaneously excise [39], thus suggesting that the SCCmec
like islands lacking mecA gene might have originated earlier
and later acquired the mecA gene to form a functional
SCCmec island. An alternative explanation for the absence
of mecA genes in SCCmec like islands could be the loss of
mecA genes from the original SCCmec islands, resulting in
the SCCmec like islands lacking mecA in some Staphylococcus
genomes. Mosaic islands were not observed in the strains
USA300 and COL, but a bipartite SCCmec island was
observed in MW2. Of the remaining 26 strains, mosaic
SCCmec was observed in 14 strains. Six of these 14 strains
with mosaic SCCmec had mecA and ccr genes assigned to
different clusters. A tripartite structure of SCCmec was
observed in eight strains, and bipartite, quadripartite and

References

pentapartite structures were observed in two strains each in [ 13 |

the remaining 26 strains (electronic supplementary material,
table S9). The differential mosaicism of SCCmiec as observed
in our study of course needs further investigation.

4. Conclusion

A gene clustering-based method, JS-CB, outperformed sev-
eral GI prediction methods in identifying GIs in MRSA
genomes. Evidence gathered from the literature and sequence
comparison supported many of the novel GIs predicted by JS-
CB. The putative functional role of the Gls identified by JS-CB
indicates the proclivity of S. aureus to acquire foreign DNAs
to become multidrug-resistant or metabolically distinct
organisms. JS-CB further revealed the mosaic structures of
many GIs including the SCCmec island, which calls for
further studies to understand their significance and plausi-
ble role in the adaptation of S. aureus to the changing
environment. Our study also revealed the complementary
strengths of the methods, e.g. JS-CB and GEMINI, which
can be exploited in future studies to further improve GI
identification in bacterial genomes.
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