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Staphylococcus aureus is a versatile pathogen that is capable of causing

infections in both humans and animals. It can cause furuncles, septicaemia,

pneumonia and endocarditis. Adaptation of S. aureus to the modern hospital

environment has been facilitated, in part, by the horizontal acquisition of

drug resistance genes, such as mecA gene that imparts resistance to methicil-

lin. Horizontal acquisitions of islands of genes harbouring virulence and

antibiotic resistance genes have made S. aureus resistant to commonly

used antibiotics. To decipher genomic islands (GIs) in 22 hospital- and 9

community-associated methicillin-resistant S. aureus strains and classify a

subset of GIs carrying virulence and resistance genes as pathogenicity and

resistance islands respectively, we applied a host of methods for localizing

genomic islands in prokaryotic genomes. Surprisingly, none of the frequently

used GI prediction methods could perform well in delineating the resistance

islands in the S. aureus genomes. Rather, a gene clustering procedure exploit-

ing biases in codon usage for identifying horizontally transferred genes

outperformed the current methods for GI detection, in particular in

identifying the known islands in S. aureus including the SCCmec island

that harbours the mecA resistance gene. The gene clustering approach also

identified novel, as yet unreported islands, with many of these found to

harbour virulence and/or resistance genes. These as yet unexplored islands

may provide valuable information on the evolution of drug resistance

in S. aureus.
1. Introduction
Staphylococcus aureus is a Gram-positive coccus and an important human patho-

gen responsible for nosocomial and community-acquired infections. It colonizes

mucous membranes and skin, and can survive even in harsh environmental

conditions. Earlier treatment options for S. aureus infections included penicillin

G. However, an increase in the emergence of strains resistant to methicillin

made treatment very difficult for S. aureus infections [1–6]. These methicillin-

resistant S. aureus (MRSA) strains have since become resistant to other

antibiotics including macrolides, lincosamides and all beta-lactams. More

recently, multi-drug-resistant MRSA strains have acquired resistance against

vancomycin [7,8].

Acquisitions of drug resistance factors are facilitated by horizontal transfer

of plasmids, transposons and other mobile genetic elements. For example, the

resistance to methicillin was gained by the acquisition of an ‘island’ of genes,

namely the staphylococcal chromosome cassette methicillin-resistance

(SCCmec) island. SCCmec carries the PBP2a-encoding mecA gene, which is

responsible for methicillin resistance. Several studies have, therefore, focused

on identifying these genomic islands (GIs) to understand the underlying mech-

anisms of the emergence of complex antibiotic resistance patterns mediated by
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horizontal gene transfer (HGT) [3]. These islands and the

other mobile genetic elements such as phages, transposons

and chromosomal cassettes together constitute the auxiliary

or accessory genome of S. aureus. The core genome has pre-

viously been reported to be composed of approximately

95% or more of all S. aureus genes [9]; recent studies have

revealed recombination hotspots for mobile elements even

within the S. aureus core genome [10]. The S. aureus
genome backbone is composed of genes present in all or

most S. aureus strains, whereas the accessory genome har-

bours genes that are unique to a strain or are present in

only a few strains and are likely a consequence of acquisitions

from distantly related or unrelated organisms through HGT.

Besides helping gain resistance to antibiotics, foreign genes

have also aided S. aureus in causing infections and proliferat-

ing in a community setting. For example, the acquisition of

Panton–Valentine leucocidin gene by MRSA has given rise

to community-acquired MRSA (CA-MRSA) [1,2]. Although

S. aureus has traditionally been classified as a nosocomial

agent and was believed to cause only hospital-associated

infections, the cases of CA-MRSA infection have been increas-

ing owing to the emergence of new CA-MRSA strains as a

consequence of HGT [7,11].

Quantifying resistance and virulence-associated GIs is

central to understanding the emergence and evolution of

hospital-associated (HA) and CA-MRSA strains. In our

quest for a robust method for GI detection in MRSA among

the currently available GI detection methods, we first

assessed their ability to detect known islands in MRSA. The

methods displayed varying levels of sensitivity in identifying

the known GIs in MRSA, with none found satisfactory in

localizing the SCCmec resistance island. We therefore

explored an information-entropy-based gene clustering

method that uses codon usage bias to identify genes originat-

ing from different sources [12]. Although a bottom-up

approach (i.e. gene-by-gene analysis) and not usually rec-

ommended for detecting large acquisitions, it displayed

remarkable success in localizing resistance and other

known islands in MRSA in comparison with the existing

methods. This is a significant development as more robust

detection of MRSA GIs is a precursor to an effective down-

stream analysis for understanding the emergence and

evolution of MRSA strains through GI acquisition. In what

follows, we briefly describe the methods used in this study,

discuss their performance on localization of known GIs in a

representative set of HA- and CA-MRSA genomes, highlight

our novel predictions, and conclude with remarks on the

impact of this study and future directions.
2. Material and methods
2.1. Methicillin-resistant Staphylococcus aureus

genomes
The complete genome sequences and gene coordinates for

22 HA- and 9 CA-MRSA strains were obtained from GenBank

(https://www.ncbi.nlm.nih.gov/genbank/). We referred to

the previous studies to compile a high confidence set of

known MRSA GIs [5,13,14]. The coordinates of known

MRSA GIs, their codon and GC features, and supporting

evidence from the corresponding studies are given in table 1

and the electronic supplementary material, tables S1 and S2.
2.2. Genomic island detection methods
We used the following GI prediction methods at their default

parameter setting unless mentioned otherwise (see §3.2).
2.2.1. Alien_Hunter

Interpolated variable order motifs (IVOM) [15] or Alien_Hunter

uses an interpolated Markov model accounting for varia-

ble order motifs to assess the compositional difference

between a region within a moving window and the genome.

Compositionally atypical regions are identified as GIs.
2.2.2. PredictBias

PredictBias examines genomic regions within a moving

window and annotates successive ORFs with atypical

codon usage bias and either atypical GC composition or

dinucleotide composition as GIs [16]. PredictBias also exam-

ines the presence of virulence-associated genes within

clusters of eight contiguous ORFs; if four of these genes

have significant BLAST hits in the virulence factor database

(VFDB), the cluster is an annotated GI even if it does not

display atypicality in dinucleotide or codon usage bias.
2.2.3. SeqWord

SeqWord uses oligonucleotide usage (OU) patterns to assess

compositional differences in the genome [17]. Genomic

islands are identified as compositionally divergent regions

based on local and global OU patterns.
2.2.4. IslandViewer

This integrated visualization tool provides predictions from

three programs, IslandPath-DIMOB, SIGI-HMM, and Island-

Pick along with the visualization of GIs.
2.2.5. Zisland Explorer

This program uses cumulative GC profile to segment the

genome first, assesses the GC heterogeneity to exclude

the core (vertically inherited) segments, and finally uses the

codon usage bias to identify putative GIs [18].
2.2.6. GIHunter

Genomic Island Hunter (GIHunter) [19] uses a decision tree

to identify GIs. It builds a GI/non-GI gene classifier using

the dataset of known GIs and non-GIs. GI features, such as

sequence composition, presence of mobility genes and

integration sites, are used as classification features.
2.2.7. MSGIP

Mean Shift Genomic Island Predictor (MSGIP) is a clustering

method based on mean shift algorithm, a non-parametric

method that calculates mean shift vector and moves the den-

sity estimation window in the direction of local density

maxima, until the convergence is reached [20]. Following

clustering, MSGIP identifies GIs as clusters of atypical

windows with length not exceeding 200 kbp.
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2.2.8. GEMINI

GEMINI is a genome-mining tool based on a recursive seg-

mentation and clustering procedure [21]. GEMINI segments

a genome recursively into compositionally homogeneous

segments within a statistical hypothesis testing framework

and then groups similar segments within the same frame-

work. Additionally, GEMINI exploits segment context

information to achieve more robust clustering. Potentially,

vertically inherited or native segments representing the

genome backbone are identified by the largest cluster har-

bouring segments of ‘typical’ composition. Segments of

‘atypical’ composition, representing putative horizontally

acquired DNAs, are assigned to the numerous smaller clus-

ters each representing a likely donor source. Large atypical

segments, 8 kbp or more in size, are predicted as GIs.
70094
2.2.9. Gene clustering (JS-CB)

JS-CB is a gene clustering method for identifying putative

horizontally acquired genes [12]. Although not designed

specifically to detect GIs, we tested its ability to identify

GI-borne genes in MRSA genomes [12]. Briefly, JS-CB uses

Jensen–Shannon (JS) divergence measure [22,23] to assess

the difference in codon usage bias between two genes.

Genes with similar codon usage bias are grouped together

using an agglomerative hierarchical clustering. JS-CB begins

with all individual genes as single-gene clusters, followed

by pairwise comparison of the clusters. The two most similar

gene clusters (in terms of JS divergence) are merged itera-

tively within a statistical hypothesis framework. If the

p-value, computed based on an analytic approximation of

the probability distribution of JS divergence, is less than a

preset significance level (default: 0.005), the gene classes are

deemed different, otherwise they are merged. The process

is performed recursively resulting in clusters of genes with

similar codon usage bias. The largest cluster represents the

native genes, while the numerous smaller clusters harbour

putative alien genes, each representing a potential donor.

The clusters of highly expressed genes, e.g. the ribosomal

protein genes, are identified and merged with the native clus-

ter. Eight or more contiguous alien genes are annotated GIs.
2.3. Assessment of genomic island prediction methods
To assess the performance of GI prediction tools, we obtained

the recall (sensitivity), precision, F-measure (harmonic mean

of recall and precision), and performance coefficient (PC) in

identifying GIs for each method, as defined below.

Recall ¼ TP

TPþ FN
,

Precision ¼ TP

TPþ FP
,

Mean accuracy ¼ recallþ precision

2
,

F-measure ¼ 2TP

2TPþ FPþ FN

and PC ¼ TP

TPþ FPþ FN
:

Here, TP ; true positive, FN ; false negative, FP ; false

positive.
A predicted GI is deemed a match or true positive if it

overlaps with a known GI (see also §3.1 for further details),

otherwise it is called a false positive. A misclassified known

GI is annotated false negative.
3. Results and discussion
3.1. Comparison of genomic island prediction tools
To understand the contributions of GIs in the evolution of

drug-resistant MRSA, we first assessed the published GI

detection methods for their ability to identify the well-

characterized GIs in the MRSA genomes. These methods

were applied to a representative set of MRSA genomes that

included three HA-MRSA and two CA-MRSA genomes

with known GIs (table 2). Results from the application of cur-

rent methods, namely JS-CB (gene clustering based on codon

usage bias) [12], GIHunter (DGI-database of GIs of 2000 bac-

terial genomes) [19], IslandPick (automated comparative

genomics approach) [24], Zisland Explorer (based on a seg-

mentation algorithm) [18], IslandViewer (database of

predicted GIs from three methods) [25], PredictBias (based

on G þ C content, dinucleotide composition, codon usage

bias, and the presence of virulence genes) [16], SeqWord

(based on oligonucleotide usage) [17], Alien_Hunter (based

on an interpolated Markov model accounting for variable

length k-mers and a hidden Markov model) [15], SIGI-

HMM (based on a hidden Markov model of codon usage)

[26] and MSGIP (clustering using a mean shift algorithm)

[20], to MRSA strains MW2, USA300_ FPR3757, COL,

Mu50 and N315 are shown in figure 1a–e. The known GIs

are shown in red on the innermost track in figure 1a–e.

The number of predicted GIs overlapping the known GIs,

with overlap spanning over half of the known GI and the pre-

dicted GI not greater than twice the size of the known GI, is

listed in the electronic supplementary material, table S3 for

each method. PredictBias identified 27 GIs and JS-CB

detected 23 GIs, while GIHunter, SeqWord, Zisland Explorer,

IslandViewer and Alien_Hunter identified much fewer

known GIs. MSGIP did not identify any known GIs.

Although PredictBias identified more islands compared to

JS-CB, this was achieved at the expense of potentially many

false positives (PredictBias predicted 260 GIs, while JS-CB

predicted only 66). We quantified a method’s ability to ident-

ify maximum known GIs with fewer predictions by

computing the recall and precision in identifying known

islands in the five selected MRSA strains (table 2). If a

method generated numerous segments spanning parts of a

known GI, the largest segment, i.e. the segment with largest

overlap with the GI, was considered the predicted GI corre-

sponding to the known GI. If a prediction overlapped more

than one known GI, then each overlap of the predicted seg-

ment with the known GIs was considered. In addition to

the 50% overlap cut-off for GI identification, the recall and

precision were also obtained at cut-offs 75% and 95%

(table 2, cut-off N% means that at least N% of a known GI

needs to be identified as an alien segment for the prediction

to be deemed a success). We thus assessed the ability of a

method in identifying GIs as singular units that are mobilized

across genomes in single evolutionary events through HGT.

The mean values of the performance metrics (averaged over

the five strains) are given in table 3. At the cut-off of 50%,



Table 2. Assessment of GI prediction tools: Recall and precision in identifying known GIs in five MRSA strains are shown for GI prediction methods. Highest
values of recall and precision among all methods are shown in red; recall N%: (number of known GIs with at least N% of nucleotides classified correctly)/
(number of known GIs); precision N%: (number of known GIs with at least N% of nucleotides classified correctly)/(number of GIs predicted). JS-CB, Jensen –
Shannon Codon-Bias; MSGIP, Mean Shift Genomic Island Predictor.

strain

GI tool
assessment
metric %

JS-
CB

Predict
Bias GIHunter IslandViewer SeqWord

Zisland
Explorer Alien_Hunter MSGIP

USA300 recall 50 0.66 0.77 0.55 0.44 0.11 0.22 0 0

75 0.44 0.66 0.33 0.33 0 0.22 0 0

95 0.33 0.44 0.11 0.22 0 0.22 0 0

precision 50 0.4 0.14 1 0.5 0.11 0.5 0 0

75 0.26 0.12 0.6 0.37 0 0.5 0 0

95 0.2 0.08 0.2 0.25 0 0.5 0 0

MW2 recall 50 0.75 0.87 0.25 0.37 0.12 0 0.12 0

75 0.5 0.62 0 0.37 0 0 0 0

95 0.37 0.37 0 0.25 0 0 0 0

precision 50 0.5 0.12 0.4 0.5 0.12 0 0.01 0

75 0.33 0.09 0 0.5 0 0 0 0

95 0.25 0.05 0 0.33 0 0 0 0

COL recall 50 0.28 0.57 0.14 0.14 0.28 0 0 0

75 0 0.42 0.14 0 0.14 0 0 0

95 0 0.28 0.14 0 0 0 0 0

precision 50 0.13 0.07 0.2 0.12 0.33 0 0 0

75 0 0.05 0.2 0 0.16 0 0 0

95 0 0.03 0.2 0 0 0 0 0

Mu50 recall 50 0.62 0.62 0.37 0.37 0.37 0.37 0 0

75 0.5 0.37 0.25 0.25 0 0.25 0 0

95 0.5 0.12 0.12 0.25 0 0.12 0 0

precision 50 0.41 0.1 0.42 0.3 0.3 0.5 0 0

75 0.33 0.06 0.28 0.2 0 0.33 0 0

95 0.33 0.02 0.14 0.2 0 0.16 0 0

N315 recall 50 0.66 0.66 0.33 0.16 0.16 0.16 0 0

75 0.5 0.33 0 0.16 0 0.16 0 0

95 0.5 0.16 0 0.16 0 0.16 0 0

precision 50 0.23 0.07 0.33 0.09 0.11 0.5 0 0

75 0.17 0.03 0 0.09 0 0.5 0 0

95 0.17 0.01 0 0.09 0 0.5 0 0
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JS-CB outperformed the next best performing tools Predict-

Bias, GIHunter and IslandViewer by at least approximately

4% each in the mean accuracy. At the cut-off of 75%, JS-CB

performed marginally better than the next best performing

tools. At the stringent cut-off of 95%, JS-CB outperformed

PredictBias, GIHunter and IslandViewer by approximately

10%, approximately 17%, and approximately 5% respectively

in the mean accuracy. We observed similar trend with

F-measure and performance coefficient (table 3). Apparently,

JS-CB balances recall and precision better than any

other methods resulting in overall higher accuracy (tables 2

and 3). JS-CB and PredictBias performed much better in

identifying the known GIs than the other methods, as indi-

cated by higher recall values; however, PredictBias predicts
substantially more GIs than JS-CB and hence suffers from

the low precision values (tables 2 and 3).

As many methods often over-segment (i.e. predict more

than one segment spanning parts of a GI) or under-segment

(i.e. predict a segment that spans whole or parts of more than

one GI), we also evaluated their performance through a

different assessment criterion—now considering all spanning

segments not just the segment having the largest overlap

with the GI for the former, and similarly considering all

GIs that are spanned wholly or partially by a predicted seg-

ment with the restriction that the size of the predicted

segment is not more than twice the GI size now removed

for the latter. This allowed a known GI to be deemed ident-

ified by a method at N% cut-off if the overlaps together



known islands
JS-CB
SeqWord
IslandViewer 4.0
Zisland Explorer
GI-Hunter
Alien_Hunter
PredictBias

GC skew+
GC skew–

(a)

(d)

(c)(b)

(e)

Figure 1. GIs predicted in five Staphylococcus aureus MRSA strains by different methods. From the outside inward: first seven circles show the GIs predicted by
MSGIP (blank as no island identified), PredictBias, Alien_Hunter, GIHunter, Zisland Explorer, IslandViewer, SeqWord and JS-CB; known islands are shown in the
eighth circle with arrows pointing to their names. Mosaic GIs predicted by JS-CB have their distinct segments shown in different shades of blue colour. Ninth
circle represents GC skew in green and violet colour. The reference S. aureus strains used were (a) MW2, (b) USA300_FPR3757, (c) COL, (d ) Mu50 and
(e) N315. The figure was generated using CGviewer 3.0 [27].
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exceeded N% threshold for the former, and similarly multiple

known GIs were deemed identified if the predicted segment

overlapped each of these GIs by over N% of their size. While

this raised the recall of these methods, the over-segmentation

(identifying a GI as many fragments) was penalized by con-

sidering all predicted segments and the under-segmentation

(identifying many GIs as one segment) by considering both

GI and non-GI regions spanned by the predicted segment

in computing the precision of the methods (Case A in the

electronic supplementary material, table S4). Alternatively,

for under-segmentation, only one GI with the highest per

cent overlap among all GIs spanned by a predicted segment

was considered in obtaining the recall and precision of a

method (Case B in the electronic supplementary material,

table S4). This is a reasonable approach that ensures that

over-segmenting or under-segmenting methods never reach

perfect accuracy (100% recall and 100% precision) as one

would expect them not to. JS-CB outperformed other

methods for these evaluation criteria. JS-CB yielded the best

overall performance, with highest mean accuracy, F-measure,

and performance coefficient for all five reference strains at all

three cut-offs. The next best performing methods were

GIHunter (at 50% cut-off ), IslandViewer (at 75% cut-off )

and Zisland Explorer (at 95% cut-off ) (electronic supplemen-

tary material, table S4). Because the complete set of actual GIs

in any strain is yet to be determined, these results should be

interpreted with caution; in fact, some of the ‘false positives’
could indeed be true positives. However, the relative

performance of the methods could still be assessed based

on their ability to identify the already-known GIs with

fewer predictions; a method balancing this trade-off well,

reflected in terms of highest accuracy among the compared

methods, could be deemed most successful among the

methods.

We performed an additional assessment of the methods

by constructing artificial MRSA genomes as described below.

The artificial genomes enabled a more objective assessment as

the evolutionary history of the segments in these genomes is

already known. To construct an artificial recipient MRSA

genome, we selected the S. aureus subsp. aureus MW2 genome

and purged it of all known GIs as well as sequences that were

predicted GIs by any of the nine methods considered in this

study. We thus obtained the backbone S. aureus MW2 genome

that was identified as core genome by all methods. Artificial

donor genomes were similarly constructed, using the genomes

of Alkaliphilus metalliredigens QYMF (NC_009633.1), Erysipelo-
thrix rhusiopathiae str. Fujisawa (NC_015601.1), Macrococcus
caseolyticus JCSC5402 (NC_011999.1) and Salinicoccus halodurans
H3B36 (CP011366.1), which were chosen to represent a broad

range of phylogenetically related donors. M. caseolyticus and

S. halodurans represent the genera Macrococcus and Salinicoccus
respectively within the family Staphylococcaceae that S. aureus
belongs to. A. metalliredigens and E. rhusiopathiae represent the

classes Clostridia and Erysipelotrichi respectively within the
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phylum Firmicutes that S. aureus belongs to. We then simulated

the transfer of islands into this conservative core of the MW2

genome. Six DNA segments, between 40 and 50 kbp in size,

were sampled from the donor genomes and inserted into the

artificial MW2 genome, yielding approximately 82% native

and approximately 18% alien composition. Ten random trials

of this experiment yielded ten artificial genomes on which to

assess the methods. Among the assessed methods, JS-CB

yielded the highest values for all performance metrics, e.g. the

values of F-measure (averaged over 10 artificial genomes) for

JS-CB were 0.85, 0.81 and 0.55 at 50%, 75% and 95% cut-offs,

whereas those for the next best performing methods were 0.4,

0.31 and 0.29 (Alien_Hunter), 0.37, 0.27 and 0.25 (SeqWord),

and 0.29, 0.27 and 0.23 (IslandViewer), respectively (electronic

supplementary material, table S5). Similarly, JS-CB outper-

formed other methods when the methods were evaluated

through a different assessment criterion as discussed

above (for both Case A and Case B, electronic supplementary

material, table S6). The next best performing methods were

IslandViewer, Alien_Hunter and SeqWord. We were unable to

run PredictBias and GIHunter on artificial genomes; GIHunter

returned errors for both artificial and the five reference strains

(GI predictions for the reference strains were earlier retrieved

from GIHunter’s pre-computed database), and PredictBias

could not recognize the GenBank annotation files of the artificial

genomes). It should be noted that methods such as JS-CB have

previously been assessed on simulated genomes of varying

complexity [12]. GIs predicted by each method are shown in

figure 1, and the performance of the methods on each

representative MRSA genome and their ability to identify

SCCmec are summarized below.

3.1.1. Staphylococcus aureus strain MW2

Both Alien_Hunter and PredictBias predicted over 50 islands

(including both pathogenicity islands and other GIs). By con-

trast, IslandViewer and GIHunter predicted only five islands

in this strain. SCCmec was identified by JS-CB, IslandViewer,

Alien_Hunter and PredictBias, but was completely missed by

Zisland Explorer and SeqWord. JS-CB predicted 13 GIs iden-

tifying seven out of the eight known islands (SCCmecA, nSaa,

nSa3, wSa2, nSab, wSa3 and nSa4). Of the seven known

islands that overlapped with JS-CB predictions, six could be

identified at the 50% cut-off, whereas at this cut-off GIHunter

could identify only two known islands, and IslandViewer

and Alien_Hunter could detect only one known island.

Although PredictBias has the highest recall in identifying

the known islands, JS-CB outperformed other methods in

terms of precision as is also obvious from the comparison

of coordinates of known and predicted islands (table 1 and

figure 1).

3.1.2. Staphylococcus aureus strain USA300_FPR3757

The number of predicted islands varied between three

(Zisland Explorer) and 50 (PredictBias). SCCmec was ident-

ified by JS-CB, Zisland Explorer, GIHunter and PredictBias

at the 50% cut-off. JS-CB predicted 15 islands, overlapping

with eight of the nine known islands (SCCmec, ACME,

nSaa, SaPI-5, wSa2, nSab, wSa3 and nSa4). At the 50% overlap

cut-off, JS-CB was most successful, identifying seven of the

nine known GIs. PredictBias and GIHunter were the next

best, each identifying five of the nine known GIs.
3.1.3. Staphylococcus aureus strain COL

Of the seven known islands, JS-CB’s predictions overlapped

with six (SCCmec, nSaa, nSab, nSa4 (remnant), wCOL,

nSa1); however, only four (SCCmec, nSa4, wCOL, nSa1) had

over 50% overlap with the predictions. JS-CB predicted an

additional 11 GIs in this strain. SCCmec island was also ident-

ified by PredictBias and SeqWord. At the 50% overlap cut-off,

PredictBias had higher recall than JS-CB but at the cost of

many false positives; Zisland Explorer and MGSIP failed to

identify any known islands at this cut-off.
3.1.4. Staphylococcus aureus strain Mu50

JS-CB could identify six of the eight known GIs in Staphylo-
coccus aureus strain Mu50, with five overlapping the

respective predicted GIs by over 50%. SCCmec was identified

by JS-CB and PredictBias at the 50% cut-off. At the 50% cut-

off, Alien_Hunter and MGSIP failed to identify any known

GIs in this strain.
3.1.5. Staphylococcus aureus strain N315

Of the six known islands in this strain, JS-CB identified four

islands at the 50% cut-off. SCCmec was identified by JS-CB,

IslandViewer, GIHunter, Alien_Hunter and PredictBias. Zis-

land Explorer was able to detect only one of the known

islands. Alien_Hunter could not identify any GI at the 50%

cut-off. MGSIP failed to localize any of the known islands.

Our analysis shows that JS-CB has the highest recall for

Mu50 and N315 strains at all cut-offs. PredictBias has highest

recall for USA300, MW2 and COL (table 2). JS-CB outper-

forms all other GI prediction methods by approximately 5%

or more in mean recall at the 95% cut-offs, and is outper-

formed by PredictBias by approximately 11% in mean recall

at the lower cut-offs (table 3). PredictBias incurs false posi-

tives at much higher rate (mean precision ranges from

approximately 4% to 10%, table 3) than JS-CB (mean pre-

cision ranges from approximately 18% to 32%, table 3).

IslandViewer displays lower recall but higher precision in

comparison with JS-CB. GIHunter and Seqword have much

lower recall, with a mean recall of 34% and 21% respectively

at the cut-off of 50% (table 3); If an island lacks mobility genes

or genes required for integration, e.g. wSa1, nSaa, nSab, nSag,

GIHunter does not perform well in identifying such islands.

By contrast, JS-CB solely relies on codon usage bias for GI

identification, and is, therefore, able to identify islands

which might have lost their mobility or integration genes.

However, the long-term resident islands such as nSab,

which are likely to have their composition ameliorated to

that of the host, were difficult to detect using JS-CB. Com-

pared with JS-CB, PredictBias uses two criteria, namely

dinucleotide bias and codon usage bias to delineate GIs; aty-

picality in either is considered a GI signature. Thus, clusters

of ORFs showing atypical dinucleotide bias but not atypical

codon usage bias were also annotated as GIs. Furthermore,

JS-CB identifies atypical genes by assessing the similarities

of the genes against each other rather than assessing the dis-

parities against the genome background, thus identifying

even clusters of weakly atypical genes. This may explain

the better performance of JS-CB in comparison with the

other methods of GI detection. Notably, JS-CB achieves

overall highest accuracies by considering only codon
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usage bias as the discriminant criterion, outperforming the

methods that use multiple criteria, such as PredictBias that

uses pathogenicity-related gene information in addition to

dinucleotide bias and codon usage bias to identify islands.

3.2. Comparison of JS-CB and GEMINI
We further compared JS-CB with a just-published genome

mining tool, GEMINI, that performed well in delineating

GIs in the Liverpool epidemic strain of Pseudomonas aerugi-
nosa [21]. In application to the P. aeruginosa LESB58

genome, JS-CB identified wholly or partially all four verified

islands at its default parameter setting (table 4). By contrast,

GEMINI robustly identified three out of the four verified

islands (VI-1, VI-2, VI-4) but missed completely VI-3 [21].

This level of performance was achieved by JS-CB by predict-

ing 35.5% of the LESB58 genome as alien, while that by

GEMINI by predicting approximately 13% of the genome

as alien. When we readjusted the threshold of JS-CB (cluster-

ing threshold now set to 1E-28, see [12]) to obtain a

conservative estimate of alien DNAs, same as that observed

with GEMINI, JS-CB could still detect all four verified

islands, with approximately 54% of the total nucleotides

from the four verified islands classified as alien, while

GEMINI classified approximately 84% of the nucleotides of

the verified islands as alien. Both JS-CB and GEMINI

identified three of four verified islands at the 50% overlap

cut-off. The overall higher sensitivity of GEMINI could be

attributed to its segmentation approach that enables detection

of large islands with high precision; VI-4 is a large GI with

101 genes, approximately 98% of this island was detected

by GEMINI, while JS-CB could detect only approximately

44%. By contrast, the application of GEMINI to MRSA gen-

omes revealed its inability to localize the SCCmec island in

N315, Mu50 and COL strains. GEMINI could identify only

approximately 500 nucleotides of the SCCmec island for

USA300 and MW2 at its default parameter setting. GEMINI

predicted approximately 7% of the genome as alien for the

five MRSA strains (table 4). When we readjusted the algor-

ithm parameters for GEMINI (segmentation threshold and

two-step clustering thresholds now set to 1E-11, 1E-13 and

1E-4 respectively; the default thresholds were earlier set

based on P. aeruginosa genome analysis, see [21]), so that

GEMINI predicts a similar proportion of a MRSA genome

as alien as does JS-CB (approx. 27%). GEMINI was still not

able to robustly identify the SCCmec island in all strains;

only approximately 23%, approximately 50%, approximately

76%, approximately 92% and approximately 26% of SCCmec
were identified in USA300, MW2, N315, Mu50 and COL strains

respectively, while these numbers were approximately 99%,

approximately 99%, 100%, approximately 99%, approximately

51% for JS-CB (tables 1 and 4).

SCCmec is characterized by several ORFs with atypical

codon usage and GC content at the third codon position

[4,28,29]. As JS-CB clusters genes based on codon usage

bias, it is better able to exploit codon-specific information and

therefore was able to localize SCCmec in the MRSA genomes.

By contrast, GEMINI identifies GIs independent of codon

information, by examining higher order oligonucleotide com-

positional biases, and therefore it may miss islands with

atypical codon usage biases that are not reflected as atypical-

ity in oligonucleotide composition. GEMINI, by virtue of

its ability to analyse multiple genes simultaneously through
a recursive segmentation process, localizes large islands

more efficiently, which may appear fragmented in the predic-

tions by bottom-up, gene-by-gene analysis methods such as

JS-CB that may misclassify weakly atypical genes or compo-

sitionally ambiguous genes. Our results from the application

of JS-CB and GEMINI to MRSA genomes reveal the comp-

lementary strengths of these two methods, which provides

a basis for further future research towards the integration of

complementary methods for attaining still better accuracy

in GI prediction. We also noted that the performance of the

GI prediction methods varies genomewise, reinforcing the

need to develop methodologies for exploiting the comple-

mentary strengths of the prediction methods. An integrative

approach to GI detection holds the promise to raise the

accuracy bar across all genomes.
3.3. Identification of novel islands in HA- and CA-MRSA
strains

JS-CB was able to identify many of the known islands,

namely SCCmec, ACME, nSaa, SaPI-5, wSa1, wSa2, wSa3,

nSa4, nSa1, nSa3 and wCOL, in the five strains we studied

(table 1). However, the compositionally similar islands,

such as SCCmec and ACME, and wSa3 and nSa4 (electronic

supplementary material, table S1), were identified as one

combined island instead of two separate islands (table 1).

JS-CB missed nSab island in N315 and MU50, and nSag

island in all five strains we examined. This may likely be a

consequence of the amelioration process [30], whereby an

island loses its inherent evolutionary signatures, after being

subjected to the mutational processes of the host genome,

over the passage of time since its acquisition. As JS-CB

performed comparably or outperformed the current

methods in localizing known GIs in five MRSA strains, we

applied JS-CB to completely sequenced 22 HA-MRSA and

nine CA-MRSA genomes to decipher yet unknown GIs in

the MRSA strains. We discuss below our analysis of the JS-

CB’s novel predictions for the five reference strains, followed

by the analysis of novel predictions for the remaining 26

strains.

JS-CB’s ability to more robustly identify the known

islands in the MRSA strains motivated us to further explore

and analyse the novel islands predicted by it. In the five

strains that, we examined, JS-CB-identified 42 novel islands

(electronic supplementary material, table S7). Several pre-

vious studies have enlisted features that typify GIs, e.g.

atypical composition, presence of tRNA genes, direct repeats,

integrase and transposase genes, and genes that may be

imparting novel traits such as those encoding virulence or

antibiotic resistance or other novel metabolic traits. To but-

tress our novel GI predictions, we collected further

evidence in support of our predictions (electronic supplemen-

tary material, table S7). Of these, seven islands had either

transposase or integrase genes, including N315_GI1,

N315_GI7, Mu50_GI1 and Mu50_GI6 (figure 2a–d, electronic

supplementary material, table S7). Fifteen islands harboured

genes encoding virulence or antibiotic resistance factors (elec-

tronic supplementary material, table S7), including

N315_GI3, N315_GI10 and US300_GI7 (figure 3a–c). Several

islands included repeat regions, e.g. N315_GI1, N315_GI7,

Mu50_GI1 and Mu50_GI6. While Mu50_GI1 has a repeat

region in an internal site preceding a transposase gene,
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(a)

(b)

(c)

(d)

Mu50_GI1

N315_GI7

N315_GI1

Mu50_GI6

Figure 2. Gene maps of: (a) N315_GI1: transposase gene imparting mobility to the island has been highlighted in red; (b) N315_GI7: the presence of a transposase
gene in the GI is indicated; (c) Mu50_GI1: the presence of a gene encoding transposase of insertion element is indicated; and (d ) Mu50_GI6: the presence of a
transposase gene and genes involved in metabolism in the GI is indicated.
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MU50_GI6 has repeat regions upstream of the island and at

an internal site prior to a transposase gene. Likewise,

N315_GI1 has a repeat region at an internal site before the

transposase genes, while N315_GI7 has a repeat region just

upstream of the island. The presence of transposase genes

and repeat regions that are often associated with GI inte-

gration provides further evidence in support of our novel

predictions. Some novel GIs predicted by JS-CB also har-

boured genes encoding virulence factors (electronic

supplementary material, table S7). N315_GI3 (figure 3a) car-

ries genes encoding fibrinogen-binding protein and

coagulase, which were previously reported to be involved
in virulence [31,32]; this island also harbours a transposase

gene. While fibrinogen-binding protein helps S. aureus to

colonize its hosts by facilitating attachment to a surface

[33], coagulase, also a surface determinant involved in adher-

ence, helps in converting fibrinogen to fibrin [34]. Both

N315_GI10 (figure 3b) and USA300_GI7 (figure 3c) have

genes encoding intracellular adhesion proteins. These pro-

teins are critical in biofilm formation and adhering to

surfaces [35]. USA300_GI7 also harboured an integrase/

recombinase gene.

In addition to these five reference strains, we analysed

novel predictions by JS-CB for the remaining 26 strains. The



(a)

(b)

(c)

N315_GI10

N315_GI3

USA300_GI7

Figure 3. Gene map of: (a) N315_GI3: this GI possesses multiple copies of transposase genes (shown in red) and genes required for adhesion (i.e. virulence genes),
namely fibrinogen-binding protein A and coagulase encoding genes (shown in blue); (b) N315_GI10: the presence of intercellular adhesin genes in the GI with a
role in virulence is indicated; and (c) USA300_GI7: virulence genes (shown in blue) and a gene required for GI integration (shown in red) are indicated in this GI,
suggesting a potential role in pathogenicity.
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full list of putative GIs localized by JS-CB in the completely

sequenced HA-MRSA and CA-MRSA genomes is given in

the electronic supplementary material, table S8. JS-CB

predicted 338 GIs across these 26 genomes. As little infor-

mation is available about the locations of GIs including

SCCmec in these strains, we first attempted to identify

SCCmec in the 26 genomes. If a predicted island harboured

SCCmec marker genes, namely the mecA and ccr genes, we

annotated the predicted island as SCCmec. JS-CB could

localize SCCmec in all 26 strains. The approximate location

and size of these islands are conserved across all 26

strains, similar to the conservation observed in the five refer-

ence strains. If the marker genes were not found in the

predicted islands, the sequence alignment program BLAST

[36] was used to characterize the islands. Pairwise nucleotide

sequence alignment of the predicted islands in 26 strains and

the known islands (as in the five reference strains, table 1)

was performed using BLAST. nSaa, nSab, wSa1, wSa2 and

wSa3 were identified based on significantly high similarity

of the predicted islands with these islands (query coverage

greater than 60% and nucleotide identity greater than 80%).

We thus identified 57 known islands across the 26 strains

(electronic supplementary material, table S8). Among the
remaining 281 predicted islands, 111 contain GI-specific

features such as transposase, integrase or phage genes.

Among these, 62 islands harbour either virulence or anti-

biotic resistance genes or both. To identify GIs shared

among strains, we grouped the 281 GIs based on sequence

similarity using CD-HIT [37]. GIs with high similarity

(nucleotide identity greater than 80%) were grouped in a clus-

ter. This yielded in total 22 clusters, each with five or more

GIs (electronic supplementary material, table S8).

Several previous studies have reported GIs in MRSA

strains [3,4,6,13,14], which were identified based on typi-

cal features of GIs, such as mobility genes, transposase,

flanking tRNA genes which act as insertion sites, phage

genes, insertion sequence elements and direct repeats flank-

ing the GIs. However, with this approach we may miss GIs

that lack these features yet have been mobilized through

HGT or several long-time resident islands that may have

lost some or all of such features. A comprehensive analysis

of genomes for the presence of GIs thus requires a combi-

nation of complementary methods, including phylogenetic

and composition-based or parametric methods. The novel

MRSA GIs lacking typical GI-associated features therefore

require further investigation.
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3.4. Mosaicism of SSCmec
The SCCmec island carries a mec gene complex and chromo-

some recombinase (ccr) gene complex, and is integrated at

integration site sequence (ISS) for SCC [38]. The mec gene

complex includes mecA gene, its regulatory genes and inser-

tion sequences [38]. The ccr gene complex includes ccrA,

ccB, ccrC genes, and the flanking regions [38]. Depending

on the allotype of the genes in the mec and ccr gene com-

plexes, eight types of SCCmec islands have been identified.

Of the five reference strains analysed, genes within the

SCCmec island were segregated into two or more clusters

by JS-CB (electronic supplementary material, table S9),

revealing the mosaic structure of SCCmec and the likely dis-

tinct ancestries of the disparate segments composing the

SCCmec island. Interestingly, methicillin resistance gene

mecA and recombinase gene ccr (ccrA, ccrB, ccrC) were

assigned to different clusters for N315 and Mu50 strains.

GIs structurally similar to SCCmec, carrying ccr genes but

lacking mecA gene have been reported previously in Staphylo-
coccus hominis [39]; these islands were also shown to

spontaneously excise [39], thus suggesting that the SCCmec
like islands lacking mecA gene might have originated earlier

and later acquired the mecA gene to form a functional

SCCmec island. An alternative explanation for the absence

of mecA genes in SCCmec like islands could be the loss of

mecA genes from the original SCCmec islands, resulting in

the SCCmec like islands lacking mecA in some Staphylococcus
genomes. Mosaic islands were not observed in the strains

USA300 and COL, but a bipartite SCCmec island was

observed in MW2. Of the remaining 26 strains, mosaic

SCCmec was observed in 14 strains. Six of these 14 strains

with mosaic SCCmec had mecA and ccr genes assigned to

different clusters. A tripartite structure of SCCmec was

observed in eight strains, and bipartite, quadripartite and
pentapartite structures were observed in two strains each in

the remaining 26 strains (electronic supplementary material,

table S9). The differential mosaicism of SCCmec as observed

in our study of course needs further investigation.
4. Conclusion
A gene clustering-based method, JS-CB, outperformed sev-

eral GI prediction methods in identifying GIs in MRSA

genomes. Evidence gathered from the literature and sequence

comparison supported many of the novel GIs predicted by JS-

CB. The putative functional role of the GIs identified by JS-CB

indicates the proclivity of S. aureus to acquire foreign DNAs

to become multidrug-resistant or metabolically distinct

organisms. JS-CB further revealed the mosaic structures of

many GIs including the SCCmec island, which calls for

further studies to understand their significance and plausi-

ble role in the adaptation of S. aureus to the changing

environment. Our study also revealed the complementary

strengths of the methods, e.g. JS-CB and GEMINI, which

can be exploited in future studies to further improve GI

identification in bacterial genomes.
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