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Abstract: Objectives: Periodontal disease (PD) and rheumatoid arthritis (RA) are known chronic
conditions with sustained inflammation leading to osteolysis. Cardiovascular diseases (CVD) are
frequent comorbidities that may arise from sustained inflammation associated with both PD and
RA. In order to determine CVD risk, alterations at the molecular level need to be identified. The
objective of this study, therefore, was to assess the relationship of CVD associated biomarkers in RA
patients and how it is influenced by PD. Methods: The study consisted of patient (26 RA with PD,
21 RA without PD, 51 patients with PD only) and systemically and periodontally healthy control
(n = 20) groups. Periodontal parameters bleeding on probing, probing pocket depth, and marginal
bone loss were determined to characterize the patient groups. Proteomic analysis of 92 CVD-related
protein biomarkers was performed using a multiplex proximity extension assay. Biomarkers were
clustered using the search tool for retrieval of interacting genes (STRING) to determine protein–
protein interaction (PPI) networks. Results: RA patients with PD had higher detection levels for
47% of the measured markers (ANGPT1, BOC, CCL17, CCL3, CD4, CD84, CTRC, FGF-21, FGF-23,
GLO1, HAOX1, HB-EGF, hOSCAR, HSP 27, IL16, IL-17D, IL18, IL-27, IL6, LEP, LPL, MERTK, MMP12,
MMP7, NEMO, PAPPA, PAR-1, PARP-1, PD-L2, PGF, PIgR, PRELP, RAGE, SCF, SLAMF7, SRC,
THBS2, THPO, TNFRSF13B, TRAIL-R2, VEGFD, VSIG2, and XCL1) as compared to RA without PD.
Furthermore, a strong biological network was identified amongst these proteins (clustering coefficient
= 0.52, PPI enrichment p-value < 0.0001). Coefficients for protein clusters involved in CVD (0.59),
metabolic (0.53), and skeletal (0.51) diseases were strongest in the PD group. Conclusion: Periodontal
disease augments CVD-related biomarkers in RA through shared pathological clusters, concurrently
enhancing metabolic and skeletal disease protein interactions, independent of autoimmune status.

Keywords: inflammation; proteins; proteomics; rheumatoid arthritis; periodontal disease; cardiovas-
cular disease

1. Introduction

Chronic inflammation stems from persistent acute inflammation due to the failure
to resolve the acute phase, often associated with the inability to remove the inducing
agent or stimulus. Several diseases that acquire such chronicity due to a dysregulated
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immune response include atherosclerosis, type 2 diabetes, rheumatoid arthritis (RA), and
periodontal disease (PD) [1].

Cardiovascular diseases (CVD) are the leading cause of global mortality with over 75%
of cases in low- and middle-income countries [2]. CVD comprises a group of disorders that
involve the heart muscle and blood vessels. The most common pathogenic pathway that
leads to CVD is atherosclerosis [3]. Risk factors such as smoking, diabetes, hypertension,
and obesity are transduced into atherosclerotic events via complex interactions between
endothelial adhesion molecules and inflammatory cells including macrophages and T
lymphocytes. The inflammatory response also has an autoimmune component as low-
density lipoprotein (LDL) cholesterol, one of the retained lipids in atherosclerotic plaques,
is antigenic resulting in production of high affinity antibodies [4].

PD is an independent risk factor for the development of CVD [5]. Systematic reviews
have shown a consistent association between CVD and PD which may be partially at-
tributed to shared risk factors and the dissemination of periodontal pathogens into the
bloodstream or an increase in systemic inflammation [6].

RA is an autoimmune disease characterized by synovial inflammation and destruction
due to immune mediated inflammation. This sustained inflammation in RA promotes
cardiovascular pathology to such an extent that it remains the leading cause of mortality in
RA patients [7]. The overall increased CVD risk in RA has been attributed less to traditional
CVD risk factors and more to underlying autoimmunity and inflammatory burden [8].

The influence of PD and RA combined may increase the menacing effects of inflamma-
tion and raise an individual’s risk of developing CVD even further. This can be evaluated
through exploration of emergent biomarkers involved in CVD initiation and pathology
and, therefore, the aim of this study is to assess CVD related biomarkers in RA patients
and how it is influenced by PD.

2. Materials and Methods

The study was performed at the Department of Periodontology, the Altamash Institute
of Dental Medicine, between October 2012 and August 2017 in Karachi, Pakistan. Upon
obtaining informed consent, a detailed questionnaire was used to acquire information
pertaining to medical and dental history. The minimum sample size was calculated using
the Epitools Epidemiological Calculators [9] with the assumptions of a power of 80% and
a confidence interval (CI) of 95%. The parameters reported in the literature pertaining to
South Asian population were used [10]: (1) frequency of 60% for PD among RA patients
and (2) frequency of 28% for PD without RA.

2.1. Rheumatoid Arthritis Group

A total of 47 RA patients were recruited via consecutive sampling from the Department
of Rheumatology at the Habib Medical Centre in Karachi, Pakistan. These patients were
established RA cases diagnosed by a rheumatologist (AG) using current ACR/EULAR
classification criteria [11]. All patients were receiving disease-modifying anti-rheumatic
drugs (DMARDs), corticosteroids, non-steroidal anti-inflammatory drugs (NSAIDs), or a
biologic DMARD (Rituximab) at the time of the examination. Based on their periodontal
status, the patients were divided into two groups: RA with PD (n = 26) and RA without PD
(n = 21).

2.2. Periodontal Disease Group

A group of 51 participants diagnosed with PD, but exhibiting no signs of RA, gout, or
osteoarthritis were also included. Individuals with a history of treatment for PD during the
last six months and/or treatment with antibiotics in the last three months were excluded.

We used twenty controls for comparison and better characterization of the groups.
All controls had clinically healthy periodontium and no systemic disease. Blood samples
were drawn from all participants and prepared sera were stored at −80 ◦C until the time of
analyses.
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2.3. Periodontal Examination

Periodontal examination was carried out for all teeth except for the third molars by
a single examiner (JP). The defining criteria for PD was probing pocket depth (PPD) of
≥5 mm (to the nearest millimeter) in at least three different sites using a periodontal probe
(Hu-Friedy manufacturing, Chicago, IL, USA). Pockets measuring ≥5 mm were added to
calculate the sum of deep pockets representing PD affected sites. Our group has designed
continuous periodontal indices to gauge the severity of PD as a continuous variable rather
than dichotomous. These parameters were used to assess the severity of PD:

• Bleeding on probing (BOP)
• ΣPPD Total
• ΣPPD Disease
• Adjusted PPD Total
• Adjusted PPD Diseased sites
• Σ Marginal bone loss (MBL)
• Adjusted ΣMBL

Details of the parameters and their measurements are described in our previous
publications [12,13].

2.4. Anthropometric Measures

Body weight was measured to the nearest kg. Using non-stretchable measuring tape,
height and waist were measured to the nearest cm. Waist was measured in the horizontal
plane at the midpoint between the lowest rib and the iliac crest. Body mass index (BMI) was
calculated from weight and height measurements (kg/m2). Anthropometric measurements
were recorded for all four groups.

2.5. Glycated Hemoglobin (HbA1c)

Glycated hemoglobin levels were determined for all four groups after collecting four
milliliters of whole blood into spray-coated EDTA tubes (lavender top, Becton, Dickin-
son, Franklin Lakes, NJ, USA). The samples were analyzed on the same day using the
ion-exchange high-performance liquid chromatography system Bio-Rad D-10 Hemoglobin
Testing System (Bio-Rad Laboratories, Hercules, CA, USA). The HbA1c values are stan-
dardized according to the National Glycohemoglobin Standardization Program (NGSP)
system [14].

2.6. Proteomic Profiling

Serum samples were analyzed at the SciLifeLab Affinity Proteomics Uppsala, Uppsala
University, (Uppsala, Sweden) using proximity extension assay (PEA) technology (Olink
Proteomics, Uppsala, Sweden). Levels of 92 proteins from the Olink Target96 CVD II
panel were measured (Supplementary File Table S1). The PEA technology utilize pairs of
antibodies equipped with DNA reporter molecules [15]. When binding in close proximity
to their correct targets, the antibody pairs give rise to new DNA amplicons each ID-
barcoding their respective antigens. The amplicons are subsequently quantified using the
Fluidigm BioMark™ HD real-time PCR platform (South San Francisco, CA, USA). For data
analysis and quality control Olink NPX Manager Software was used and the inter-plate
variability was adjusted by intensity normalization. The final protein values are expressed
as Normalized Protein eXpression (NPX) values which are on a log2 scale and one unit
higher NPX represents a doubling of the measured protein concentration. Data quality was
controlled and normalized using an internal and an interpolate control. Assay validation
data for all proteins from the panel are available (www.olink.com).

2.7. Protein–Protein Interaction (PPI) Network Analysis

The Protein–Protein Interactions (PPI) Network analysis was performed using the
search tool for retrieval of interacting genes (STRING) (https://string-db.org, accessed on
21 February 2021). The STRING database interaction evidence is thematically grouped into

www.olink.com
https://string-db.org
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‘channels’ (such as text mining, co-expression, and lab experiments) and limited to Homo
sapiens. An interaction score > 0.4 was applied to construct the PPI networks. STRING
performed identifier mapping (test the proteins of each known pathway for any nonrandom
skew within the user-provided input values, and report statistically significant pathways)
and displayed a network with all of the mapped proteins and their interconnections [16]. In
the networks, the nodes correspond to the proteins and the edges represent the interactions.
STRING was employed to seek potential interactions among proteins. The clustering
coefficient, where 0 represents the absence of connections and 1 a fully connected network,
was calculated quantifying the abundance of connected nodes in a PPI network. PPI
enrichment p-value is used to indicate that the nodes are not random and that the observed
number of edges is significant.

2.8. Statistical Analyses

All analyses were performed test using GraphPad Prism version 9.0. for Windows
(GraphPad Software, San Diego, CA, USA). Patient characteristics were analyzed using
one-way ANOVA and Kruskal–Wallis tests depending on the normality of the data to
identify group wise differences. Inter-group differences in biomarker distributions were
analyzed using the Mann–Whitney U test. The relationship between each of the 92 protein
biomarkers and periodontal parameters was assessed using Spearman correlation analyses.
To control the false discovery rate (FDR), the Benjamini–Hochberg procedure was applied
to adjust p-values from multiple testing [17]. The significance level was defined at p ≤ 0.05.

For exploration of biomarker patterns within disease groups, principal component
analysis (PCA) was performed. PCA is a powerful exploratory model statistically used
for data exploration and simplification. The technique is based on generating principal
components (latent variable) from the original dataset. The relationship of the principal
components to the samples is referred to as ‘scores’, and that to the variables is called
‘loadings’. A threshold of 0.5 was deemed significant for variable loadings.

3. Results
3.1. Characteristics of Study Groups

The characteristics for the disease groups (RA with PD, RA without PD, and PD only)
and controls are shown in Table 1. There were no differences in age amongst the four
groups. The number of females were higher in disease groups as compared to controls. The
clinical status comprised self-reported hypertension and diabetes confirmed by medication
and prescription. The frequency of both conditions were similar amongst the disease
groups. Periodontal parameters, waist circumference and HbA1c differed significantly
amongst the groups with the highest medians in PD patients. The median for HbA1c value
in the PD group classifies them as pre-diabetes overall (Supplementary File Table S3).
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Table 1. Characteristics for RA and PD (disease) groups and controls.

Characteristics

Disease Groups Control
p-ValueRA with PD

(n = 26)
RA without PD

(n = 21)
PD

(n = 51) (n = 20)

Age (years) a 48.5 (8.8) 43.1 (13.3) 47 (9.5) 43 (6.3) 0.11
Female sex, n (%) b 21 (81) 20 (95) 33 (65) 8 (40) <0.001
Clinical Status, n b

– Hypertension 9 7 8 -
0.14– Diabetes 2 6 10 -

BOP c 23 (57) 43 (60) 77 (56) 15 (32) <0.0001
PPD Total c 301(81) 276 (86) 384 (113) 191 (24) <0.0001

PPD Disease c 107.5 (104) 0 (2.5) 229 (136) 0 (5) <0.0001
Adjusted PPD Total c 11.6 (2.9) 10.8 (2.8) 15.5 (4.2) 6.8 (1) <0.0001

Adjusted PPD Disease c 8 (4.3) 0 (0) 10.4 (4) 0 (0) <0.0001
∑MBL c 27.4 (10.8) d 13.5 (12.9) e 34.2 (15.4) 8.8 (17.5) f <0.0001

Adjusted ∑MBL c 4.57 (1) 3.02 (0.9) 5.24 (2) 2.88 (0.8) <0.0001
Body mass index (kg/m2) c 24.2 (5) 24.1 (6.2) 25.2 (4) 23.9 (4.6) 0.35
Waist circumference (cm) c 102 (30) 97 (23) 109 (19) 86 (17) <0.0001

HbA1c % c 5.0 (1) 5.0 (2) 5.7 (1.2) 4.5 (0.8) <0.0001

BOP = bleeding on probing, PPD = probing pocket depth, MBL = marginal bone loss, HbA1c = glycated
hemoglobin. a Differences in means were tested using one-way ANOVA test (testing overall difference among the
three groups). b Differences in frequency were tested using χ2 (chi-squared) test (testing overall difference among
the three groups). c Differences in medians were tested using Kruskal–Wallis test (testing overall difference among
the three groups). d Missing data (n = 5) was excluded in the analyses. e Missing data (n = 1) was excluded in the
analyses. f Missing data (n = 1) was excluded in the analyses.

3.2. Group-Wise Biomarker Distribution

The distribution of 92 CVD biomarkers was assessed among the four groups. Two sam-
ples from the PD group were excluded due to unacceptable technical variations. Biomarkers
with significantly increased levels in RA with PD groups as compared to RA without PD
are shown in Figure 1. Higher NPX values were noted for 47% (43/92) of the markers
which were: ANGPT1, BOC, CCL17, CCL3, CD4, CD84, CTRC, FGF-21, FGF-23, GLO1,
HAOX1, HB-EGF, hOSCAR, HSP 27, IL16, IL-17D, IL18, IL-27, IL6, LEP, LPL, MERTK,
MMP12, MMP7, NEMO, PAPPA, PAR-1, PARP-1, PD-L2, PGF, PIgR, PRELP, RAGE, SCF,
SLAMF7, SRC, THBS2, THPO, TNFRSF13B, TRAIL-R2, VEGFD, VSIG2 and XCL1. For 32
of these biomarkers (BOC, CCL17, CCL3, CD84, CTRC, FGF-21, GLO1, HAOX1, HB-EGF,
hOSCAR, HSP 27, IL-16, IL-17D, IL-18, IL-27, IL-6, LEP, LPL, MERTK, MMP12, NEMO,
PAR-1, PARP-1, PD-L2, PRELP, RAGE, SCF, SLAMF7, THBS2, TNFRSF13B, TRAIL-R2, and
XCL1) PD and RA with PD groups exhibited no differences (Supplementary File Table S2).
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THPO, (39) TNFRSF13B, (40) TRAIL-R2 (41) VEGFD, (42) VSIG2, and (43) XCL1. Data are presented 
as median with interquartile range. Group differences were calculated using Mann–Whitney U test. 
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Figure 1. Group wise analyses for CVD-related biomarkers. Graphs 1–43 showing higher detection
levels in RA with PD as compared to RA without PD. (1) ANGPT1, (2) BOC, (3) CCL17, (4) CCL3,
(5) CD4, (6) CD84, (7) CTRC, (8) FGF-21, (9) FGF-23, (10) GLO1, (11) HAOX1, (12) HB-EGF, (13)
hOSCAR (14) HSP 27, (15) IL-16, (16) IL-17D, (17) IL-18 (18) IL-27, (19) IL-6, (20) LEP, (21) LPL, (22)
MERTK, (23) MMP7, (24), MMP12, (25) NEMO, (26) PAPPA, (27) PAR-1, (28) PARP-1, (29) PD-L2, (30)
PGF, (31) PIgR, (32) PRELP, (33) RAGE, (34) SCF, (35) SLAMF7, (36) SRC, (37) THBS2, (38) THPO, (39)
TNFRSF13B, (40) TRAIL-R2 (41) VEGFD, (42) VSIG2, and (43) XCL1. Data are presented as median
with interquartile range. Group differences were calculated using Mann–Whitney U test. * p value ≤
0.05, ** p value < 0.01, *** p value < 0.001, **** p value < 0.0001.

3.3. Correlation of CVD Biomarkers with Periodontal Parameters

The correlation between periodontal parameters and CVD-related biomarkers are
shown in Table 2. The highest frequency of significant correlations was seen in the PD
group for all parameters except for adjusted MBL. Anti-inflammatory marker IL-4RA
was inversely related with three out of five indices for inflammation and pocketing. The
Proto-oncogene tyrosine-protein kinase Src (SRC) was inversely correlated with four out
of five indices for inflammation and pocketing. All correlations were direct amongst
the RA with PD group, except for ACE-2. The most frequent and moderately strong
correlations were noted with adjusted MBL. Least frequent correlations were noted in the
RA without PD group. Dickkopf-related protein 1 (Dkk-1) and thrombospondin 2 (THBS2)
were directly associated with Adjusted PPD Total. There was no overlap between the
associated biomarkers amongst the three groups.
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Table 2. Correlations of CVD risk biomarkers with periodontal pocketing and marginal bone loss.

Periodontal Pocketing and Inflammation Marginal Bone Loss

BOP PPD Total PPD Disease Adj. PPD Total Adj. PPD Disease ∑MBL Adj. MBL

Analyte r Analyte r Analyte r Analyte r Analyte r Analyte r Analyte r

RA with
PD ACE-2 −0.42 LOX-1 0.41 PTX3 0.44 ANGPT1

PGF
0.47
0.45

LEP
TNFRSF13B

IL-27

0.48
0.48
0.46

PD
CXCL1

SRC
XCL1

−0.31
−0.32
−0.36

IL-4RA −0.29
IL-4RA
MERTK

SRC

−0.37
−0.28
−0.29

IL-4RA
MMP-12

SRC

−0.33
−0.31
−0.38

MMP-
12

SRC
−0.34
−0.42

ADAM-
TS13 −0.29

RA
without

PD
FGF-23 −0.52 Dkk-1

THBS2
0.47
0.49

CD40-L
TGM2

−0.47
−0.45

Spearman rank correlation was used to identify correlations. All coefficients show biomarkers with adjusted
p-values ≤ 0.05 after using the Benjamini–Hochberg procedure for multiple testing.

3.4. PCA

PCA was performed using standardized data and PC selection via parallel analysis. In
the initial PCA output, selected component PC1 with loading structure >0.5 are shown for
all disease groups (Table 3). The individual values show the correlation between the specific
biomarker and the PC 1 for which the loading is calculated for. For RA with PD group,
64 biomarkers exceeded the 0.5 threshold of loading significance. Similarly, RA without
PD had 65 biomarkers exceeding the threshold whereas PD group showed 55 biomarkers
exceeding the threshold.

Table 3. PC loadings for disease groups.

RA with PD PD RA without PD

Variable PC1 PC2 Variable PC1 PC2 Variable PC1 PC2

C22D4 0.98 −0.08 PDGF
subunit B 0.87 −0.12 PDGF

subunit B 0.92 0.02

SCF 0.96 0.05 SOD2 0.87 −0.05 CD84 0.90 −0.14
IL-17D 0.95 0.00 MMP7 0.86 0.12 SCF 0.90 −0.31
PAR-1 0.93 −0.16 CD4 0.85 −0.28 BOC 0.90 −0.32
BOC 0.93 −0.16 hOSCAR 0.84 0.08 CXCL1 0.90 0.11
PIgR 0.93 −0.02 CCL17 0.84 −0.08 PD-L2 0.89 0.21

VEGFD 0.93 0.20 IL16 0.83 −0.24 MERTK 0.87 0.22
IL16 0.93 0.07 HB-EGF 0.83 0.05 VEGFD 0.87 0.06

MMP7 0.92 0.15 CCL3 0.83 0.11 VSIG2 0.87 0.20
SPON2 0.91 −0.14 PIgR 0.80 −0.30 MMP7 0.86 0.09
PDGF

subunit B 0.91 0.19 VEGFD 0.80 0.01 THBS2 0.86 −0.11

THPO 0.91 −0.18 RAGE 0.79 0.07 BNP 0.85 −0.06
CD84 0.90 0.21 SCF 0.78 −0.41 PIgR 0.84 −0.33

hOSCAR 0.90 0.25 HSP 27 0.78 −0.21 PARP-1 0.82 −0.36
LPL 0.90 −0.18 IL-17D 0.77 0.04 HO-1 0.82 0.16

FABP2 0.89 −0.23 THBS2 0.77 −0.02 hOSCAR 0.82 0.27
FGF-21 0.89 −0.30 CD84 0.76 −0.14 CD4 0.82 −0.26
THBS2 0.88 −0.06 ADAM-TS13 0.75 0.17 CCL17 0.82 0.28
CCL17 0.88 0.28 PD-L2 0.75 0.05 IL-17D 0.82 −0.20
CXCL1 0.88 0.30 FGF-21 0.74 −0.06 DECR1 0.81 −0.17
PARP-1 0.88 −0.10 HO-1 0.73 −0.22 FABP2 0.81 −0.41
CTRC 0.87 0.26 Dkk-1 0.72 −0.22 GDF-2 0.81 0.15

ANGPT1 0.86 −0.04 BOC 0.72 −0.36 RAGE 0.80 0.17
PRELP 0.85 −0.44 PAPPA 0.71 0.03 SORT1 0.80 0.20
MERTK 0.85 −0.06 VSIG2 0.70 0.44 PGF 0.80 0.28

TM 0.85 −0.28 SORT1 0.70 0.32 ADAM-TS13 0.80 0.23
CCL3 0.84 0.18 MERTK 0.69 0.07 CCL3 0.80 −0.23
BMP-6 0.84 −0.36 GDF-2 0.68 0.33 FGF-21 0.80 −0.31
SOD2 0.83 0.02 TNFRSF13B 0.67 0.11 HB-EGF 0.78 0.48
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Table 3. Cont.

RA with PD PD RA without PD

Variable PC1 PC2 Variable PC1 PC2 Variable PC1 PC2

SORT1 0.83 0.36 CXCL1 0.66 0.07 THPO 0.78 −0.39
STK4 0.81 −0.07 GLO1 0.66 0.03 SLAMF7 0.77 0.39
VSIG2 0.81 −0.04 NEMO 0.66 0.02 LEP 0.77 0.24
SRC 0.81 0.10 CTRC 0.66 −0.02 Dkk-1 0.77 −0.22

RAGE 0.81 0.24 SPON2 0.65 −0.11 TF 0.76 −0.01
PGF 0.81 −0.31 CTSL1 0.65 0.32 AGRP 0.76 −0.14

HO-1 0.81 −0.06 IL-1ra 0.63 0.16 IL-1ra 0.76 0.18
FGF-23 0.80 −0.28 AGRP 0.61 −0.19 NEMO 0.75 −0.06

IL18 0.79 −0.18 FGF-23 0.60 −0.29 TNFRSF13B 0.74 0.19
Dkk-1 0.79 0.01 IL1RL2 0.60 0.08 PAR-1 0.74 −0.57
AGRP 0.78 −0.27 THPO 0.60 −0.37 PSGL-1 0.73 −0.04
XCL1 0.76 −0.50 DCN 0.59 −0.05 IL16 0.73 −0.39

HB-EGF 0.76 0.53 IL-27 0.57 0.18 DCN 0.73 0.25
HSP 27 0.76 0.20 TNFRSF11A 0.56 0.61 HSP 27 0.72 −0.01

TNFRSF13B 0.75 −0.15 PTX3 0.56 0.08 PAPPA 0.72 −0.22
PD-L2 0.74 0.50 BNP 0.56 −0.05 SOD2 0.71 −0.38
NEMO 0.74 0.39 IL6 0.55 0.37 TNFRSF11A 0.71 0.56

BNP 0.74 −0.08 TGM2 0.54 0.13 TM 0.70 0.32
LEP 0.73 0.08 PGF 0.54 0.63 LPL 0.70 −0.62

PAPPA 0.73 0.42 LPL 0.54 −0.67 FGF-23 0.69 −0.40
IL-1ra 0.72 −0.17 PRSS27 0.54 0.08 GLO1 0.66 0.16

TNFRSF11A 0.70 −0.24 FABP2 0.53 −0.53 SPON2 0.65 0.05
DCN 0.70 0.50 PAR-1 0.52 −0.66 SRC 0.64 −0.33

IL1RL2 0.69 0.04 TIE2 0.52 0.36 CTRC 0.64 0.10
PSGL-1 0.68 −0.05 ANGPT1 0.51 −0.44 IL1RL2 0.64 −0.06

TF 0.67 −0.05 IDUA 0.50 0.04 IL-27 0.63 0.47
ADM 0.66 −0.30 IL18 0.50 0.33 PRSS27 0.62 0.38

ADAM-TS13 0.66 0.55 SRC 0.49 −0.39 BMP-6 0.62 −0.49
TNFRSF10A 0.59 −0.53 LEP 0.48 0.07 IL18 0.61 0.30

MARCO 0.57 −0.24 TM 0.47 0.64 TIE2 0.60 0.52
CTSL1 0.57 0.04 CEACAM8 0.47 0.09 SERPINA12 0.57 0.25
GDF-2 0.57 0.29 STK4 0.47 −0.49 ANGPT1 0.55 −0.48
PRSS27 0.56 0.35 PARP-1 0.47 −0.40 STK4 0.54 −0.53

TRAIL-R2 0.51 −0.61 HAOX1 0.47 −0.04 ITGB1BP2 0.54 −0.20
IL-27 0.50 −0.30 DECR1 0.43 0.33 REN 0.53 0.31
GLO1 0.50 0.28 TRAIL-R2 0.42 0.72 PRELP 0.51 −0.77
IgG Fc

receptor II-b 0.44 −0.31 TF 0.42 0.56 IL6 0.49 0.01

SERPINA12 0.39 0.17 TNFRSF10A 0.40 0.63 GH 0.47 0.15
HAOX1 0.36 −0.32 ITGB1BP2 0.38 −0.10 GIF 0.46 −0.03

IL6 0.33 −0.18 PRELP 0.37 −0.63 CTSL1 0.46 0.25
DECR1 0.31 0.26 LOX-1 0.36 0.08 TGM2 0.44 0.39

GH 0.30 0.20 BMP-6 0.36 −0.58 TNFRSF10A 0.42 0.54
FS 0.29 −0.21 XCL1 0.34 −0.56 XCL1 0.38 −0.79

SLAMF7 0.29 −0.35 GH 0.34 −0.28 TRAIL-R2 0.38 0.56
KIM1 0.25 −0.46 Gal-9 0.33 0.24 PTX3 0.36 −0.33
Gal-9 0.22 −0.33 MARCO 0.30 −0.14 LOX-1 0.36 −0.18

ITGB1BP2 0.20 0.36 ADM 0.29 −0.38 KIM1 0.34 0.68
PTX3 0.18 0.12 AMBP 0.26 0.64 CD40-L 0.32 0.07

TGM2 0.15 0.27 CA5A 0.25 0.34 IgG Fc
receptor II-b 0.32 −0.02

GIF 0.12 −0.18 KIM1 0.24 0.74 GT 0.31 0.42
MMP12 0.11 −0.54 PSGL-1 0.19 0.23 CA5A 0.29 0.26

CEACAM8 0.09 0.25 SERPINA12 0.18 0.15 MARCO 0.29 −0.01
ACE2 0.08 −0.49 SLAMF7 0.17 0.10 HAOX1 0.27 −0.29
AMBP 0.06 0.26 GIF 0.17 0.36 IDUA 0.25 0.36
TIE2 −0.03 0.58 REN 0.15 0.35 AMBP 0.23 0.63
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Table 3. Cont.

RA with PD PD RA without PD

Variable PC1 PC2 Variable PC1 PC2 Variable PC1 PC2

CA5A −0.04 −0.44 ACE2 0.13 0.54 PRSS8 0.14 0.81
LOX-1 −0.04 0.37 IL-4RA 0.12 0.31 MMP12 0.11 0.34
IDUA −0.10 −0.03 CD40-L 0.08 0.02 Gal-9 0.10 0.35

REN −0.10 −0.21 IgG Fc
receptor II-b 0.03 0.24 CEACAM8 0.06 0.09

GT −0.11 −0.66 PRSS8 0.02 0.81 ADM 0.03 −0.25
CD40-L −0.20 −0.04 MMP12 −0.04 0.32 FS 0.01 0.23
PRSS8 −0.44 −0.17 FS −0.06 0.34 ACE2 0.00 0.16
IL-4RA −0.46 −0.76 GT −0.13 0.16 IL-4RA −0.01 0.26

Proportion
of variance 47.0% 8.9% 32.9% 11.6% 43.2% 11.3%

Cumulative
proportion of

variance
47.0% 55.9% 32.9% 44.5% 43.2% 54.5%

PC = principal component. All loadings > 0.5 are in bold. The variance represented by two principal components
in proportion and cumulatively are shown as percentages.

Visual representation of PC loadings plot (Figure 2) shows how the biomarkers are
clustered closely together. In the disease groups, the majority of the biomarkers not only
correlated strongly with each other but also with PC1 as most of the values were close to 1.
The clustering pattern was more similar between the PD and RA without PD groups as
some biomarkers showed stronger correlation with PC2. Using controls for reference, the
loading plot showed weaker correlations between the biomarkers themselves and PC 1 and
2. The PC score plots reveal the variation in the dimensionality of the four groups.
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3.5. Protein–Protein Interaction Network

The Protein–Protein interaction (PPI) network analysis of 43 proteins discriminating
RA with PD from RA without PD is shown in Figure 3. The potential interactions between
ANGPT1, BOC, CCL17, CCL3, CD4, CD84, FGF-21, FGF-23, HB-EGF, hOSCAR, HSP 27,
IL16, IL-17D, IL18, IL-27, IL6, LEP, LPL, MMP12, MMP7, NEMO, PAPPA, PAR-1, PARP-1,
PD-L2, PGF, RAGE, SCF, SRC, THBS2, THPO, TNFRSF13B, TRAIL-R2, VEGFD, and XCL1
yielded a clustering coefficient of 0.52, with a PPI enrichment p value < 0.0001. Markers
from the CVD panel that also play a significant role in metabolic and skeletal disease
areas were identified from the PC1 results for each disease group based on bioinformatic
databases, including UniProt, Human Protein Atlas, Gene Ontology (GO), and DisGeNET.
PPI network analysis was performed for three disease areas per group. These results are
shown in Figure 4. The clustering coefficient was strongest for the PD group in all three
disease areas when compared to the RA groups. The metabolic disease proteins were
identical in clustering strength in both RA groups, uninfluenced by PD status.
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Figure 3. Protein–Protein interactions (PPI) showing networking of 43 CVD related biomarkers
identified to be increased in RA with PD patients. The cluster shows frequent and strong interactions
(represented by the same color of the nodes).
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PD, PD, and RA without PD groups. The network nodes represent proteins with red colored nodes
denoting first shell interactors and green color showing second shell of interactors. All cluster
coefficients (CC) have a PPI enrichment value of <0.0001.

4. Discussion

In this report, we identified 43 markers with a strong interactive network in patients
suffering from PD, with and without RA. The risk of CVD exists in both PD and RA
through shared pathological clusters. Several markers also increase associated metabolic
and skeletal disease risk, independent of autoimmune status. In order to prevent CVD
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related morbidity and mortality in chronic inflammatory conditions, it is crucial to identify
and study CVD risk biomarkers in the early stages of inflammatory disease. Studying a
vast array of biomarkers that are significant in CVD development is an advantage offered
by protein profiling using proteomic techniques. The biological mechanisms can be better
understood with identification of early stage biomarkers which predispose RA and PD
independently or combined to risk of CVD.

In our study, we examined an array of 92 biomarkers related to cardiovascular dys-
function and inflammation in RA patients with or without PD and PD patients alone. The
disease groups showed a higher number of women of a relatively young age (<50 years).
The gender dominance of women was expected since they are affected more by RA and
seek dental care more frequently as compared to men [18]. In young women, being affected
with RA is a risk for CVD [19]. RA female patients are 2.6-times more likely to develop
CVD as compared to the general population. Our findings in relation to the age of the
present cohort are, therefore, relevant.

An overall dysregulated level of HbA1c and increased waist circumference, a measure
of central obesity, in PD patients has been confirmed previously as well [20]. Periodontal
parameters were less severe in RA patients with PD and attributable to the use of disease
modifying anti-rheumatic drugs (DMARDs) by the former group.

For direct comparisons, CVD biomarker distribution was assessed in all groups. Based
on biological processes, the frequency of PD relevant biomarkers represented immune
response (47%), cell adhesion (40%), intracellular mitogen-activated protein kinase (MAPK)
signaling cascade (35%), inflammation (30%), catabolic process (23%), and proteolysis (19%).
MAPKs are implicated as key regulators of inflammatory cytokines like IL-6 and TNF,
thus transducing inflammation [21]. One of the contributing factors to CVD is endothelial
dysfunction which is brought about by over expression of adhesion molecules due to
inflammatory mediators [22].

The association of periodontal parameters with CVD biomarkers was also examined
per disease group. In RA with PD, the associated biomarkers for periodontal pocket-
ing spanned from enzymes (ACE-2) and membrane proteins (LOX-1) to plasma proteins
(PTX3). The inverse relationship between ACE-2 levels and PPD Total scores reflect a
pro-atherogenic state as ACE-2 levels have been detected in RA patients with a negative
correlation with intima media thickness of carotid arteries [23]. Diseased probing sites
correlated moderately with PTX3, also a pro-atherogenic inflammatory marker expressed
by vascular endothelium known to modify angiogenesis and atherosclerotic lesion develop-
ment [24]. Oxidized low density lipoproteins (ox-LDL) have been directly implicated in the
pathogenesis of RA through signaling via the lectin-like ox-LDL receptor 1 (LOX-1) in the
joint synovium [25]. LOX-1 activates downstream pathways that enhance atherosclerosis
via endothelial dysfunction. LOX-1 is also expressed in platelets, where it enhances platelet
activation and adhesion to endothelial cells [26]. Both LOX-1 and PTX3 associations with
PPD Disease were moderately strong suggesting that PD contributes to a pro-atherosclerotic
milieu in RA.

In PD patients only, three biomarkers (IL-4RA, SRC, MMP-12) conveyed a consistent
pattern associated with deep pocketing. They reflect an unbalanced state with low anti-
inflammatory IL-4RA levels confirming previous findings [27]. These findings corroborate
a defect in the regulatory involvement of SRC and MMP-12 with phagocytosis and host
defense mechanisms in PD patients. Low-MMP12 levels in periodontal tissues may be a risk
factor underlying excessive pro-inflammatory IFN-γ macrophage activation in disease [28].

FGF-23, a bone-derived hormone, can also drive an increased production of pro-
inflammatory cytokines [29]. Dkk-1 is known to play a pathophysiological role in bone
erosion and joint remodeling in RA patients [30]. It negatively regulates the function of
the Wnt pathway which is involved in the differentiation of osteoblasts. Thrombospondin
2 (THBS2) a matricellular protein, has been demonstrated as an endogenous regulator of
angiogenesis and inflammation in the RA synovium [31].
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High levels of LEP (leptin) associated with increased MBL in RA with PD patients
further enforce previous findings of increased LEP levels found in dysfunctional immune
phenotype including insulin resistance, inflammation, and disturbances in hemostatic
factors [32]. TNSFR13B and its association with MBL reflects an increased B-cell prolif-
erative and surviving capacity via its receptor BAFF (B-cell-activating factor). BAFF are
up-regulated in RA synovial joints as well as early stages of PD [33,34]. IL-27′s enhance-
ment of TNF-α mediated upregulation of adhesion molecules and pro-inflammatory IL-6 in
blood monocytes of patients with acute myocardial infarction (MI) makes it high CVD risk
associated [35]. The TGM2 levels in RA without PD correlate inversely with the total sum
of MBL which aligns with previous findings that TGM2 correlates with RANKL production
in human periodontal ligament cells as part of the inflammatory response in PD [36].

Protein biomarkers with high loadings (>0.5) on PC1 exceeded 50% of the total
biomarkers analyzed in all disease groups. The biomarkers contributing to the great-
est variance were similar in all three groups. Based on their disease–gene associations,
these biomarkers are involved in vascular inflammation (HO-1, LPL, PAPPA, ADAMTS13,
ADM, PGF, and GDF-2), hypertension, and arterial disease (PAPPA, ADAMTS13, ADM,
and PGF). The underlying gene ontology represents upregulation of chemotaxis (XCL1
and CCL3), T helper 1 cytokines (SLAMF1, IL-18, XCL1, and IL-1ra), T helper 2 cytokines
(XCL1), negative regulation of vasoconstriction (ADM and LEP), hematopoietic stem cell
proliferation (THPO and ATXN) and increased bone loss (TNFSF11A and TF) [37].

The additional analyses of PPI networking for PC1 markers in CVD, metabolic and
skeletal disease areas was performed as osseous and metabolic disturbances, especially
insulin resistance, are highly frequent co-morbidities in both PD and RA [38–41]. The
clustering coefficients displayed by PD group PC 1 biomarkers reflect a greater involvement
of disease related proteins that make them a group with the highest risk for developing
CVD, insulin resistance and skeletal diseases. The dampening of inflammatory circuits due
to the use of NSAIDs and DMARDs in RA groups are to have some impact on the level of
engagement amongst these proteins. Future studies are required to identify and validate
markers of diagnostic and therapeutic relevance that may enhance the ‘treat-to-target’
strategy for RA and, hopefully, PD.

The limitations to our study pertain to the limited size of samples and the exploration
of proteins which have been associated with cardiovascular diseases. Due to the exploratory
nature of our study and the low prevalence of RA (~1%), we used a non-probability
sampling method in which groups were not sex-matched. Despite these limitations, our
findings have identified a direction for the exploration of other pathways in order to
understand molecular alterations responsible for increased risk of CVD development in
RA and PD.

5. Conclusions

We identified 43 markers with a strong interactive network in patients suffering from
PD, with and without RA. In addition, several of these markers also increase associated
metabolic and skeletal disease risk, independent of autoimmune status.
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