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An efficient formal total synthesis of (+)-clavukerin A was accomplished via a gold-catalyzed cycloisomerization of a 3-methoxy-

1,6-enyne 5 as the key strategy followed by Rh-catalyzed stereoselective hydrogenation of the cycloheptenone 4.

Findings

Clavukerin A is a member of marine trinorguaiane sesquiter-
pene natural products. It was first isolated in 1983, by the group
of Kitawara, from the Okinawa soft coral Clavularia koellikeri.
The structure of clavukerin A was established by CD spectra
and X-ray diffraction [1]. The first total synthesis of clavukerin
A was reported by Asaoka in 1991, which was followed by
several other racemic and enantioselective syntheses [2-14].
Herein, we report a short formal total synthesis of racemic
clavukerin A employing the gold(I)-catalyzed cycloisomeriza-
tion of a 3-methoxy-1,6-enyne as the key strategy, which was
recently developed by us [15]. This reaction provides cyclohep-
tane frameworks in a unique manner and illustrates the utility of

the gold-catalyzed reactions [16-23].

From a retrosynthetic point of view, we envisioned two
different approaches to the key enone intermediate 1 [3] to
clavukerin A, starting from the cycloheptenone 4 (Scheme 1).
In the first approach, enone 1 could be prepared by the sequen-
tial cyclization and the chemo- and stereoselective hydrogena-
tion from cycloheptenone 4 (path A). Alternatively, enone 1
could be accessed by the hydrogenation of 4 and the subse-
quent cyclization (path B). The cycloheptenone 4 could then be
synthesized from the enyne substrate 5 by gold(I)-catalyzed
cycloisomerization.

The synthesis of enyne substrate 5 commenced with the alkyl-

ation of methyl acetoacetate with the known bromide 6 [24] to
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Scheme 1: Retrosynthetic analysis.

provide compound 7 in 55% yield (Scheme 2). Propargylation
of 7 followed by the decarbomethoxylation with LiCI [25] gave
the ketone 8 in 51% yield (over two steps). Addition of the
vinyl group to this ketone gave the alkynol 9 in 90% yield as an
inseparable 3:1 mixture of diastereomers. The diastereomeric
ratio was determined by integration of the 'H NMR spectrum of
the crude reaction product. Subsequent methylation gave the
1,6-enyne S in 88% yield.

We then investigated the gold-catalyzed cycloisomerization of
enyne 5 using the optimized conditions from our previous
study [15]. The use of the pre-generated complex
Au[P(Cg¢F5)3]"SbFs~ (2 mol %) provided the relatively unstable
enol ether 12, which was then immediately treated with aqueous
silica gel to give the ketone 4 in 93% yield over two steps. For-
mation of 12 was unambiguously confirmed by the analysis of
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'H NMR data of the crude reaction mixture. From a mecha-
nistic viewpoint, the reaction presumably proceeds via the
initial heterocyclization intermediate 10 and the subsequently
rearranged intermediate 11 (Scheme 3). Notably, when the
gold(I)-catalyzed reaction was carried out on a multi-mmol
scale, there was no decrease in the yield at the same catalyst
loading.

With ketone 4 in hand, the final stage in the formal synthesis of
clavukerin A was explored. We first investigated the cycliza-
tion—hydrogenation strategy (path A in Scheme 4). Deprotec-
tion of 4 and the aldol condensation of the resulting diketone
under basic conditions proceeded smoothly to give the enone 2
in good yield. However, extensive attempts at the chemoselec-
tive hydrogenation of the trisubstituted olefin 2 gave only com-
pound 1 with poor selectivity. For example, various metal (Pd
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75% yield
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Scheme 2: Preparation of compound 5.
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Scheme 3: Synthesis of the cycloheptenone 4.
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Scheme 4: Completion of the formal synthesis of clavukerin A.

or Rh)-catalyzed hydrogenations resulted in a mixture of 1 and
3. This problem was also noted in another work on the syn-
thesis of clavukerin A [13].

Thus, we decided to investigate the alternative strategy that
involved sequential hydrogenation—cyclization of 4. Initial
efforts using various Pd catalysts or Wilkinson catalyst again
showed poor stereoselectivity for the hydrogenation. However,
with a Rh/alumina catalyst the selectivity was significantly im-
proved and afforded the cis-ketone 3 in 94% yield with ~13:1
selectivity. The structure of 3 was unambiguously confirmed by
comparison of the 'H and 13C data with those in the literature
[3]. Because the ketone 3 was previously transformed into the
enone 1 [3], synthesis of 3 represents the completion of the

formal synthesis of clavukerin A.

In summary, a formal synthesis of racemic clavukerin A was
accomplished via the gold(I)-catalyzed cycloisomerization of a
3-methoxy-1,6-enyne as the key strategy and stereoselective
Rh-catalyzed hydrogenation. Notably, the gold(I)-catalyzed
reaction was compatible with the acid-sensitive functional
group. Further application of the gold(I)-catalyzed cycloisomer-
ization reaction of 3-methoxy-1,6-enynes to the enantioselect-
ive synthesis of more structurally complex cycloheptane natural
products is in progress, and will be reported in due course.
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