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1 |  INTRODUCTION

In genome‐wide association (GWAS) studies (e.g., Manolio 
et al., 2009), an objective is to find statistical connections be-
tween molecular markers and genomic regions affecting some 
complex trait. A linear regression model including marker gen-
otype codes as covariates is used, and the simplest version fits 
a single marker regression via ordinary least squares (OLS).

If aggregation or clustering due to familial or molecular 
similarity exists in the data, a better estimation approach is 
generalized least squares (GLS), as it poses a more general 
covariance structure than OLS (Aulchenko, de Köning, & 
Haley, 2007; Gianola, Fariello, Naya, & Schön, 2016; 
Hoffman, 2013; Kang et al., 2008; Listgarten et al., 2012; 
Yang, Zaitlen, Goddard, Visscher, & Price, 2014). One such 
structure, for example, results from declaring all or a subset of 
marker effects as random variables, for example, assuming 
that �j ∼N

(

0,�2
�

)

,j = 1,2, … , p, with all markers in the set 

taken as independently and identically distributed random 
variables. A random effects specification induces marker‐
based measures of similarity among individuals called molec-
ular “relationship” or “kinship” matrices (G). The marker (s) 
evaluated for association is (are) treated as a fixed effect (s), 
and a test of nullity of effects on a trait is based on well‐estab-
lished procedures.

Should the marker (s) being tested be included or excluded 
when building G? A priori, if a marker is declared random it 
could not be fixed and vice versa. Including the contribution 
of a marker to G while declaring it as fixed constitutes a form 
of “double counting.” When the number of markers (p) is 
very large and a single marker regression is used, the impact 
on G of including or removing the marker is tiny. Listgarten 
et al. (2012) suggest that markers being tested should be re-
moved from G, followed by a concomitant re‐estimation of 
necessary variance components at each instance of testing. 
This approach is computationally taxing, especially when p 
is huge, as it is the case with DNA sequence data. In many 
situations, it may be reasonable to assume that variance com-
ponent estimates are affected only mildly by including or ex-
cluding the tested marker in G. For many complex traits in 
animal and plant breeding, each of the numerous markers in a 
chip has a small effect on both mean and variance of the data 
distribution.

Gianola et al. (2016) showed that the best linear unbi-
ased estimator (BLUE, also GLS) of the fixed effect of a 
marker (or sets of markers) examined in GWAS is invari-
ant with respect to whether or not the marker (s) tested 
for association is (are) included in the construction of G,  
provided that variance components are assumed constant. 

Received: 22 October 2018 | Revised: 3 December 2018 | Accepted: 6 December 2018

DOI: 10.1111/jbg.12378

O R I G I N A L  A R T I C L E

A certain invariance property of BLUE in a whole‐genome 
regression context

Daniel Gianola1,2  | Rohan L. Fernando2  | Dorian J. Garrick3

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original 
work is properly cited.
© 2018 The Authors. Journal of Animal Breeding and Genetics published by Blackwell Verlag GmbH.

1Department of Animal Science, Iowa State 
University, Ames, Iowa
2Departments of Animal Sciences and Dairy 
Science, University of Wisconsin‐Madison, 
Madison, Wisconsin
3AL Rae Centre of Genetics and 
Breeding, Massey University, Palmerston 
North, New Zealand

Correspondence
Daniel Gianola, Department of Animal 
Sciences, University of Wisconsin, 
Madison, WI.
Email: gianola@ansci.wisc.edu

Abstract
A curious result from mixed linear models applied to genome‐wide association stud-
ies was expanded. In particular, a model in which one or more markers are consid-
ered as fixed but are allowed to contribute to the covariance structure by treating such 
markers as random as well was examined. The best linear unbiased estimator of 
marker effects is invariant with respect to whether those markers are employed in 
constructing a genomic relationship matrix or are ignored, provided marker effects 
are uncorrelated with those not being tested. Also, the implications of regarding 
some marker effects as fixed when, in fact, these possess a non‐trivial covariance 
structure with those declared as random were examined.

www.wileyonlinelibrary.com/journal/jbg
mailto:
https://orcid.org/0000-0001-8217-2348
https://orcid.org/0000-0001-5821-099X
http://creativecommons.org/licenses/by/4.0/
mailto:gianola@ansci.wisc.edu


114 |   GIANOLA et AL.

This short communication expands on the preceding, as 
follows. First, we provide an expression that gives the vari-
ance–covariance matrix of the BLUE of each of the marker 
effects being tested using a simple adjustment. Second, it 
is shown that the best linear unbiased predictor (BLUP) of 
effects treated both as fixed and random is exactly zero, 
provided that no covariance exists between such effects 
and other marker effects treated as random in the model. 
Third, it is shown that if such covariance is not null, the 
fixed effects of a set of markers affect phenotypes through 
direct and indirect paths, and over and above the impact of 
linkage disequilibrium captured by columns of the matrix 
of genotype codes.

2 |  MODEL

The linear regression model (assume that nuisance location 
effects have been eliminated somehow) used in GWAS is 
often posed as

where y is an n × 1 vector of phenotypes, X is an n × p matrix 
of marker genotype codes, � is a vector of p allelic substi-
tution effects and e ∼ N

(

0,I�2
e

)

 is a residual vector where 
�2

e
 is the variance of the distribution of model residuals. Let 

X = [X1 X2 ] , where X1 is n × p1 (without loss of general-
ity assume that X1 has full column rank), and X2 is n × p2 
where p2 may be much larger than n.

An equivalent representation of 1 is

and consider two alternative covariance structures for the 
phenotypes. The first structure results from treating �1 as a 
fixed vector and assuming �2 ∼ N

(

0,I�2
�

)

:

The GLS estimate of the fixed effect �1 under V2 is

The second covariance structure stems from treating �1 as 
random, with the � ∼ N

(

0,I�2
�

)

 assumption assigned to all 

marker effects, but then �1 is estimated as if it were fixed. 
Here, the phenotypic covariance matrix is

with the GLS estimator of �, the fixed effect corresponding 
to �1 being

Note that V2 = V12−X1X�

1
�2
�
. Arrays X2X�

2
�2
�
= S2 and 

X1X�

1
�2
�
+X2X�

2
�2
�
= S12 can be referred to as “similarity” 

matrices, as in Listgarten et al. (2012).

3 |  INVARIANCE PROPERTIES

3.1 | Best linear unbiased estimation
Gianola et al. (2016) showed that 4 and 6 are identical; the 
proof is presented in more detail here. To show this, we em-
ploy a model representation where the effects of one or more 
loci with genotypes in X1 are regarded as possessing both 
fixed and random effects:

where � are the fixed effects of markers in X1, with 
�1 ∼ N

(

0,I�2
�

)

 and �2 ∼ N

(

0,I�2
�

)

, as before.

Using the Sherman–Morrison–Woodbury identity (Seber 
& Lee, 2003),

Using 8, X�

1
V−1

2
 can be written as:

Now, using 9,

and X�V−1

2
y is

From 10 and 11, the GLS estimator �̂1 given in 4 is formed 
as

where �̂, also given in 6, is the GLS estimator resulting 
from 7.

The preceding shows that the estimator obtained under 
covariance structure V2 is identical to the estimator resulting 
from structure V12. The practical implication is that the same 

(1)y=X�+e

(2)y=X1�1+X2�2+e,

(3)V2 =X2X�

2
�2

�
+I�2

e
.

(4)�̂1 = (X�

1
V−1

2
X1)−1X�

1
V−1

2
y,

(5)V12 =X1X�

1
�2

�
+X2X�

2
�2

�
+I�2

e
,

(6)�̂= (X�

1
V−1

12
X1)−1X�

1
V−1

12
y.

(7)y=X1

(

�+�1

)

+X2�2+e=X1�+X1�1+X2�2+e,

(8)V−1

2
=V−1

12
+�2

�
V−1

12
X1(I−�2

�
X�

1
V−1

12
X1)−1X�

1
V−1

12
.

(9)

X�

1
V−1

2
=X�

1
V−1

12
+�2

�
X�

1
V−1

12
X1(I−�2

�
X�

1
V−1

12
X1)−1X�

1
V−1

12

= [I+�2
�
X�

1
V−1

12
X1(I−�2

�
X�

1
V−1

12
X1)−1]X�

1
V−1

12

= [I−�2
�
X�

1
V−1

12
X1+�2

�
X�

1
V−1

12
X1](I−�2

�
X�

1
V−1

12
X1)−1X�

1
V−1

12

= (I−�2
�
X�

1
V−1

12
X1)−1X�

1
V−1

12
.

(10)X�

1
V−1

2
X1 = (I−�2

�
X�

1
V−1

12
X1)−1X�

1
V−1

12
X1,

(11)X�V−1

2
y= (I−�2

�
X�

1
V−1

12
X1)−1X�

1
V−1

12
y.

(12)

�̂1= (X�

1
V−1

2
X1)−1X�

1
V−1

2
y

=

[

(I−𝜎2
𝛽
X�

1
V−1

12
X1)−1X�

1
V−1

12
X1

]

−1

(I−𝜎2
𝛽
X�

1
V−1

12
X1)−1X�

1
V−1

12
y

= (X�

1
V−1

12
X1)−1X�

1
V−1

12
y

= ��,
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similarity matrix, S12, can be used for conducting either sin-
gle marker or sets of markers GWAS studies using linear re-
gression models, provided that �2

�
 is assumed known and kept 

constant (as well as the residual variance) throughout.
Note that the sampling variance–covariance matrix of the 

estimates of the fixed effects must be taken under V2, that is, 
Var ̂(

�1

)

= (X�

1
V−1

2
X1)−1. Since X1 typically has one or a few 

columns in GWAS, advantage can be taken of 8 for computing 
Var ̂�1), as V−1

12
 is obtained only once, whereas V−1

2
 changes with 

the set of markers included in X1 and, therefore, in X2. Further, 
note from 9 that

so V−1

12
 can be used throughout. The preceding representa-

tion illustrates the over‐statement of uncertainty and “loss of 
power” incurred by use of 

(

X�

1
V−1

12
X1

)
−1 instead of 13. Yang 

et al. (2014) present a related discussion and recommend that 
markers in close linkage disequilibrium with the target mark-
er(s) be removed when building G. Their approach requires 
re‐estimation of variance components at every instance of 
testing. Our results do not apply under such strategy, as the 
variance–covariance structure would be expected to change 
over markers tested (Listgarten et al., 2012; Yang et al., 2014). 
An alternative could be to include the marker tested and some 
neighbours in close linkage disequilibrium in X1, provided 
that p1 < n and that no rank deficiency accrues, and then use 
all markers when building G. A disadvantage of the alternative 
is the potentially strong collinearity in the set of markers in X1, 
producing unstable estimates with large sampling variances.

A caveat must be mentioned. In a genomic best linear 
unbiased prediction setting (e.g., Legarra, 2016; Van Raden, 
2008), a similarity matrix under V12 can be constructed as

where �2
g
= p�2

�
 is the “genomic variance” captured by all 

available markers; G12 is known as the genomic relationship 
matrix (Van Raden, 2008). Accordingly,

where �2
g�
= p2�

2
�
 is the genomic variance marked by the vari-

ants included in X2. Clearly, two maximum‐likelihood analy-
ses of variance components, one with a set markers fixed and 
removed from the covariance structure, and the other one 
with all markers contributing to similarity, will produce dif-
ferent estimates and interpretations of genomic variance.

Estimates of �2
�
 must always be interpreted with great 

care. In a standard random effects model, the variance 
among effects of levels of a random factor represents a pop-
ulation parameter, with maximum‐likelihood estimates of 
variance components interpreted accordingly. For example, 
if the random factor is the effect of a paternal half‐sib fam-
ily (a situation known as a “sire” model in animal breed-
ing), the variance among sires, �2

s
, say, has the same 

interpretation irrespective of whether the number of fami-
lies is 10 or 10,000. However, in a marker‐based model 
with n< p, the meaning and estimates of �2

�
 depend cru-

cially on p, as the variance component acts then as a regu-
larization parameter. In the n< p situation, it is typically 
the case that estimates of �2

�
 decrease as p increases, and 

the rate of decrease in �2
�
 is critical for interpretation of 

estimates of marker effects when p → ∞ (Gianola, 2013; 
León‐Novelo & Casella, 2012).

3.2 | Best linear unbiased prediction
The best linear unbiased predictor of �1 in model 7 is

with �̂ = �̂1 calculated as in 4 or 6. The previous result fol-
lows because X1V−1

12
X1�̂ = X1V−1

12
y are the GLS equations, 

implying that X�

1
V−1

12

(

y−X1�̂
)

= 0.
Henderson's mixed model equations (MME) can be em-

ployed to verify result 16. For model 7 the MME are as 
follows:

where � =

�2
e

�2
�

. Subtracting the equations for �̂ from the equa-

tions for �⃗�1 gives (I𝜆) �⃗�1 = 0, implying that �⃗�1 = 0, which ver-
ifies 16. Thus, solutions for �̂ and �⃗�2 from 17 are identical to 
those from the MME corresponding to a model where X1 is ex-
cluded from forming a similarity matrix. Such model is

The result �⃗�1 = 0 is easy to verify empirically (a reviewer 
pointed out that it is probably well known by scientists working 
in genetic evaluation computations) but, to our knowledge, has 
not been reported in the literature. A “mechanistic” explanation 
for 16 is that BLUP of random effects with null means depends 
on y through error contrasts that have a null mean vector. So, if a 
locus is included in a model as a fixed effect, the error contrasts 
used for BLUP do not possess any information on the effects at 
such locus. Thus, if any factor (e.g., a marker locus) is included 

(13)

Var ̂(

�1

)

= (X�

1
V−1

2
X1)−1

=

[

(I−𝜎2
𝛽
X�

1
V−1

12
X1)−1X�

1
V−1

12
X1

]

−1

=

(

X�

1
V−1

12
X1

)
−1
−I𝜎2

𝛽
,

(14)S12=
1

p

(

X1X�

1
+X2X�

2

)

p�2
�

=G12�
2
g
,

(15)S2=
1

p2

(

X2X�

2

)

p2�
2
�

=G2�
2
g�

,

(16)
�⃗�1=Cov

(

�1,y�
)

V−1

12

(

y−X1��
)

=𝜎2
𝛽
X�

1
V−1

12

(

y−X1��
)

=0

(17)
⎡

⎢

⎢

⎣

X�

1
X1 X�

1
X1 X�

1
X2

X�

1
X1 X�

1
X1+I𝜆 X�

1
X2

X�

2
X1 X�

2
X1 X�

2
X2+I𝜆

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

�̂
�⃗�1

�⃗�2

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

X�

1
y

X�

1
y

X�

12
y

⎤

⎥

⎥

⎦

,

(18)y=X1�+X2�2+e.
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in the model both as fixed and random, the BLUP of the random 
effect will depend entirely on the “prior” (Bayesian view), and, 
as shown above, it will be identically equal to 0.

3.3 | Interdependent sets of marker effects
All elements of � were assumed independent and identically 
distributed, but the result holds for more complex depend-
ency structures. Markers included in X1 may be in linkage 
disequilibrium with those in X2, and the phenomenon is en-
coded by correlations between columns of X = [X1 X2 ]. 
Further, models have been suggested that include dependen-
cies among marker effects (e.g., Gianola, Pérez‐Enciso, & 
Toro, 2003).

Suppose that � ∼ (0,B) and e ∼ (0,R) are independently 
distributed, that �1 ∼ (0,B11), �2 ∼ (0,B22) where B11 and 
B22 are non‐singular and assume Cov

(

�1,��

2

)

= 0. Here, the 
MME equations for the situation in which �1 is treated as both 
fixed and random take the form

Subtracting the �̂ from the �⃗�1 equations gives B11

⃗
�1 = 0, 

implying that the MME equations reduce to

which provide GLS(�) and BLUP(�2) under a model 
where �1 is fixed and �2 is random. Note that, within block, 
marker effects can be correlated or uncorrelated.

Allow now for a covariance structure between the two 
sets of random effects, and let Cov

(

�1,��

2

)

= B12. The mixed 
model equations where �1 is treated as both fixed and random 
become

Subtracting the � from the �1 equations produces 
�⃗�1 = −B12 �⃗�2, which is not null unless B12

= 0, contradicting 
the model assumption. Hence, when Cov

(

�1,�′

2

)

≠0 use of 
V2 or V12 produces distinct sets of generalized least‐squares 
solutions, so the result for the independence case does not 
hold here.

If two random vectors are not independent, fixing the 
value of one such vector (Listgarten et al., 2012, call this 
“conditioning”) must alter the distribution of the other vector. 
Under multivariate normality, one can write �2 = B21�1+�,  

where � ∼ N
(

0,B2.1 = B22−B21B−1

11
B12

)

. The model under 
fixed �1 becomes

where X∗

1
= X1+X2B21. Under this specification, the 

phenotypic covariance matrix is V∗

2
= X2B2.1X�

2
+ R and 

GLS(�1) should be computed as

Likewise,

will predict the effect of markers in X2 on phenotypes, 
conditionally on the effects of markers in X1, that is, in the 
absence of genetic variation at loci in marker set 1.

Note in 22 that X∗

1
�1 = X1�1+X2B21�1 so that the 

“total signal” on the trait contributed by �1 is decomposed 
into a “direct” component X1�1 and an indirect contribution 
X2B21�1 mediated through the covariance between �1 and �2 
(B12). This sort of phenomenon is well known in structural 
equation modelling and path analysis (Wright, 1921).

4 |  CONCLUSION

When conducting a GWAS with either a single marker or a 
set of markers treated as fixed, it is unnecessary to recon-
struct the phenotypic variance–covariance matrix at each 
specific instance of testing, provided that a BLUP model is 
used and that marker effects in sets regarded as both fixed 
and random are independent across sets but not necessar-
ily within sets. BLUE is invariant with respect to whether 
the genotypes of markers being tested in GWAS are em-
ployed in the construction of a genetic similarity matrix. 
Likewise, BLUP of the effects of the sets treated as random 
is invariant as well. However, the variance–covariance ma-
trix of the GLS estimator and the prediction error‐covari-
ance matrix must be taken with respect to the assumptions 
made in the model employed for analysis. If marker effects 
in the two subsets of genotypes have a between‐set non‐
trivial dependency structure, the GWAS model requires 
modification.

The results presented in this paper, shown first by 
Gianola et al. (2016) just for GLS (BLUE), are seemingly 
unrecognized in the GWAS literature (e.g., Chen, Steibel, & 
Tempelman, 2017). An additional and probably useful result 
reported here is that represented by Equation 13: the vari-
ance of the estimate of any of the marker effects tested in 

(19)

⎡

⎢

⎢

⎣

X�

1
R−1X1 X�

1
R−1X1 X�

1
R−1X2

X�

1
R−1X1 X�

1
R−1X1+B11 X�

1
R−1X2

X�

2
R−1X1 X�

2
R−1X1 X�

2
R−1X2+B22

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

�̂
�⃗�1

�⃗�2

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

X�

1
R−1y

X�

1
R−1y

X�

2
R−1y

⎤

⎥

⎥

⎦

(20)

[

X�

1
R−1X1 X�

1
R−1X2

X�

2
R−1X1 X�

2
R−1X2+B22

] [

�̂
�⃗�2

]

=

[

X�

1
R−1y

X�

2
R−1y

]

,

(21)

⎡

⎢

⎢

⎣

X�

1
R−1X1 X�

1
R−1X1 X�

1
R−1X2

X�

1
R−1X1 X�

1
R−1X1+B11 X�

1
R−1X2+B12

X�

2
R−1X1 X�

2
R−1X1+B21 X�

2
R−1X2+B22

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

�̂
�⃗�1

�⃗�2

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

X�

1
R−1y

X�

1
R−1y

X�

2
R−1y

⎤

⎥

⎥

⎦

.

(22)
y=X1�1+X2

(

B21�1+�
)

+e

=

(

X1+X2B21

)

�1+X2�+e

=X∗

1
�1+X2�+e,

(23)̃̃
�1 =

(

X∗�

1
V∗−1

2
X∗

1

)
−1

X∗�

1
V∗−1

2
y.

(24)
BLUP (�) =Cov

(

�,y�
)

V∗−1

2

(

y−X∗

1
�̃
)

=

(

B22−B21B−1

11
B12

)

X�

2
V∗−1

2

(

y−X∗

1
�̃
)

,



   | 117GIANOLA et AL.

GWAS can be obtained via a simple adjustment of the vari-
ance obtained with all markers entering into the  similarity 
matrix.
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