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Abstract: Neurodegenerative diseases, including Alzheimer’s (AD) and Parkinson’s diseases (PD),
are complex heterogeneous diseases with highly variable patient responses to treatment. Due to
the growing evidence for ageing-related clinical and pathological commonalities between AD and
PD, these diseases have recently been studied in tandem. In this study, we analysed transcriptomic
data from AD and PD patients, and stratified these patients into three subclasses with distinct gene
expression and metabolic profiles. Through integrating transcriptomic data with a genome-scale
metabolic model and validating our findings by network exploration and co-analysis using a zebrafish
ageing model, we identified retinoids as a key ageing-related feature in all subclasses of AD and PD.
We also demonstrated that the dysregulation of androgen metabolism by three different independent
mechanisms is a source of heterogeneity in AD and PD. Taken together, our work highlights the
need for stratification of AD/PD patients and development of personalised and precision medicine
approaches based on the detailed characterisation of these subclasses.

Keywords: neurodegeneration; Alzheimer’s; Parkinson’s; ageing; systems biology

1. Introduction

Neurodegenerative diseases, including Alzheimer’s (AD) and Parkinson’s diseases
(PD), cause years of a healthy life to be lost. Much previous AD and PD research has
focused on the causative neurotoxicity agents, namely, amyloid β and α-synuclein, respec-
tively. The current front-line therapies for AD and PD are cholinesterase inhibition and
dopamine repletion, respectively, which are considered gold standards. Unfortunately,
these therapies are not capable of reversing neurodegeneration [1,2], thus necessitating
potentially lifelong dependence on the drug and risking drug-associated complications.
Moreover, AD and PD are complex multifactorial diseases with heterogeneous underlying
molecular mechanisms involved in their progression [3–5]. This variability can explain
the differences in patient response to other treatments such as oestrogen replacement
therapy [6,7] and statin treatment [8,9]. Hence, we observed that there are distinct disease
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classes affecting specific cellular processes. Therefore, there is a need for the development
of personalised treatment regimens.

In this study, we propose a holistic view of the mechanisms underlying the devel-
opment of AD and PD rather than focusing on amyloid β and α-synuclein [10]. To date,
complex diseases including liver disorders and certain cancers have been well studied
through the use of metabolic modelling. This enabled the integration of multiple omics
data for stratification of patients, discovery of diagnostic markers, identification of drug
targets, and proposing of personalised or class-specific treatment strategies [11–14]. A
similar approach may be applied for AD and PD since there is already a wealth of data
from AD and PD patients from post-mortem brain tissues and blood transcriptomics.

AD and PD share multiple clinical and pathological similarities, including comor-
bidities [15,16], inverse associations with cancer [17,18], and ageing as a risk factor [19,20].
One type of ageing is telomeric ageing, which is associated with the loss of telomeres,
protein/nucleic acid structures that protect chromosome ends from degradation [21]. The
enzyme telomerase is necessary for the maintenance of telomeres. In adults, telomerase
activity is mostly limited to progenitor tissues such as in the ovaries, testes, and bone
marrow. Loss of telomerase activity leads to telomere shortening, loss of sequences due to
end-replication, and eventual degradation of sequences within coding regions, leading to
telomeric ageing. Considering AD and PD as products of ageing, we can use an ageing
model organism to study its effects on the brain. In our study, we used zebrafish (Danio
rerio) as a model organism since it has been used extensively used to study vertebrate
ageing [22]. For example, a zebrafish ageing model can harbour a nonsense mutation in the
tert gene, which encodes the catalytic subunit of telomerase, and exhibit faster-than-normal
ageing [23,24].

In our study, we first analysed post-mortem brain gene expression data and protein–
protein interaction data from the Genotype-Tissue Expression (GTEx) database [25], Func-
tional Annotation of the Mammalian Genome 5 (FANTOM5) database [26–29], Human
Reference Protein Interactome (HuRI) database [30], and Human Protein Atlas (HPA)
(http://www.proteinatlas.org, accessed on 9 March 2021) [31] for characterization of nor-
mal brain tissue (Figure 1A). Secondly, we analysed transcriptomic data from the Religious
Orders Study and Rush Memory Aging Project (ROSMAP) [32–34] with published expres-
sion data from anterior cingulate cortices and dorsolateral prefrontal cortices of PD and
Lewy body dementia patients, hereafter referred to as the Rajkumar dataset [35], and from
putamina, substantiae nigrae, and prefrontal cortices from patients with PD, hereafter
referred to as the Zhang/Zheng dataset [36,37]. On these data, we conducted differen-
tial gene expression and functional analysis, and then constructed biological networks
to further explore coordinated patterns of gene expression. Next, we performed global
metabolic analyses using genome-scale metabolic modelling. Alongside these analyses,
we also leveraged zebrafish tert mutants to test the hypothesis that the identified changes
may be associated with telomeric ageing. Finally, on the basis of our integrative systems
analysis, we defined three distinct disease subclasses within AD and PD and identified
retinoids as a common feature of all three subclasses, being likely to be perturbed through
ageing. We revealed subclass-specific perturbations at three separate processes in the an-
drogen biosynthesis and metabolism pathway, namely, oestradiol metabolism, cholesterol
biosynthesis, and testosterone metabolism.

http://www.proteinatlas.org
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Figure 1. Overview and exploratory data analysis. (A) Workflow for the analysis of human AD and
PD samples. (B) AD and PD samples were clustered into k clusters without supervision on the basis of
normalised expression counts. Results are shown for k = 3 and 1000 bootstrap replicates. Colour bars
indicate cluster identity for each sample. For 2 ≤ k ≤ 7, refer to Figure S1. (C) Normalised expression data
from AD, PD, and control samples were projected onto 2-D space using t-distributed stochastic neighbour
embedding (t-SNE). Points are coloured according to cluster assignment by unsupervised clustering. For
further data visualisation, refer to Figure S2.
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2. Materials and Methods
2.1. Data Acquisition and Processing

Gene expression values of protein-coding genes from the ROSMAP dataset were
determined using kallisto (version 0.46.1, Pachter Lab, Berkeley, CA, USA) [38] by aligning
raw RNA sequencing reads to the Homo sapiens genome in Ensembl release 96 [39]. Raw
single-cell RNA sequencing reads from ROSMAP were converted to counts in Cell Ranger
(version 4.0, 10x Genomics, Pleasanton, CA, USA, https://support.10xgenomics.com/
single-cell-gene-expression/software/pipelines/latest/installation; accessed on 24 July
2020), and aligned to the Cell Ranger Homo sapiens reference transcriptome version 2020-
A. Single-cell expression values were compiled into pseudo-bulk expression profiles for
each sample.

Expression values of protein-coding genes from brain samples of the ROSMAP
dataset [32–34], GTEx database version 8 [25], FANTOM5 database [26–28] via Regu-
latory Circuits Network Compendium 1.0 [29], HPA database [31], Rajkumar dataset [35],
and Zhang/Zheng dataset [36,37] were then combined. Genes from GTEx and FANTOM5
brain samples were filtered such that only genes whose products are known to partici-
pate in a protein–protein interaction described in the HuRI database [30] were included.
Expression values were scaled and TMM normalised per sample, Pareto scaled per gene,
and batch effects removed with the removeBatchEffect function from the limma (version
3.42.0, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia) [40] R
package. After quality control and normalisation, a total of 64,794 genes and 2055 samples
resulted. As the data also included samples from patients with neurological conditions
other than AD or PD, we then removed those samples and finally accepted 1572 samples
corresponding to AD, PD, or control for further analysis.

Projections onto 2-D space by PCA, t-SNE [41], and UMAP [42] methods were gen-
erated on data after missing value imputation with data diffusion [43]. t-SNE projections
were generated with perplexity 20 and 1000 iterations. All other parameters were kept
default. PCA and UMAP projections were generated using all default parameters.

2.2. Transcriptome Analysis

Using normalised, imputed expression values, AD and PD samples were then ar-
ranged into clusters without supervision using ConsensusClusterPlus (version 1.50.0,
University of North Carolina at Chapel Hill, Chapel Hill, NC, USA) [44] with maxK = 20
and rep = 1000. All other parameters were kept default. Clustering by k = 3 clusters was
selected for downstream analysis. A fourth cluster containing only control samples was
artificially added to the analysis.

For differential gene expression analysis, normalised, non-imputed counts were used.
Genes were removed if expression values were missing in 40% or more of samples or
were zero in all samples. Differential expression was then performed using DESeq2
(version 1.26.0, European Molecular Biology Laboratory, Heidelberg, Germany) [45] with
uniform size factors and all other parameters set to default. Genes with a Benjamini–
Hochberg adjusted p-value at or below a cut-off of 1 × 10−10 were determined significantly
differentially expressed genes.

Gene set enrichment analysis was performed using piano (version 2.2.0, Chalmers
University of Technology, Göteborg, Sweden) [46] using all default parameters. GO term
lists were obtained from Ensembl Biomart (https://www.ensembl.org/biomart/martview,
accessed on 9 March 2021) and were used as gene set collections. Enrichment of GO terms
was determined by analysing GO terms of genes differentially expressed genes detected by
DESeq2 as well as the parents of those GO terms. GO terms with an adjusted p-value at
or below 0.05 for distinct-directional and/or mixed-directional methods were determined
statistically significant.

https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/installation
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/installation
https://www.ensembl.org/biomart/martview
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2.3. Metabolic Analysis

For each cluster, consensus gene expression values were determined by taking the
arithmetic mean of normalised expression counts across all samples within each cluster.

A reference GEM was created by modifying the gene associations of all reactions
within the adipocyte-specific GEM iAdipocytes1850 [47] to match those within the generic
human GEM HMR3 [48]. The resulting GEM was designated iBrain2845. Cluster-specific
GEMs were reconstructed using the RAVEN Toolbox (version 2.0, Chalmers University
of Technology, Göteborg, Sweden) [49] tINIT algorithm [50,51], with iBrain2845 as the
reference GEM.

FBA was conducted on each cluster-specific GEM using the solveLP function from
the RAVEN Toolbox with previously reported constraints [52] and defining ATP synthesis
(iBrain2845: HMR_6916) as the objective function. All constraints were applied with
the exception of the following reaction IDs, which were excluded: EX_ac[e] (iBrain2845:
HMR_9086) and EX_etoh[e] (iBrain2845: HMR_9099).

Reporter metabolite analysis was conducted using the reporterMetabolites function [53]
from the RAVEN Toolbox, using iBrain2845 as the reference model.

2.4. Network Analysis

To generate gene networks, we took normalised, non-imputed expression values
from AD and PD samples. Control samples and samples from blood were excluded.
One network was generated each for AD and PD. For the AD network, all male samples
were included, and 171 female samples were chosen at random and included. For the
PD network, all samples were included. Genes with any missing values were dropped.
Genes with the 15% lowest expression or 15% lowest variance were disregarded from
further analysis. Spearman correlations were calculated for each pair of genes, and the
top 1% of significant correlations were used to generate gene co-expression networks.
Random Erdős–Rényi models were created for the AD and PD networks, with the same
numbers of nodes and edges to act as null networks, and compared against their re-
spective networks in terms of centrality distributions. Community analyses were per-
formed through the Leiden algorithm [54] by optimising CPMVertexPartition, after a
resolution scan of 10,000 points between 10−3 and 10. The scan showed global maxima
at resolutions = 0.077526 and 0.089074 for AD and PD networks, respectively, which were
used for optimisation. Enrichment analysis was performed on modules with >30 nodes
using enrichr (https://maayanlab.cloud/Enrichr, accessed on 5 March 2021) [55,56] using
GO Biological Process, KEGG, and Online Mendelian Inheritance in Man libraries and was
explored using Revigo (http://revigo.irb.hr, accessed on 5 March 2021) [57].

2.5. Zebrafish Data Acquisition and Analysis

The tert mutant zebrafish line (terthu3430) was obtained from Miguel Godhino Fer-
reira [24]. Fish maintenance, RNA isolation, processing, and sequencing were conducted
as described previously [58].

From n = 5 wild-type (tert+/+), n = 5 heterozygous mutant (tert+/−), and n = 3 homozy-
gous mutant (tert−/−), expression values were determined from RNA sequencing reads
using kallisto by aligning to the Danio rerio genome in Ensembl release 96 [39]. Expres-
sion values were generated for each extracted tissue as well as ‘psuedo–whole animal’,
containing combined values across all tissues.

A reference zebrafish GEM was manually curated by modifying the existing Ze-
braGEM2 model and was designated ZebraGEM2.1.

Differential expression analysis, gene set enrichment analysis, GEM reconstruction,
FBA, and reporter metabolite analysis were conducted on tert−/− and tert+/− animals
against a tert+/+ reference using DESeq2, piano, and RAVEN Toolbox 2.0 with default pa-
rameters. Reporter metabolite analysis was conducted with ZebraGEM2.1 as the
reference GEM.

https://maayanlab.cloud/Enrichr
http://revigo.irb.hr
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FBA was attempted as described for the human GEMs with the exception that the
following metabolic constraints were excluded: r1391, HMR_0482 (ZebraGEM2.1: G3PDm),
EX_ile_L[e] (ZebraGEM2.1: EX_ile_e), EX_val_L[e] (ZebraGEM2.1: EX_val_e), EX_lys_L[e]
(ZebraGEM2.1: EX_lys_e), EX_phe_L[e] (ZebraGEM2.1: EX_phe_e), GLCt1r, EX_thr_L[e]
(ZebraGEM2.1: EX_thr_e), EX_met_L[e] (ZebraGEM2.1: EX_met__L_e), EX_arg_L[e] (Ze-
braGEM2.1: EX_arg_e), EX_his_L[e] (ZebraGEM2.1: EX_his__L_e), EX_leu_L[e] (ZebraGEM2.1:
EX_leu_e), and EX_o2[e] (ZebraGEM2.1: EX_o2_e). The objective function was defined as
ATP synthesis (ZebraGEM2.1: ATPS4m). FBA results for zebrafish are not presented.

2.6. Data and Code Accessibility

All original computer code, models, and author-curated data files have been released
under a Creative Commons Attribution ShareAlike 4.0 International Licence (https://
creativecommons.org/licenses/by-sa/4.0/; accessed on 29 March 2021) and are freely
available for download from <https://github.com/SimonLammmm/ad-pd-retinoid>;
accessed on 29 March 2021.

Zebrafish tert mutant sequencing data have been deposited in the NCBI Gene Expres-
sion Omnibus (GEO) and are accessible through GEO Series accession numbers GSE102426,
GSE102429, GSE102431, and GSE102434.

2.7. Ethics Statement

Zebrafish were housed in the fish facility of the Leibniz Institute on Aging—Fritz
Lipmann Institute (FLI) under standard conditions and a 14 h light and 10 h dark cycle. All
animal procedures were performed in accordance with the German animal welfare guide-
lines and approved by the Landesamt für Verbraucherschutz Thüringen (TLV), Germany.

3. Results
3.1. Stratification of Patients Revealed Three Distinct Disease Classes

We retrieved gene expression and protein–protein interaction data from GTEx, FAN-
TOM5, HuRI, HPA, and ROSMAP databases and integrated these data with the published
datasets by Rajkumar and Zhang/Zheng. After performing quality control and normalisa-
tion (as outlined in the Materials and Methods), we included a total of 629 AD samples,
54 PD samples, and 889 control samples in the analysis (Table 1). To reveal transcrip-
tomic differences between AD/PD samples compared to healthy controls, we identified
differentially expressed genes (DEGs) and performed gene set enrichment (GSE) analyses.
However, since AD and PD are complex diseases with no single cure, it is likely that
multiple gene expression profiling exist, manifesting in numerous disease classes requiring
distinct treatment strategies. We therefore used unsupervised clustering to elucidate these
expression profiles and stratify the AD and PD patients on the basis of the underlying
molecular mechanisms involved in the disease occurrence.

Table 1. Summary of expression data sources.

Source AD Samples PD Samples Control Samples

GTEx/FANTOM5 0 0 67
HPA 0 0 52

Rajkumar 0 14 13
ROSMAP 629 0 704

Zhang/Zheng 0 40 53
Total 629 54 889

Expression data from AD and PD samples were obtained from the Genotype-Tissue Expression (GTEx) database,
Functional Annotation of the Mammalian Genome 5 (FANTOM5) database, Human Protein Atlas (HPA), Religious
Orders Study and Rush Memory Aging Project (ROSMAP), Rajkumar dataset, and Zhang/Zheng dataset.

Following unsupervised clustering with ConsensusClusterPlus [44], we separated
AD and PD samples into three clusters (Figures 1B and S1). Clusters 1 and 2 contained
samples from Zhang/Zheng and Rajkumar datasets, respectively, in addition to sam-

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/SimonLammmm/ad-pd-retinoid
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ples in the ROSMAP dataset, and consisted of 127 and 186 samples from female donors,
respectively, and 73 and 95 samples from male donors, respectively. Cluster 2 also con-
tained 14 samples with sex not recorded. Cluster 3 contained only ROSMAP samples and
consisted of 114 female and 74 male samples. Clusters did not form firmly along lines
of sex, age, or brain tissues or brain subregion (Figure S2). Samples from non-diseased
individuals were artificially added as a fourth, control cluster, consisting of 495 female
samples, 262 male samples, 13 samples with sex not recorded, and 119 samples derived
from aggregate sources.

By differential expression analysis using DESeq2 [45], we then characterised the
distinct transcriptomic profiles within our disease clusters (Figure 2A). Cluster 1 showed
mixed up- and downregulation of genes compared to control, whereas cluster 2 showed
more downregulation and cluster 3 showed vast downregulation of genes compared
to control.

To infer the functional differences between the subclasses, we performed GSE analysis
using piano [46] (Figure 2B, Supplementary Data S1). Globally, DEGs in any cluster 1–3
were enriched in upregulated Gene Ontology (GO) terms for immune response, olfaction,
retinoid function, and apoptosis, but downregulated for copper ion transport and telomere
organisation, compared to the control cluster. Considering individual clusters, cluster 1
DEGs were enriched in upregulated GO terms associated with immune signalling, cell
signalling, and visual perception. We also found downregulation of GO terms associated
with olfactory signalling and cytoskeleton. DEGs in cluster 2 were found to be enriched
in downregulated GO terms associated with the cytoskeleton, organ development, cell
differentiation, retinoid metabolism and response, DNA damage repair, inflammatory
response, telomere maintenance, unfolded protein response, and acetylcholine biosynthesis
and binding. On the other hand, we did not find any significantly enriched upregulated GO
terms. In cluster 3, we found that DEGs were enriched in upregulated GO terms associated
with neuron function, olfaction, cell motility, and immune system. DEGs in cluster 3 were
found to be enriched in downregulated GO terms associated with DNA damage response,
ageing, and retinoid metabolism and response.

The difference in expression profiles illustrate highly heterogeneous transcriptomics
in AD and PD and that there are notable commonalities and differences between the
subclasses of AD or PD samples. Interestingly, we found retinoid metabolism or function
to be a common altered GO term in all subclasses. This was upregulated in cluster 1 but
downregulated in clusters 2 and 3. We therefore observed that retinoid dysregulation
appears to be a common ageing-related hallmark in AD and PD.
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Figure 2. Transcriptomic and functional characterisation of AD and PD subclasses. Differentially
expressed gene (DEG) analysis and gene set enrichment (GSE) analysis were performed for AD and
PD and control samples for each disease cluster, using the control cluster as reference. (A) DEG results.
Significant DEGs were determined as those with a Benjamini–Hochberg adjusted p-value at or below
a cut-off of 1 × 10−10. Upregulated significant DEGs are coloured red. Downregulated significant
DEGs are coloured blue. Non-significant DEGs are coloured grey. (B) Selected significantly enriched
GO terms by number of genes as determined by GSE analysis. Red bars indicate upregulated GO
terms. Blue bars indicate downregulated GO terms. For full data, refer to Supplementary Data S1.
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3.2. Metabolic Analysis Revealed Retinoids and Sex Hormones as Significantly Dysregulated in
AD and PD

On the basis of clustering and GSE analysis, we identified distinct expression profiles,
but these alone could not offer insights into metabolic activities of brain in AD and PD. To
determine metabolic changes in the clusters compared to controls, we performed constraint-
based genome-scale metabolic modelling. We reconstructed a brain-specific genome-
scale metabolic model (GEM) based on the well-studied HMR2.0 [47] reference GEM by
overlaying transcriptomic data from each cluster and applying brain-specific constraints
as described previously [52] using the tINIT algorithm [50,51] within the RAVEN Toolbox
2.0 [49]. We generated a brain-specific GEM (iBrain2845) (Supplementary File S1) and
used it as the reference GEM for reconstruction of cluster-specific GEMs in turn. We
constructed the resulting context-specific iADPD series GEMs iADPD1, iADPD2, iADPD3,
and iADPDControl, corresponding to cluster 1, cluster 2, cluster 3, and the control cluster,
respectively (Supplementary File S2).

We conducted flux balance analysis (FBA) by defining maximisation of ATP synthesis
as the objective function. iADPD1 and iADPD2 both showed upregulation of fluxes in
reactions involved in cholesterol biosynthesis and downregulation in O-glycan metabolism,
with reaction flux changes being more pronounced in iADPD2 than in iADPD1 (Table 2,
Supplementary Data S2). We found that the fluxes in iADPD1 were uniquely upregulated
in oestrogen metabolism and the Kandustch–Russell pathway. iADPD2 was uniquely
upregulated in cholesterol metabolism, whereas iADPD3 uniquely displayed roughly
equal parts upregulation and downregulation in several pathways, including aminoacyl-
tRNA biosynthesis; androgen metabolism; arginine and proline metabolism; cholesterol
biosynthesis; galactose metabolism; glycine, serine, and threonine metabolism; and N-
glycan metabolism.

Table 2. Flux balance analysis of iADPD1, iADPD2, and iADPD3 versus iADPDControl.

Subsystem iADPD1 iADPD2 iADPD3

Acyl-CoA hydrolysis −0.001 0.001 0.000

Alanine, aspartate, and glutamate metabolism −0.148 0.014 0.000

Aminoacyl-tRNA biosynthesis 4.698 4.698 0.000

Androgen metabolism −1.426 −0.399 −0.001

Arachidonic acid metabolism −0.098 0.010 0.000

Arginine and proline metabolism −0.182 −0.327 0.000

Beta oxidation of branched-chain fatty acids (mitochondrial) −0.049 −0.049 −0.049

Beta oxidation of di-unsaturated fatty acids
(n-6) (mitochondrial) −0.636 0.002 −0.001

Beta oxidation of odd-chain fatty acids (mitochondrial) 0.001 −0.002 −0.002

Beta oxidation of poly-unsaturated fatty
acids (mitochondrial) 0.709 0.024 0.000

Beta oxidation of unsaturated fatty acids
(n-7) (mitochondrial) −0.016 0.001 −0.003

Beta oxidation of unsaturated fatty acids
(n-9) (mitochondrial) 0.011 0.000 0.007

Carnitine shuttle (cytosolic) 0.012 0.000 −0.001

Carnitine shuttle (mitochondrial) 0.003 0.000 0.002

Cholesterol biosynthesis 1 (Bloch pathway) 0.076 −0.983 0.001

Cholesterol biosynthesis 2 2.501 4.472 0.000
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Table 2. Cont.

Subsystem iADPD1 iADPD2 iADPD3

Cholesterol biosynthesis 3 (Kandustch–Russell pathway) 1.699 0.000 0.000

Cholesterol metabolism 0.067 4.482 0.000

Estrogen metabolism 2.085 0.000 0.000

Fatty acid activation (endoplasmic reticular) 0.000 0.000 0.000

Fatty acid biosynthesis (even-chain) 0.000 0.000 0.000

Fatty acid desaturation (even-chain) 0.785 0.000 0.000

Fatty acid elongation (odd-chain) −0.042 −0.024 0.000

Formation and hydrolysis of cholesterol esters −0.382 0.004 0.000

Fructose and mannose metabolism −0.211 −0.007 0.000

Galactose metabolism −0.008 0.035 0.000

Glycine, serine, and threonine metabolism 0.276 0.557 0.000

Glycolysis/gluconeogenesis −0.213 0.022 0.033

Histidine metabolism 0.000 0.000 0.000

Leukotriene metabolism −0.032 0.000 0.000

Lysine metabolism 0.000 0.000 0.000

N-glycan metabolism −0.784 0.016 0.000

Nitrogen metabolism 0.000 0.000 0.000

Nucleotide metabolism 0.027 −0.028 0.000

O-glycan metabolism −2.346 −4.738 0.000

Pentose phosphate pathway 0.127 0.000 0.000

Propanoate metabolism −0.116 0.020 0.091

Protein degradation 0.000 0.000 0.000

Purine metabolism 0.112 −0.013 0.000

Pyrimidine metabolism −0.071 −0.010 −0.001

Pyruvate metabolism −0.183 −0.004 −0.077

Starch and sucrose metabolism 0.000 0.000 0.000

Steroid metabolism −0.097 −0.295 0.003

Terpenoid backbone biosynthesis 0.398 0.187 0.020

Valine, leucine, and isoleucine degradation 0.127 0.000 0.000
Flux balance analysis was performed for each iADPD-series GEM, and the predicted fluxes for the three disease
cluster GEMs were compared against the predicted fluxes for the control cluster GEM. Reactions are grouped
by subsystem and flux difference values are expressed as mean flux difference between disease clusters and the
control cluster across all changed reactions within a subsystem. For full results, refer to Supplementary Data S2.

In particular, we observed increased positive fluxes through reactions HMR_2055
and HMR_2059 in iADPD1, which convert oestrone to 2-hydroxyoestrone and then to 2-
methoxyoestrone (Figure 3). In iADPDControl, these reactions carried zero flux. In iADPD2,
we observed increased positive fluxes through HMR_1457 and HMR_1533, which produce
geranyl pyrophosphate and lathosterol, respectively. Both of these molecules are precursors
to cholesterol, and while we did not see a proportionate increase in the production of other
molecules along the pathway (namely, farnesyl pyrophosphate and squalene), we did
observe a general increase in fluxes through the androgen biosynthesis and metabolism
pathway. Finally, we observed that iADPD3 displayed a decreased production of testos-
terone from 4-androstene-3,17-dione via HMR_1974, despite an increase in production of
4-androstene-3,17-dione via HMR_1971.
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Figure 3. Metabolic characterisation of AD and PD subclasses. Flux balance analysis (FBA) was performed on iADPD1-3
genome-scale metabolic models (GEMs), and flux values were compared with those of iADPDControl. Key metabolites
and reactions within the androgen metabolism pathway are shown and key dysregulations are displayed as coloured
arrows: red indicates increased flux compared to iADPDControl; blue indicates decreased flux compared to iADPDControl.
Dysregulations associated to each GEM are shown in coloured boxes. The dashed line indicates multiple reactions are
involved. Human Metabolic Reactions (HMR) identifiers are shown for androgen metabolism reactions with dysregulated
fluxes. For full data, refer to Supplementary Data S2.

Taken together, the obtained results indicate the existence of three distinct metabolic
dysregulation profiles in AD and PD, with dysregulation being most pronounced in cluster
2 patients and least pronounced in cluster 3 patients. Furthermore, we found that all
three clusters show dysregulations in or around sex hormone biosynthesis and metabolism,
which might explain the heterogeneity in responses to sex hormone replacement therapy
in AD and PD patients as extensively reported previously [6,59–61]. We also confirmed
that dysregulations through sex hormone pathways in the iADPD series GEMs were not
due to differences in relative frequencies between sexes in the main clusters 1-3 (Fisher’s
exact test, p = 0.4700).

In addition to metabolic inference and FBA, we performed reporter metabolite analy-
sis [53] by overlaying DEG analysis results onto the reference GEM to identify hotspots of
metabolism (Table 3, Supplementary Data S3). In short, we uniquely identified oestrone as
a reporter metabolite in cluster 1, and lipids such as acylglycerol and dolichol in cluster
2. No notable reporter metabolites were identified as significantly changed in cluster 3
only. In common to all clusters 1–3, retinoids, and sex hormones such as androsterone
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and pregnanediol were identified as significantly changed reporter metabolites, which are
generally in line with GSE and FBA results.

Table 3. Reporter metabolite analysis of AD and PD subclasses.

Reporter Metabolite Z-Score p-Value

Cluster 1

O2 6.111 4.95 × 10−10

Estrone 5.4557 2.44 × 10−8

Retinoate 5.3943 3.44 × 10−8

NADP+ 5.3667 4.01 × 10−8

Arachidonate 5.2822 6.38 × 10−8

2-Hydroxyestradiol-17beta 5.0999 1.70 × 10−7

Linoleate 5.0622 2.07 × 10−7

10-HETE 5.0454 2.26 × 10−7

11,12,15-THETA 5.0454 2.26 × 10−7

11,14,15-Theta 5.0454 2.26 × 10−7

Cluster 2

1-Acylglycerol-3P-LD-PC pool 4.3322 7.38 × 10−6

Acyl-CoA-LD-PI pool 4.143 1.71 × 10−5

Phosphatidate-CL pool 4.0973 2.09 × 10−5

Thymidine 3.5852 0.00016843
Uridine 3.5852 0.00016843

Prostaglandin D2 3.2144 0.00065348
G10596 3.1354 0.0008581
G10597 3.1354 0.0008581

D-Myo-inositol-1,4,5-trisphosphate 2.9988 0.0013552
Dolichyl-phosphate 2.9655 0.001511

Cluster 3

D-Myo-inositol-1,4,5-trisphosphate 2.6543 0.0039734
13-cis-Retinal 2.6537 0.0039806

Heparan sulfate, precursor 9 2.5915 0.0047772
sn-Glycerol-3-phosphate 2.578 0.0049682

DHAP 2.5353 0.0056173
Porphobilinogen 2.4987 0.0062333

ATP 2.4838 0.0064998
L-Glutamate 5-semialdehyde 2.4576 0.006994

Prostaglandin D2 2.451 0.0071221
ribose 2.4133 0.0079045

Reporter metabolite analysis was performed for each AD/PD subclass by overlaying differential expression
results onto iBrain2845. Top 10 unique reporter metabolites by p-value for each cluster compared to the control
cluster are shown. For full results, refer to Supplementary Data S3.

3.3. Network Analysis Supported Retinoid and Androgen Dysregulation and Suggests
Transcriptomic Similarity between AD and PD

To further explore the gene expression patterns shown across AD and PD patients,
we took expression data and constructed a weighted gene co-expression network for
each group (Spearman ρ > 0.9, FDR < 10−9; see the Materials and Methods section).
Each network was compared against equivalent randomly generated networks acting
as null models. After quality control, the AD network contained 4861 nodes (genes)
and ≈397,000 edges (significant correlations), and the PD network contained 5857 nodes
and ≈394,000 edges (Figure 4A,B, Table 4). A community analysis to identify modules
of highly co-expressed genes [54] highlighted 9 and 15 communities with significant
functional enrichment in AD and PD, respectively.

In the AD network, gene module C3 was enriched for genes involved with neuron
and synapse development, similar to patient cluster 3; C4 for genes involved with mRNA
splicing, similar to patient cluster 2; and C5 for genes involved with the mitochondrial
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electron transport chain (Figure 4C, Supplementary Data S4). C1 and C2 were the gene
modules with the largest number of genes. C1 was enriched for gene expression quality
control genes and development and morphogenesis genes, mirroring patient cluster 2,
whereas C2 contained cytoskeleton-related genes, similar to patient cluster 1.

In the PD network, C1 was enriched for genes involved with retinoid metabolism,
glucuronidation, and cytokine signalling. Since androgens are major targets of glucuronida-
tion [62], these results are in line with our main findings. Further, C2 contained DNA
damage response and gene regulation genes, similar to patient cluster 2; C3 contained
nuclear protein regulation genes; and C4 contained mRNA splicing genes, again similar to
patient cluster 2.

Further, the two networks share a large number of enriched terms in common, and
there is high similarity between the major gene modules, highlighting the similarity be-
tween AD and PD. In addition to this, enrichment analysis for KEGG terms was unable
to assign “Alzheimer disease” and “Parkinson disease” to the correct gene modules from
the respective networks, and additional neurological disease terms such as “Huntington
disease” and “amyotrophic lateral sclerosis” were also identified by the analysis, further
suggesting the transcriptomic similarity between neurological diseases. We found that
AD C1 and PD C2 were frequently annotated with these disease terms, and these gene
modules are also highly similar. Therefore, this gene module could constitute a core set of
dysregulated genes in neurodegeneration.

Taken together, the network analysis supports our GSE findings. The functional conse-
quences of differential expression in the patient clusters could be explained by differential
modulation of gene modules identified in our network analysis together with dysregulation
of a core set of genes implicated in both AD and PD.
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Figure 4. Network analysis of AD and PD gene co-expression modules. (A) Gene co-expression networks were constructed
from transcriptomic data from AD and PD samples. Community analysis was used to identify gene modules (see the
Materials and Methods section). Modules with at least 30 genes are shown as nodes. Node size indicates number of genes.
Nodes are coloured by network of origin and numbered in descending order of module size. Shared genes between modules
are shown as edges. Edge weight indicates number of shared genes. (B) Degree distribution of AD, PD, and random
networks. (C) Enrichment analysis was performed on gene modules containing at least 30 genes using the KEGG database
(see the Materials and Methods section). Significantly enriched gene modules are shown as coloured, numbered blocks.
Colour and number keys are as in (A).
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Table 4. AD and PD network properties.

Nodes Edges Diameter Average
Path Length Density Clustering

Coefficient
Connected
Network?

Minimum
Cut

AD 4861 396,985 11 3.004 0.034 0.443 No -

PD 5857 394,405 18 3.598 0.023 0.397 No -

Random AD 4861 396,985 3 1.970 0.034 0.034 Yes 114

Random PD 5857 394,405 3 2.021 0.023 0.023 Yes 89

Gene co-expression networks were generated for AD and PD samples. AD, PD, and random networks are shown.

3.4. Zebrafish Transcriptomic and Metabolic Investigations Suggest an Association between Brain
Ageing and Retinoid Dysregulation

To further validate our findings regarding the differences between clusters of human
AD and PD samples, we analysed transcriptomic data from tert mutant zebrafish and
reconstructed tissue-specific GEMs (Figure 5A). To ascertain that these effects of ageing
were limited to the brain, we analysed the brain, liver, muscle, and skin of zebrafish as well
as the whole animal.

We first repeated DEG and GSE analyses in the tert mutants using brain transcriptomic
data. We found significant enrichment of GO terms associated with retinoid metabolism as
well as eye development and light sensing, in which retinoids act as signalling molecules [63]
(Figures 5B and S3, Supplementary Data S5). To further support our findings, we then
reconstructed mutant- and genotype-specific GEMs by overlaying zebrafish tert mutant
transcriptomic data onto a modified generic ZebraGEM2 GEM [64]. We designated the
modified GEM ZebraGEM2.1 (Supplementary File S3) and used it as the reference GEM. We
also generated zebrafish organ-specific GEMs and provided them to the interested reader
(Supplementary File S4).

We then repeated reporter metabolite analysis using the transcriptomic data from
zebrafish tissue-specific GEMs and found that retinoids were identified as significant
reporter metabolites in tert+/− zebrafish (p = 0.045) but not in tert−/−, where evidence was
marginal (p = 0.084) (Figure 5C, Table 5, Supplementary Data S6). We also observed this
result in the skin of tert-/- mutants, where evidence was significant (p = 0.017). This result
can be explained due to the susceptibility of skin as an organ to photoageing, for which
topical application of retinol is a widely used treatment [65]. However, we did not find
evidence for significant changes in pregnanediol, and androsterone was significant only
in the skin of tert−/− zebrafish (p = 0.017). This would suggest that either change in sex
hormones are not ageing-related with regards AD and PD, or the changes were outside the
scope of the zebrafish model that we used.

Taken together, these results indicated that ageing can largely explain alterations in
retinoid metabolism in the brain but not alterations in sex hormone metabolism. These
results also suggest that ageing has a differential effect on different organs, implying that
metabolic changes due to ageing in the brain are associated with neurological disorders.
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Figure 5. Summary of zebrafish tert mutant analysis. (A) Workflow for the analysis of zebrafish tert mutants. (B) Differen-
tially expressed gene (DEG) (left panels) and gene set enrichment (GSE) analysis (right panels) of zebrafish brain samples.
DEG and GSE analyses were performed on zebrafish tert mutant brain expression data for tert−/− (upper panels) and
tert+/− (lower panels), using tert+/+ as a reference. Methods and colour keys are as in Figure 2. For muscle, liver, skin, and
pseudo-whole animal analyses, refer to Figure S3. For full data, refer to Supplementary Data S5. (C) Reporter metabolite
analysis of zebrafish samples. DEG data were overlaid on ZebraGEM2.1 to determine reporter metabolites. Shown are
reporter metabolites with p < 0.1 within the retinoic acid metabolic pathway. Red numbers indicate p-values in tert−/−

compared to tert+/+. Blue numbers indicate p-values in tert+/− compared to tert+/+. Green numbers indicate p-values in
tert−/− compared to tert+/−. Tissues are indicated with icons. For full data, refer to Supplementary Data S6.
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Table 5. Reporter metabolite analysis of zebrafish tert mutants.

Reporter Metabolite Z-Score p-Value

tert−/−

H+ 3.911 4.60 × 10−5

H2O 3.0672 0.0010804
L-Lysine 2.8564 0.0021424
Biocyt c 2.8564 0.0021424

Ubiquinone 2.5742 0.0050241
Nicotinamide adenine dinucleotide—reduced 2.3946 0.0083183

Phosphate 2.0562 0.019883
Superoxide anion 2.0365 0.020851

Sodium 1.9228 0.027254
TRNA (Glu) 1.8752 0.030381
Thiosulfate 1.7684 0.038493

Selenate 1.7684 0.038493
Reduced glutathione 1.7184 0.042862

ADP 1.6716 0.047305
L-Lysine 1.6625 0.04821

Benzo[a]pyrene-4,5-oxide 1.6042 0.054333
Formaldehyde 1.5955 0.055302
L-Glutamate 1.4622 0.071837

(1R,2S)-Naphthalene epoxide 1.4518 0.073276
Aflatoxin B1 exo-8,9-epozide 1.4518 0.073276

tert+/−

H+ 4.9585 3.55 × 10−7

Ubiquinol 3.9938 3.25 × 10−5

H2O 3.2078 0.00066883
Nicotinamide adenine dinucleotide—reduced 3.029 0.0012268

Superoxide anion 2.0908 0.018274
L-Lactate 2.0752 0.018983

O2 1.9958 0.022976
Lnlncgcoa c 1.9628 0.024834

Succinate 1.9449 0.025895
Ferricytochrome c 1.8352 0.033237

Phosphatidylinositol-3,4,5-trisphosphate 1.7494 0.040109
9-cis-Retinoic acid 1.7 0.044567

[(Gal)2 (GlcNAc)4 (LFuc)1 (Man)3 (Asn)1’] 1.6672 0.047739
O-Phospho-L-serine 1.6601 0.048451

[(Glc)3 (GlcNAc)2 (Man)9 (Asn)1’] 1.6276 0.051802
Protein serine 1.6078 0.053937

[(GlcNAc)1 (Ser/Thr)1’] 1.6078 0.053937
Geranyl diphosphate 1.5912 0.055785

CTP 1.5625 0.059088
[(Gal)2 (GlcNAc)4 (LFuc)1 (Man)3 (Neu5Ac)2 (Asn)1’] 1.5367 0.062179

Reporter metabolite analysis was performed for the brains of zebrafish tert mutant by overlaying differential
expression results onto ZebraGEM2.1. Top 20 unique reporter metabolites by p-value for each cluster compared to
wild-type tert+/+ zebrafish are shown. For full results, refer to Supplementary Data S6.

4. Discussion

In this work, we integrated gene expression data across diverse sources into context-
specific GEMs and sought to identify and characterise disease subclasses of AD and PD. We
used unsupervised clustering to identify AD/PD subclasses and employed DEG and GSE
analysis to functionally characterise them. We used network exploration, constraint-based
metabolic modelling, and reporter metabolite analysis to characterise flux and metabolic
perturbations within basal metabolic functions and pathways. We then leveraged expres-
sion data from zebrafish ageing mutants to validate our findings that these perturbations
might be explained by ageing. Our analysis concluded with the identification and char-
acterisation of three AD/PD subclasses, each with distinct functional characteristics and



Biomedicines 2021, 9, 1310 18 of 23

metabolic profiles. All three subclasses showed depletion of retinoids by an ageing-related
mechanism as a common characteristic.

We believe that a combined analysis that integrates AD and PD data is necessary to
elucidate common attributes between the two diseases. However, we realised that such an
analysis will likely obscure AD- and PD-specific factors, such as amyloid β and α-synuclein,
but should aid the discovery of any factors in common. Since AD and PD share numerous
risk factors and comorbidities such as old age, diabetes, and cancer risk, we believe that
an AD/PD combined analysis can identify factors in common to both diseases and prove
valuable for the identification of treatment strategies that might be effective in the treatment
of both diseases.

GSE analysis highlighted significant changes related to retinoid function or visual
system function, in which retinol and retinal act as signalling molecules [63], in all clusters
(Figure 2, Supplementary Data S1). Together with the identification of multiple retinol
derivatives as significant reporter metabolites in iBrain2845 (Table 3, Supplementary Data S3),
we hypothesised that retinoids are a commonly dysregulated class of molecules in both AD
and PD, and that this may be due to an ageing mechanism. Indeed, in our investigation
with zebrafish telomerase mutants, we again found alterations in retinoid and visual
system function in GSE analysis (Figures 5B and S3, Supplementary Data S5) and reporter
metabolite analysis (Figure 5C, Table 5, Supplementary Data S6).

Retinoids were identified as a reporter metabolite in all three clusters of patients
in this study. Further, our zebrafish analysis highlighted the importance of retinoids in
ageing of the brain and the skin (Figure 5C, Table 5, Supplementary Data S6). Retinol, its
derivatives, and its analogues are already used as topical anti-ageing therapies for aged
skin [65], and there is a growing body of evidence suggesting its efficacy for the treatment
of AD [66–69]. We add to the body of evidence with this in silico investigation involving
zebrafish telomerase mutants, suggesting that the source of retinoid depletion in AD and
PD is ageing-related. Interestingly, regarding our finding for skin ageing in zebrafish,
lipid biomarkers have been proposed in a recent skin sebum metabolomics study in PD
patients [70]. This could be interpreted as co-ageing in brain and skin tissues, possibly
allowing for cheap, non-invasive prognostic testing for PD.

In addition to retinoids, we found evidence for subclass-specific dysregulation
within the androgen metabolism pathway in each of the three clusters in FBA (Table 2,
Supplementary Data S2) and reporter metabolite analysis (Table 3, Supplementary Data S3).
We found that iADPD1 displayed increased oestrone conversion to the less potent [71]
2-methoxyoestrone, iADPD2 displayed increased production of the cholesterol precursor
molecules geranyl pyrophosphate and lathosterol and increased androgen biosynthesis,
and iADPD3 displayed decreased conversion of 4-androstene-3,17-dione to testosterone.
However, there was no definitive evidence to suggest an ageing-related basis for these ob-
servations on the basis of our zebrafish study, but this may be due to the diverse functional
roles that sex hormones have, limitations within the ZebraGEM2.1 model, or absence of an
actual biological link between sex hormones and ageing of the brain. Despite this, given
the widely reported variability in responses to sex hormone replacement therapy in AD
and PD [6,8,60,61], we believe that this observation represents a possible explanation for
the heterogeneity. Our observation regarding the dysregulation of the androgen pathway
at three separate points suggests that dysregulation at other points might also be linked
to AD and PD, thus implying that androgen metabolism dysregulation in general might
be important for the development of AD and PD. Our finding via network community
analysis of a gene module associated with glucuronidation activity points to a possible
therapeutic strategy to combat androgen dysregulation. In our study, the limitation of our
dataset that some samples were aggregate samples or did not record the donor’s sex meant
that we were unable to assess in detail the sex-dependency of our results. However, as
has been extensively studied in the AD model mouse [72–74], this remains an important
question, and more work is needed to elucidate the importance of sex hormones and
glucuronidation regarding AD and PD.
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Identification of subclasses is desirable to address the heterogeneity in disease with
regards transcriptomic profile and treatment response, but patients must be stratified
in order to be diagnosed with the correct disease subclass and therefore administer the
appropriate treatment. To this end, we used GSE analysis to functionally characterise the
AD/PD subclasses (Figure 2, Supplementary Data S1). Cluster 2, which was associated
with a decreased immune and stress response, appeared to be most severe disease sub-
class, whereas cluster 3, which was associated with an increased sensory perception of
smell, reduced haemostasis, and reduced immune and DNA damage response, seemed
to be the least severe. Meanwhile, cluster 1 was associated with an increased immune
and inflammatory responses and reduced sensory perception of smell. The functional
terms are supported by community analysis of our AD and PD gene co-expression net-
works, which identified gene modules that roughly align with the GSE results (Figure 4,
Supplementary Data S4). The proposed severity ratings are supported by FBA findings,
which show iADPD2 as having the highest total flux dysregulation compared to control,
and iADPD3 as having the least (Table 2, Supplementary Data S2). Although we did not
attempt to characterise for stratifying and diagnosing patients in our study, our findings
clearly show that such stratification is possible.

In this work, we leveraged samples from zebrafish telomerase mutants and insights
from the ZebraGEM2.1 metabolic model. These models were utilised in order to test the
hypothesis that the observations we made in the human subjects could be explained by
telomeric ageing in a way where we could control the ‘dosage’ of ageing, i.e., tert+/− and
tert−/− mutants. However, it is important to acknowledge the limitations of such models.
Although zebrafish are a widely used model organism to study vertebrate ageing [22],
most neurons of the brain do not divide and are therefore not likely to be subject to the
direct effects of telomeric ageing. Therefore, we cannot conclude that the dysregulations
we observed in AD and PD were caused by ageing of neurons per se, but rather correla-
tions exist between telomeric ageing in zebrafish and AD and PD in humans, and these
correlations may act via an indirect mechanism affecting multiple systems of the ageing
organism. Due to these limitations, more data and more studies are required to support
the link between ageing and neuronal degeneration in AD and PD. The basic requirement
of such studies would be brain tissue from donors of a wide range of ages. In our study,
we utilised datasets containing aggregated samples, where age cannot be assigned, and
samples from age-matched donors, meaning that younger donors were poorly represented
in our data, making it unsuitable for an ageing analysis.

In conclusion, we report three distinct subclasses of AD and PD. The first subclass
was identified as being associated with increased immune response, inflammatory re-
sponse, and reduced sensory perception of smell, according to GSE results. We observed
that this subclass exhibited increased oestradiol turnover, according to FBA results.
The second subclass was linked with increased cholesterol biosynthesis and general in-
creased flux through the androgen biosynthesis and metabolism pathway. This subclass
was characterised by reduced immune response. The third subclass was characterised
by enrichment of GO terms indicating increased sensory perception of smell, reduced
haemostasis, and reduced immune and DNA damage response. This subclass also ex-
hibited reduced testosterone biosynthesis from androstenedione, as determined by FBA.
All subclasses exhibited dysregulation within the retinoid metabolism pathway. For all
subclasses of AD and PD, more investigation is required to verify the effectiveness of
these stratification methods and to aid prediction of effective precision therapies. To
our knowledge, this is the first meta-analysis at this scale highlighting the potential
significance of retinoids, oestradiol, and testosterone in AD and PD by studying the
two diseases in combination. We observed that the existence of disease subclasses de-
mands precision or personalised medicine and explains the heterogeneity in AD and PD
response to single-factor treatments.
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