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Background: Posttransplant renal function is critically important for kidney transplant

recipients. Accurate prediction of graft function would greatly help in deciding acceptance

or discard of allocated kidneys.

Methods : Whole-slide images (WSIs) of H&E-stained donor kidney biopsies at × 200

magnification between January 2015 and December 2019 were collected. The clinical

characteristics of each donor and corresponding recipient were retrieved. Graft function

was indexed with a stable estimated glomerular filtration rate (eGFR) and reduced graft

function (RGF). We used convolutional neural network (CNN)-based models, such as

EfficientNet-B5, Inception-V3, and VGG19 for the prediction of these two outcomes.

Results: In total, 219 recipients with H&E-stained slides of the donor kidneys were

included for analysis [biopsies from standard criteria donor (SCD)/expanded criteria

donor (ECD) was 191/28]. The results showed distinct improvements in the prediction

performance of the deep learning algorithm plus the clinical characteristics model.

The EfficientNet-B5 plus clinical data model showed the lowest mean absolute error

(MAE) and root mean square error (RMSE). Compared with the clinical data model, the

area under the receiver operating characteristic (ROC) curve (AUC) of the clinical data

plus image model for eGFR classification increased from 0.69 to 0.83. In addition, the

predictive performance for RGF increased from 0.66 to 0.80. Gradient-weighted class

activation mappings (Grad-CAMs) showed that the models localized the areas of the

tubules and interstitium near the glomeruli, which were discriminative features for RGF.

Conclusion: Our results preliminarily show that deep learning for formalin-fixed

paraffin-embedded H&E-stained WSIs improves graft function prediction accuracy for

deceased-donor kidney transplant recipients.
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INTRODUCTION

Kidney transplantation remains the best option for patients with
end-stage renal disease (ESRD). However, due to a shortage of
organs, the use of marginal kidneys is rising (1), and as a result,
the incidence of complications is gradually increasing. Graft
function (estimated glomerular filtration rate [eGFR]) is one of
the most crucial risk factors for surgical complications and long-
term survival. It has been indicated that kidney function after
transplantation correlates strongly with graft long-term survival
(2–4). Graft function is the core cornerstone linked to long-term
survival and plays a crucial role in assessing transplant results
(5, 6). Posttransplantation graft function is determined by the
donor, procurement and preservation, recipient characteristics,
and postsurgical treatment, though there is currently no stable
model for predicting allograft functional outcomes. Pretransplant
graft discard is influenced by the experience of transplant
surgeons based on donor characteristics, with or without
biopsy evaluation, and assessment of the donor kidneys mainly
involves clinical scores and histological evaluation. In general,
clinical score evaluation began with standard criteria donor
(SCD)/expanded criteria donor (ECD) binary classification and
has evolved to the currently widely used kidney donor risk index
(KDRI). The discriminative power of such a clinical score is low
to moderate, and the use of KDRI in the United States leads to
a high discard rate of donated kidneys. Indeed, in our clinical
practice, low-KDRI kidneys do not always regenerate satisfactory
graft function, whereas many high-KDRI kidneys regenerate
very good renal function. Overall, the predictive performance of
using net clinical features for graft function outcome is relatively
poor (7), though the addition of histopathological features
may improve the predictive performance of graft outcome.
Pretransplant histological evaluation of the donor kidneys is
critically important for kidney quality evaluation, especially for
marginal kidneys. The histological score composites include the
glomerulus, tubule, interstitium, and vessels (mainly artery).
Nonetheless, the usefulness of such a score remains controversial
due to its low predictive power for transplant outcomes (8, 9).

Pretransplant biopsy by H&E staining is crudely evaluated
for acute kidney injury and glomerular sclerosis, depending
on the experience of the pathologist, and is variable.
Pathological evaluations of the donor kidneys from different
pathologists/nephrologists and from different levels of
pathologists disagree. For example, a previous study showed
good reproducibility regarding glomerulus number and sclerosis
percentage but very poor or fair intraclass correlation regarding
interstitial fibrosis, tubular atrophy, interstitial inflammation,
arteriolar thrombi, and arterial intimal fibrosis, especially for
slides from needle and frozen biopsies. The Banff Working
Group suggests that training of general pathologists to assess

Abbreviations: WSIs, Whole-slide images; CIE, clinical information extraction;

H&E, hematoxylin-eosin; PAS, periodic acid-Schiff; eGFR, estimated glomerular

filtration rate; CNN, convolutional neural network; MAE, mean absolute error;

RMSE, root mean square error; ROC, receiver operating characteristic; DGF,

delayed graft function; SGF, slow graft function; AI, artificial intelligence; COTRS,

China Organ Transplant Response System; ROIs, regions of interest; ECD,

expanded criteria donor; KDRI, Kidney Donor Risk Index.

donor biopsies using consistent criteria should be pursued, and
adoption of rapid formalin-fixation and paraffin-embedding
protocols may potentially reduce interference for frozen slides
(10). These recommendations might increase the reliability of
histopathological evaluation, and an automatic analytic machine
with deep learning algorithms may assume this role in analyzing
the donor biopsies.

The use of artificial intelligence (AI) is increasing explosively
in the medical field. Deep learning methods, such as
convolutional neural networks (CNNs), are very practical
for image and audio analysis (11). Inspired by these ideas, we
aimed to explore whether the combination of kidney biopsy
whole-slide images (WSIs) and clinical features can provide
more information for transplant outcome prediction.

MATERIALS AND METHODS

Study Population and Clinical Variable Data
Deceased-donor kidney recipients at the Third Affiliated
Hospital of Sun Yat-sen University, Guangzhou, China from
January 2015 to December 2019 were retrospectively reviewed. In
total, 243 donor kidney recipients underwent pretransplantation
biopsy. Demographic data for the recipients and donors were
collected from China Organ Transplant Response System
(COTRS) and the hospital information system (HIS). COTRS
is the sole legitimate official registry platform designated by the
National Health Commission of China for solid organ donation
from deceased-citizen donors, matching, and allocation. After
screening, 219 recipients were included in the final analysis.
The screening process is depicted in Figure 1. This study was
approved by the research ethics committee (IRB No. [2020]02-
243-01) and was compliant with the Declaration of Helsinki.
The clinical and research activities being reported are consistent
with the Principles of the Declaration of Istanbul as outlined
in the “Declaration of Istanbul on Organ Trafficking and
Transplant Tourism.”

Delayed graft function (DGF) was defined as requiring dialysis
within the first week after transplantation (12). Slow graft
function (SGF) was defined as serum creatinine at postoperative
day 7 (POD7) ≥ 2.5 mg/dl, and immediate graft function (IGF)
was defined as creatinine at POD7 < 2.5 mg/dl (13). Reduced
graft function (RGF) was a composite endpoint consisting
of DGF and SGF. The renal function of each recipient was
indexed with the eGFR and comprehensively evaluated based
on serum creatinine (or calculated eGFR) based on each follow-
up monitoring visit within the first year. In this study, we used
stable eGFR as the graft outcome. The eGFR of recipient was
calculated by the Chronic Kidney Disease-Epidemiology (CKD-
EPI) algorithm (14). Stable eGFR was defined as the approximate
median value where the monitoring results fluctuated within the
first year (3∼12 months). Stable eGFR was evaluated from the
best period that the graft function of recipient was reached by
two senior physicians and not the whole year of monitoring
results. Recipients who died during the perioperative period,
accepted donations from other organ procurement organizations
(OPOs), or were lost to follow-up were excluded. The case of
a recipient with a primary non-functional kidney was labeled
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FIGURE 1 | Patient recruitment diagram. In total, pretransplantation biopsy slides were available for 243 recipients. Twenty recipients were excluded because the

donors were from other organ procurement organizations (OPOs). Three recipients died during the perioperative period. One recipient was lost to follow-up. Finally, we

included 219 recipients with complete data for deep learning analysis.

FIGURE 2 | The overall workflow diagram of the model. H&E-stained whole-slide images (WSIs) are fed into the parallel pretrained Efficientnet-B5 model to extract

features automatically which can be combined with all clinical information encoded from clinical texts. Then, the combined features can be used to construct a

regression model to predict estimated glomerular filtration rate (eGFR) values and a classifier to predict reduced graft function (RGF), simultaneously.
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FIGURE 3 | (A) Biopsy tissue was scanned as a WSI under a × 20 objective lens, and the slide window with a 1,024 window width was used for tiling the WSI to

patches (square box). (B) The four patches with the largest proportion of pathological tissue in each WSI are framed in red. The field of view of each square patch is

1,024 × 1,024 pixels, corresponding to 235.52 × 235.52 µm2.

with the last eGFR before returning to dialysis. Additionally, we
arbitrarily divided stable graft function into binary categories
by a cutoff of 45 ml/min/1.73 m2 as sensitivity analysis.
Based on previous publications, the graft failure hazard rises
sharply over this point (2–4, 7, 15). The clinical characteristics
screened for the predictive model building included both
donor and recipient features. These features included recipient
age, sex, height, weight, transplant history, primary cause of
ESRD, diabetes, dialysis modality, dialysis vintage, positive panel
reaction antibody (PRA), human leukocyte antigen (HLA)
mismatch level, and donor characteristics of cold ischemia hours,
warm ischemia minutes, cause of death, death type, donated
kidney, donor sex, age, height, weight, terminal serum creatinine
level, and KDRI. Missing values in the HLA mismatch level were
deemed one category.

Biopsy Samples and Model Training
Pathological WSIs
We reviewed all H&E-stained (formalin-fixed paraffin-
embedded: FFPE) pretransplantation biopsy slides and scanned
and stored the WSIs at × 200 magnification with a resolution
of 0.23 µm/pixel using an automatic digital slide scanner
(Panoramic 250 FLASH, 3DHISTECH Ltd, Budapest, Hungary).
In total, 219 recipients with H&E-stained slides of the donor
kidneys were included in the final analysis. All biopsies were
procedurally performed using the 18-gauge needles during
donor kidney trimming (i.e., all samples were preimplantation

biopsies). Pathological scores (Remuzzi scores) were evaluated
by a single pathologist (Jing Liang).

Deep Learning and Transfer Learning
A CNN-based model was used to extract the features of the
H&E WSIs, such that important information could be obtained
for regression fitting. EfficientNets is a new baseline network
designed by neural architecture search and consists of a family
of models. From B0 to B7, the corresponding accuracy increases,
but the number of parameters also increases, which leads to a
decrease in training and deployment efficiency. The EfficientNet
B5 model was considered to be the most suitable base model
due to the trade-off between few parameters and sufficiently
high ImageNet Top-1 accuracy (Top-1 accuracy means that
the model with the highest probability of prediction must be
exactly the true classification). Correspondingly, Top-5 accuracy
indicates that any part of the model that yields the 5 highest
probability predictions should include the true classification. To
find the most suitable model for predicting stable eGFR and RGF,
the performances of EfficientNet-B5, Inception-V3 and VGG19
were compared, and EfficientNet-B5 was selected as the base
network due to its superior performance. Regions of interests
(ROIs) patches selected from H&E-stained renal biopsy tissues
were first sent into EfficientNet-B5 to extract high-dimensional
pathological image features, and the corresponding clinical
texts of patient preprocessed by one-hot coding conversion
and normalization were then synchronously input into a fully
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connected network (FCN) to extract the clinical information. The
whole process is illustrated in Figure 2.

To perform feature fusion, the extracted clinical information
(CIE), i.e., clinical data, was spliced with the penultimate layer
of the EfficientNet-B5 network; next, a new layer containing
only one neuron was added to regress the eGFR values, and
a parallel layer containing two neurons was added to classify
the RGF state. It should be noted that for regression tasks, the
neurons in the last layer do not use any activation function
such that the model can output unlimited prediction values.
This model, which includes clinical information and a CNN,
is called the EfficientNet-B5 + CIE model, where the CIE
model denotes the clinical information extraction model. After
obtaining the regression model, we classified the actual value
and predicted value according to cutoff values (eGFR of 45
ml/min/1.73 m2). With the help of the RGF classification
model and the indirect eGFR classification model, postoperative
recovery can be qualitatively evaluated. In addition, the
sample size of medical pathological images is relatively small
compared with the ImageNet dataset (http://www.image-net.
org/). To avoid overfitting, we used transfer learning to initialize
all parameters of the CNN model with ImageNet trained
parameters before training and then updated the parameters
via backpropagation during training. In conclusion, we used
both clinical data and histopathological images to build neural
network models to predict stable eGFR and RGF. We preset to
test six prediction models, such as a model based on clinical
data (CIE model), a model based on clinical data and the
histopathological Remuzzi score (CIE+PRS model), models
based on histopathological images (VGG19 model, Inception-
V3 model, and EfficientNet-B5 model), and a model based
on clinical data and histopathological images (EfficientNet-
B5+CIE model).

Implementation Details
We used Python 3.6 as the programming language and Keras
2.2 as the deep learning architecture. We trained and tested
our models using one Nvidia Tesla V100 GPU with 32 GB
memory with the help of NumPy, Matplotlib, and scikit-learn.
Cases with each H&E-stained WSI were randomly divided into a
training dataset, validation dataset, and independent test dataset
at a ratio of 3:1:1. First, we used the validation dataset to
choose hyperparameters, such as the number of epochs and
the learning rate. After the parameters were determined, the
validation data and training data were combined to form a new
training dataset for retraining the model, and the performance
of the model was evaluated using the independent test dataset
(as shown in Figure 1). Four patches with the largest proportion
of pathological tissue in each H&E-stained WSI were selected
as ROIs through OpenSlide 1.9 using a sliding window with
window width set as 1,024 pixels (as shown in Figure 3). A
total of 876 patches were obtained. Before inputting the models,
the resolution was adjusted to 256 pixels and normalized. Our
models adopted the Adam optimizer with a learning rate of 8e-4.
The best model was saved when the mean absolute error (MAE)
for the test dataset was the lowest in 500 epochs.

Model Performance Evaluation Metrics
For regression prediction tasks, theMAE, root mean square error
(RMSE), R-squared value, and explained variance score (EVS)
were calculated. The MAE is the mean value of the absolute
value of error between the real value and the predicted value. The
RMSE is the square of the difference between the real value and
the predicted value; the sum is averaged, and the square root is
obtained. The R-squared value and EVS represent the degree of
fitting, and the values range from 0 to 1. The higher the value is,
the better the fit is.

For classification prediction tasks, the confusion matrix and
receiver operating characteristic (ROC) curve were generated.
The confusionmatrix is used to visually evaluate the performance
of deep learning algorithms. The sensitivity, specificity, positive
predictive value, and negative predictive value can be calculated
by means of the confusion matrix. The ROC curve is depicted
by plotting the true positive rate (TPR, sensitivity) vs. the false-
positive rate (FPR, 1-specificity) at various threshold settings.
Accuracy is assessed by the area under the ROC curve (AUC).

Statistical Analysis
The demographics of the donors and recipients are presented as
frequencies for categorical variables and medians (interquartile
ranges [IQRs]) for continuous variables. Differences were
explored using the Wilcoxon rank-sum tests (skewed
distribution) or the t-test (normal distribution) for continuous
variables and Fisher’s exact tests for categorical variables. The
statistical analyses were performed using R 4.0.2 (R Foundation
for Statistical Computing, Vienna, Austria).

RESULTS

Population Characteristics
In total, 219 recipients underwent donor kidney biopsy, and
complete follow-up was included in the analysis. All recipients
were prescribed traditional triple immunosuppression regimens
(CNI+ MPA+ glucocorticoids). The features used for the
predictive model building are shown in Table 1. In this
population, the incidence of DGF and RGF was 25/219 (11.4%)
and 92/219 (42%), respectively. Due to the large imbalance in
DGF proportion, we did not set DGF as an analytical target
for deep learning and used RGF instead. The median stable
eGFR was 61.2 [47.1, 76.9] ml/min/1.73 m2 during follow-
up visits. Donor death category, donor cause of death KDRI,
terminal creatinine, warm ischemia minutes, cold ischemia
hours, recipient sex, weight, Remuzzi scores, and stable eGFR
were significantly different between the RGF groups. Compared
with RGF recipients, the IGF group had better stable eGFR, lower
body weight, a higher proportion of female recipients, lower
warm ischemia minutes and cold ischemia hours, lower donor
KDRI and terminal creatinine levels, and a higher proportion of
trauma donors and DBD donors. These results were consistent
with previous results. Figure 4 displays the serum creatinine level
(Figure 4A) and eGFR level (Figure 4B) of two recipient groups
at each time point during the first year follow-up. The trend curve
shows better graft function recovery in IGF recipients than in
RGF recipients.
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TABLE 1 | Distributions of the patient baseline characteristics.

Characters IGF (N = 127) RGF (N = 92) Total (N = 219) P-value

Stable eGFR 68.8 (55.4, 82.4) 47.4 (38.0, 62.1) 61.2 (47.1, 76.9) < 0.01

DGF < 0.01

Yes 0 25 25

No 127 67 194

Donor

Age 44 (34, 52) 44 (37, 51) 44 (35, 51.5) 0.44

Sex 0.62

Female 25 21 46

Male 102 71 173

Weight (kg) 60 (55, 70) 65 (55, 75) 64 (55, 71) 0.31

Height (cm) 167 (162, 172) 168 (160, 170) 168 (161, 172) 0.75

Donor death 0.006

DCD 73 70 143

DBD 54 22 76

Donor type 0.683

SCD 112 79 191

ECD 15 13 28

Cause of death < 0.01

CVD 50 59 109

Trauma 70 27 97

Other 7 6 13

KDRI 1.31 (1.09, 1.53) 1.50 (1.34, 1.71) 1.40 (1.21, 1.62) < 0.01

Terminal creatinine (µmol/L) 103 (70, 165) 187 (103, 301) 120 (76.5, 200) < 0.01

Kidney 0.49

Left 61 49 110

Right 66 43 109

Match and preservation

HLA mismatch level 0.31

Level 1 0 0 0

Level 2 2 1 3

Level 3 6 10 16

Level 4 86 62 148

Missing 33 19 52

PRA 0.53

Positive 13 12 25

Negative 114 80 194

CIT (h) 7.7 (6.7, 9.5) 8.9 (7.3, 10.9) 8.2 (6.9, 10.2) 0.01

WIT (min) 6 (0, 10) 10 (0, 11) 7 (0, 10) 0.02

Recipient

Age 40 (34, 49) 41.5 (33, 48) 40 (33.5, 48.5) 0.88

Sex 0.01

Female 45 17 62

Male 82 75 157

Weight (kg) 58 (52, 67.3) 60 (54.5, 70.3) 60 (53.5, 69.8) 0.05

Height (cm) 168 (162, 170) 168 (165, 171) 168 (163, 170) 0.07

Transplantation history 0.24

Yes 2 4 6

No 125 88 213

Cause of ESRD 0.32

Glomerulonephritis 107 74 181

DN 6 10 16

(Continued)
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TABLE 1 | Continued

Characters IGF (N = 127) RGF (N = 92) Total (N = 219) P-value

HTN 5 4 9

Others 9 4 13

Diabetes 0.68

Yes 15 13 28

No 112 79 191

Dialysis modality 0.11

HD 83 71 154

PD 28 16 44

No dialysis 16 5 21

Dialysis vintage 0.33

No dialysis 16 5 21

1∼6 months 34 24 58

7∼12 months 28 22 50

> 12 months 49 41 90

CNI 0.03

Tac 110 69 179

CsA 17 23 40

MPA 127 92 219 1.00

Glucocorticoids 127 92 219 1.00

Pathology (Remuzzi score)

Glomerular global sclerosis <0.01

0 67 41 108

1 50 27 77

2 10 20 30

3 0 4 4

Tubular atrophy <0.01

0 79 34 113

1 48 58 106

2 0 0 0

3 0 0 0

Interstitial fibrosis 0.06

0 103 64 167

1 24 27 51

2 0 1 1

3 0 0 0

Arterial and arteriolar narrowing 0.01

0 96 52 148

1 27 29 56

2 4 10 14

3 0 1 1

DGF, delayed graft function; DBD, donation after brain death; DCD, donation after circulatory death; CVD, cerebrovascular disease; CNS, central nervous system; KDRI, Kidney Donor

Risk Index (donor-only); HLA, human leukocyte antigen; PRA, panel reaction antibody; CIT, cold ischemia time; WIT, warm ischemia time; ESRD, end-stage renal disease; DN, diabetic

nephropathy; HTN, hypertensive nephropathy; HD, hemodialysis; PD, peritoneal dialysis. Tac, tacrolimus; CsA, cyclosporine A; MPA, mycophenolic acid. Missing HLA mismatch levels

usually occurred at emergent procurement, and donor HLA results were not registered in COTRS.

Differences between groups were evaluated using Mann–Whitney U-tests for continuous variables and Fisher’s exact tests for categorical variables. Bold values indicate the

statistical significance.

Prediction of Graft Function Recovery
Regression methods were employed to predict the stable
eGFR, and the concordance between the predicted value
and true label and the predictive accuracy are listed in
Table 2. The EfficientNet-B5+CIE model showed the best

predictive accordance and accuracy; it had the lowest MAE
(12.52) and RMSE (16.67) and the highest R2 (0.38) and
EVS (0.47). The regression curves for stable eGFR are
displayed in Figure 5A. When classifying stable eGFR into
dichotomies by the cutoff value of 45 ml/min/1.73 m2,
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FIGURE 4 | Recipient serum creatinine (A) and eGFR (B) over the first year follow up by immediate graft function (IGF)/RGF. The values of p between IGF and RGF

groups at each time point were adjusted by the Holm-Sidak method. Differences in pretransplant serum creatinine and eGFR are not significant, but are significantly

different at each time point (adjusted p < 0.01).

TABLE 2 | Prediction of postoperative stable graft function results.

Regression index Classification index

Target Models MAE RMSE R2 EVS AUC ACC PPV NPV Sens Spec F1

eGFR EfficientNet-B5 + CIE 12.52 16.67 0.38 0.47 0.83 0.86 0.78 0.94 0.96 0.70 0.83

EfficientNet-B5 (image) 14.68 19.32 0.31 0.41 0.73 0.74 0.71 0.78 0.85 0.61 0.73

CIE+PRS 14.97 20.55 0.27 0.36 0.71 0.71 0.69 0.74 0.82 0.59 0.71

CIE 15.07 21.37 0.25 0.35 0.69 0.70 0.68 0.72 0.81 0.57 0.69

Inception-V3 (image) 15.92 22.58 0.21 0.29 0.71 0.72 0.71 0.83 0.85 0.62 0.71

VGG19 (image) 18.42 28.18 0.12 0.16 0.64 0.65 0.61 0.73 0.79 0.53 0.65

RGF EfficientNet-B5 + CIE 0.80 0.76 0.74 0.77 0.66 0.83 0.75

EfficientNet-B5 (image) 0.71 0.74 0.77 0.72 0.61 0.81 0.70

CIE+PRS 0.70 0.68 0.58 0.74 0.56 0.76 0.68

CIE 0.66 0.66 0.62 0.68 0.55 0.77 0.64

Inception-V3 (image) 0.65 0.73 0.61 0.68 0.56 0.76 0.65

VGG19 (image) 0.59 0.61 0.56 0.66 0.45 0.75 0.57

CIE, clinical information extraction (clinical characteristics); PRS, pathological Remuzzi scores; MAE, mean absolute error; RMSE, root mean squared error; R2, R-squared; EVS, explained

variance score; AUC, area under the ROC curve; ACC, accuracy; PPV, positive predictive value; NPV, negative predictive value; Sens, sensitivity; Spec, specificity; F1, F1 score.

Classification of estimated glomerular filtration rate (eGFR) was divided from a cutoff value of 45 ml/min/1.73 m2. eGFR ≥ 45 ml/min/1.73 m2 was set as the target. Clinical information

extraction (CIE) included listed clinical features, including donor characteristics, match and preservation features, and recipient characteristics, which are given in Table 1.

the EfficientNet-B5+CIE model significantly improved
the predictive performance from an AUC of 0.69 by the
CIE model, 0.71 by the CIE+PRS model, and 0.73 by the
EfficientNet-B5 model to an AUC of 0.83 by the EfficientNet-
B5+CIE model (as shown in Figure 5B, Table 2). The
EfficientNet-B5+CIE model showed good predictive ability,
with a sensitivity of 0.96, a specificity of 0.70, a positive
predictive value of 0.78, and a negative predictive value
of 0.94.

For RGF prediction, the EfficientNet-B5+CIE model
had the best predictive performance. The pathological

image plus clinical characteristics model significantly
improved discrimination from an AUC of 0.66 by the
CIE model and 0.71 by the EfficientNet-B5 model to an
AUC of 0.80 by the EfficientNet-B5+CIE model (Figure 6,
Table 2).

Visualization
To determine from which areas the model extracts the most
information, we used gradient-weighted class activation
mappings (Grad-CAMs) to explain the results and display
them visually. Grad-CAM can translate the output class
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FIGURE 5 | (A) Estimated glomerular filtration rate regression curves. The predictive values of 49 patients are arranged in ascending order, and the corresponding

actual values (green dots) and their regression curves (blue lines) are indicated. Cutoff lines (red dashed lines) are also added to facilitate classification. (B) Receiver

operating characteristic curves (ROCs) and areas under the ROC curve (AUCs) were used to show the binary classification results of the different models to predict

whether eGFR is higher than 45 ml/min/1.73 m2.

FIGURE 6 | Receiver operating characteristic curves and AUCs show the binary classification results of different models for predicting RGF.

into a final convolutional layer to produce a low-resolution
map for a particular category (e.g., RGF) and highlight the
discriminative image regions used by models to identify
that category. With the help of Grad-CAM, we can judge
whether the classification basis of the model is consistent

with the clinical scenarios. Some examples of Grad-CAMs
are illustrated in Figure 7. The models localized the
areas of the tubules and interstitium near the glomeruli,
which were discriminative features for classifying RGF
from patches.
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FIGURE 7 | Patches and heatmap of RGF. (A) Patches from WSIs at × 200, resized to 256 pixels; (B) the corresponding gradient-weighted class activation mapping

(Grad-CAM) heatmap, with red areas showing discriminative features for classification.

DISCUSSION

Artificial intelligence (AI) is being widely used in medical
scenarios, and with tissue structure inception, there have
been some advances in AI studies on renal microstructure
histopathology in the last couple of years. For instance,
the nephrology and computer science communities have
been working on AI for kidney lesion segmentation (16–
21). Jayapandian et al. (17) indicated that periodic acid-
Schiff (PAS)-stained WSIs yielded the best concordance in
deep learning segmentation. Hermsen et al. (18) presented
a CNN for multiclass segmentation of PAS-stained kidney
samples, with which the glomeruli, tubules, and interstitium
were well-classified. Furthermore, Bouteldja et al. (19) used a
deep learning algorithm for multiclass segmentation of PAS-
stained kidney tissue WSIs; the trained CNN segmented six
major kidney structures, including the glomerular tuft and
glomerulus (such as, Bowman’s capsule, tubules, arteries, arterial
lumina, and veins), in various species and disease models.
Additionally, Uchino et al. (20) developed AI models for seven
major pathological lesions, global sclerosis, segmental sclerosis,
endocapillary proliferation, mesangial matrix accumulation,
mesangial cell proliferation, crescent, and basement membrane
structural changes, with the AI model for global sclerosis
showing excellent performance. Compared with experienced
pathologists, Ligabue et al. (21) achieved a fast speed and
comparable accuracy for kidney immunofluorescence reporting
by a CNN. The aforementioned deep learning algorithms
for glomerulus segmentation were based on PAS-stained or

immunohistochemically stained slides. However, properly frozen
biopsy slides are preferred in transplantation clinical practice.
The CNN-based model developed by Marsh et al. (22) achieved
good performance for glomerular sclerosis classification of frozen
wedge biopsies. These results indicate the potential application
of such models in donor kidney quality evaluation. Nevertheless,
there is no study to date on machine learning for the relationship
between donor biopsy images and transplant outcomes. Indeed,
our study is the first to explore the power of AI on biopsy images
and graft prognosis.

For this study, we used donor kidney biopsy WSIs as a feature
in addition to clinical characteristics for graft function prediction.
Compared with the net clinical characteristics model, the hybrid
model displayed the lowest RMSE and MAE. When dividing
eGFR by a cutoff of 45 ml/min/1.73 m2, the results showed
distinct improvement in the prediction performance of the deep
learning algorithms in addition to the clinical characteristics
model for independent internal test data. Additionally, the
addition of biopsy WSIs improved the prediction accuracy of
RGF, and the AUC increased from 0.66 to 0.80. Overall, donor
kidney biopsy WSIs are a useful predictor for graft function
recovery. As graft and recipient long-term survival is impacted
by posttransplant monitoring and treatment, graft function,
complications, dnDSA, chronic rejection, it is difficult to predict
long-term survival based on pretransplant donor and recipient
parameters. Montero et al. (6) summarized previous prediction
models for graft survival, reporting low prediction power in
models based on pretransplant features. In general, pretransplant
donor scores, such as the deceased donor score (DDS), donor
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risk score (DRS), SCD/ECD, and KDRI/KDPI, have limited
predictive performance for graft survival. The discriminative
ability (C-index) is approximately 0.6 (23, 24). However,
adding posttransplant factors, such as eGFR, proteinuria, acute
rejection, and allograft histological parameters, to prediction
models significantly increases prediction accuracy (6), which
indicates the importance of posttransplant management.
Although posttransplant-based models have achieved excellent
predictive performance, they are not suitable for pretransplant
assessment and decision making. Among posttransplant factors,
eGFR plays a critical role in graft survival and recipient quality
of life. Functional or well-regenerated kidneys free recipients
from dialysis, and a well-regernerated kidney congenitally
determines the subsequent incidence of complications as well
as the life span of the graft. Many studies have proven that
well-regenerated renal function decreases the risk of long-term
graft loss (2, 3, 15). Thus, renal function is deemed as a surrogate
endpoint. In this study, we treated RGF and graft function
as outcomes of early graft recovery. However, the time point
that is suitable for eGFR assessment varies in previous studies
(2, 3, 15). During the first 3∼6 months, eGFR is not stable
because of the need for antibiotics for infection prophylaxis,
high-dose immunosuppression agents, and intensive rejection or
infection occurrence. After 6 months, these events decrease, and
eGFR gradually stabilizes. Most studies have used 1-year renal
function as an indicator (2, 15) and even eGFR at 3 months (3).
In this study, we employed a median value of a best period from
each monitored eGFR during 3∼12 months instead of eGFR
at a certain time point. This was independently evaluated, and
any obtrusive values with definite causes, such as rejection or
infection were excluded.

Among previous DGF prediction models, Irish’s DGF
nomogram is widely accepted, but the dimensions of the model
are complex; its predictive performance is moderate, with a
C-index of 0.704 (25). Using bivariate cartography of DGF as
an early graft function indicator is arbitrary. In addition, the
decreased velocity of serum creatinine plays a critical role in
non-DGF recipients. Non-DGF can be divided into SGF and
IGF, and among numerous definitions for SGF and IGF, that
using serum creatinine at postoperative day 7 (POD7) has the
strongest correlation with 12-month graft eGFR (13). Thus, we
adopted this definition in this study. Because the incidence of
DGF was low and the sample size was small, machine learning
with such an imbalanced dataset was hindered. Therefore, we
merged the DGF and SGF groups into an RGF group as a
surrogate endpoint, as based on a previous study (26). Our
results showed a significant improvement in the predictive
performance of RGF using the independent internal validation
set. This result should be interpreted with caution because our
sample size was relatively small, and we did not apply external
validation. A multicenter cohort with a large sample size is
needed for confirmation. Additionally, we performed heatmap
analysis called gradient-weighted class activation mappings
(Grad-CAMs) to explore on which feature the machine learning
is focused. The results showed that Grad-CAMs focused on
the tubules and interstitium near the glomeruli, which were
discriminative features for RGF.

For graft function prediction, there is currently no stable
predictive algorithm for graft eGFR after transplantation in
deceased-donor recipients. The Nyberg score (DDS) is a 0∼39
scoring system based on feature correlation with 6-month
serum creatinine clearance (27). DDS includes donor and HLA
matching characteristics, such as donor age, terminal creatinine
clearance (by the Cockcroft-Gault equation from age, sex, weight,
and terminal serum creatinine), donor hypertension, cause of
death, and HLA mismatch for donor quality assessment. Rhu
et al. (28) developed a linear model for the prediction of
recipient creatinine levels in living-donor transplantation. This
linear model incorporates characteristics, such as donor age,
donor height, donor serum creatinine, graft weight, recipient
sex, recipient height, and recipient weight, showing an R2 of
0.708, an RMSE of 0.161, and an intraclass correlation coefficient
(ICC) of 0.83. In addition, the model achieved good prediction
performance in the external validation cohort. In another study,
Lasserre et al. (7) utilized machine learning approaches to predict
transplant graft function outcomes (eGFR after 1 year) via classic
clinical characteristics. The Gaussian support vector machine
with recursive feature elimination is best for predictions, with
a correlation coefficient of 0.48. When defining transplantation
failure with eGFR<45 ml/min, the AUC was 0.726. Our model
using simple clinical features had a similar AUC of 0.69. Sexton
and colleagues tested the discrimination of KDRI/KDPI for
eGFR in the Ireland population, and according to the results,
KDRI/KDPI was significantly associated with eGFR over 5 years
but only accounted for 21% of eGFR variability over time (24).
Overall, the predictive performance of using net clinical features
is relatively poor. In this study, a distinct improvement in eGFR
classification performance was obtained by using deep learning
algorithms for pretransplant biopsy images combined with the
clinical characteristics model, with the AUC increasing from
0.69 to 0.83. When using biopsy images alone, the AUC of
deep learning reached 0.73 and surpassed that of the clinical
feature model. Although exact prediction (perfect fitting) of graft
eGFR is difficult to achieve for deceased-donor recipients, good
classification of eGFR can be accurate.

Some limitations exist in this study. First, we used FFPE
H&E-stained WSIs, which differ from frozen H&E-stained
biopsy in terms of slide quality and staining effect. Traditional
FFPE H&E staining preserves morphology with few artifacts
but also requires a long processing time. In our center, at
least 12 h were needed to complete the whole FFPE H&E-
stained slide preparation, and it is not suitable for the emergent
evaluation of donor kidneys due to time constraints. Fast
paraffin blocks can be prepared within several hours and
is an alternative. Second, this was a retrospective study,
and selection bias was inevitable. Pretransplantation biopsy
usually occurs in expanded donation or procedural biopsy.
Third, ground-truth label imbalance had a negative impact
on the predictive model. The number of recipients with
eGFR < 45 ml/min/1.73 m2 was much lower than the
number for the eGFR≥ 45 ml/min/1.73 m2 group. Thus, the
model favored the prediction of eGFR ≥ 45 ml/min/1.73 m2.
Additionally, we labeled only the glomeruli and did not clarify
the microstructures of the WSIs in terms of the glomeruli,

Frontiers in Medicine | www.frontiersin.org 11 January 2022 | Volume 8 | Article 676461

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Luo et al. Deep Learning Predicts Graft Function

tubules, and interstitium, which would probably provide more
detailed information and improve prediction accuracy. Due to
the short follow-up times, we did not perform a long-term
survival analysis.

Despite the aforementioned limitations, our results
preliminarily show that the addition of deep learning for
FFPE H&E-stained WSIs improves the accuracy of graft
function prediction in deceased-donor kidney transplant
recipients. However, a multicenter prospective study
based on frozen biopsy or fast paraffin H&E-stained WSIs
incorporating detailed microstructure recognition is needed
for validation.
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