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This study was performed to investigate the effect of microbial supplementation diet
on the survival rate and microbiota composition of artificially produced eel larvae.
Microorganisms supplemented in the diet were isolated from wild glass eel intestines
and identified as Bacillus sp. through 16S rRNA sequencing analysis. In vitro tests
confirmed that the strain had no hemolytic activity and virulence genes. Microbial
supplemental feeding significantly increased the survival rate of artificially produced
eel larvae for 30 days post-hatchling compared with that of the control group. It also
caused changes in the α-diversity, β-diversity, and relative abundance of the bacterial
communities. Analysis via phylogenetic investigation of communities by reconstruction
of unobserved states predicted that these microbial community changes would
significantly increase the carbohydrate metabolism, membrane transport, and cellular
community pathway of the microbial supplementation group. Therefore, microbial
supplementation feeding for eel aquaculture could increase the viability of artificially
produced eel larvae and alter the microbial composition to induce metabolic changes.

Keywords: Anguilla japonica, eel, leptocephalus, survival, microbiota

INTRODUCTION

Japanese eel (Anguilla japonica) is a typical catadromous fish found in East Asian countries,
such as Korea, Japan, China, and Taiwan (Hsu et al., 2015). Although it is considered a
commercially valuable aquaculture species (Okamoto et al., 2009), eel aquaculture generally
involves catching glass eels from the wild as aquaculture seeds because commercial-scale artificial
breeding techniques have yet to be developed (Okamoto et al., 2009; Hsu et al., 2015). Consequently,
eel aquaculture is highly dependent on the capture of glass eels. However, natural eel stock is
rapidly depleting because of various factors, such as changes in the marine environment and
climate, habitat destruction, and overfishing (Tsukamoto et al., 2009; Chen et al., 2014). Therefore,
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commercial-scale artificial propagation technology should be
developed to protect natural eel resources and stabilize the
aquaculture industry (Tsukamoto, 2014; Hsu et al., 2015).

Hormonally treated eels can yield consistently abundant
eggs and sperm (Ohta et al., 1996a,b), which can be used for
leptocephalus production and subsequent metamorphosis into
glass eels (Tanaka et al., 2001, 2003). However, egg quality is
still unstable (Unuma et al., 2005), and the growth and survival
rates of artificially produced larvae are low (Ishikawa et al.,
2001; Okamura et al., 2014; Tsukamoto, 2014). Therefore, further
studies on maturation induction and larval rearing methods are
needed to overcome these deficiencies (Okamoto et al., 2009).

Marine snow is composed of particulate organic matters,
including dead or dying animals and phytoplankton, bacteria,
and fecal matter; it can be an important food source for various
organisms (Decho and Gutierrez, 2017; Shin et al., 2021). In the
wild, it has also been suggested that eel larvae may feed on marine
snow consistently present on the ocean surface (Otake et al.,
1993; Mochioka and Iwamizu, 1996; Miller et al., 2013). They use
various nutrients and substances produced by microorganisms
and organic matters that constitute marine snow (Kim et al.,
2018). Thus far, the most suitable feed for artificially produced
eel larvae is a slurry-type feed containing shark-egg powder
developed by Tanaka et al. (2001, 2003). However, it causes some
problems. For instance, it is not digested and absorbed well in the
intestine of the eel larvae; consequently, larvae grow slowly and
have a low survival rate (Hsu et al., 2015).

Fish gut microbiota play an important role in nutrient
digestion and immunological processes (Jang et al., 2021). For
example, the gut microbiota of eel larvae or microbiota in
marine snow may help produce monosaccharides required for
the synthesis of hyaluronan, which is the main component of
the bodies of preleptocephali and leptocephali (Pfeiler, 1991;
Hsu et al., 2015). However, the microbiota of Japanese eel are
poorly studied, and the effects of microbial supplementation
on survival rate at early developmental stages are yet to be
explored. Therefore, the present study is conducted to investigate
the effect of a microbial supplementation diet on the survival
rate and gut microbiota composition at early developmental
stages of eel larvae.

MATERIALS AND METHODS

Bacterial Isolation, Identification, and
Characterization
Bacteria were isolated from the intestines of wild glass eels
(5.1 ± 0.3 cm) caught in the Yeongsan River (34◦46′05.2′′N
126◦20′58.1′′E). Afterward, the intestines were separated,
homogenized, and serially diluted with 0.85% saline solution.
The suspension was spread on an LB agar plate and incubated
at 25◦C for 48 h. A single colony was isolated, cultured in
liquid medium, and identified through 16S rRNA sequencing
analysis. The isolated strain was evaluated to determine its
viability at various temperatures, pH, and salinity. Hemolytic
activity was examined by incubating bacteria on a blood agar
base plate (Kisan Bio, South Korea) at 37◦C for 48 h. Toxicity

gene analysis was performed via PCR by using the primers
shown in Supplementary Table 1. PCR was performed with a
Veriti 96-Well Thermal Cycler (Applied Biosystems, Waltham,
MA, United States) at Dong-Eui University Core Facility Center
(Busan, South Korea).

Experimental Diet Preparation
For the experimental feed, a slurry-type diet containing shark egg
as the main raw material was used (Tanaka et al., 2001; Kim et al.,
2014). Shark-egg (50 g), krill meal (6 g), Soybean peptide (3 g),
fishmeal (3 g), and vitamin mix (0.3 g) were mixed at 1,200 rpm
for 3 min and filtered at 90 µm before use.

Artificial Production of Eel Larvae
Larvae were produced using a previously described method
(Kagawa et al., 2005; Kim et al., 2007). Briefly, female (3 years old,
400–500 g) and male (3 years old, 300–400 g) eels were matured
by administering salmon pituitary extract and human chorionic
gonadotropin, respectively. Ovulation of female eels was induced
with 17α, 20β-dihydroxy-4-pregnen-3-one and fertilized with
artificially produced sperm.

Rearing System and Condition for
Feeding Trial
Fertilized eggs were cultured in a 1 t square tank equipped with
a cylindrical net (50 cm diameter); after hatching, they were
cultured in a round tank (1.5 m height and 50 cm diameter)
for 6 days. A feeding trial was conducted in 6 U-shaped tanks
(20 L) (Supplementary Figure 1), and each tank dispensed
500 larvae. Water temperature and flow were maintained at
23 ± 0.1◦C and 0.99–1.13 L/min, respectively. Experimental
feed was given five times a day (10 ml/time). The survival
rate 30 days after hatching was calculated using the following
equation: Survival rate (%) = number of surviving larvae/number
of hatched larvae× 100.

Microbiota Analysis
After the feeding trial, the larvae in each group were collected
and washed thrice with filtered water; then, 100 larvae per
group were pooled and homogenized. Bacterial DNA was isolated
using FavorPrepTM Tissue Genomic DNA Extraction Mini
Kit (Favorgen Biotech Corp., Taiwan) in accordance with the
manufacturer’s instructions. The V3–V4 region of the isolated
total DNA was amplified using primers containing the Illumina
overhang adapter sequence. Afterward, library quantification,
quality control, and sequencing were conducted at the Moagen
(Daejeon, Republic of Korea). Data were analyzed using the
EzBioCloud server.1

Bioinformatics and Statistical Analysis
Normality and homogeneity of variance of all data were
assessed using Shaprio–Wilk and Levene tests, respectively.
Data were analyzed using IBM’s Statistical Package for the
Social Sciences software (SPSS Inc., Chicago, IL, United States)

1http://www.ezbiocloud.net/
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following Student’s t-test. Statistical significance was determined
at P < 0.05. Data were presented as means± standard deviations
(SD). Principal coordinate analysis was based on the weighted
unifrac metrics of bacterial operational taxonomic units between
the different diets. Linear discriminant analytical effect size
(LEfSe) was applied to identify differentially displayed taxa
(biomarkers) among groups with linear discriminate analysis
(LDA) score > 4.0 as the threshold. PICRUSt was used to predict
the functional profiling of the intestinal microflora.

RESULTS

Bacterial Isolation and Identification
The 16S rRNA sequences of the isolated bacteria shared
99.86, 99.59, 99.39, and 99.32% homology with the following
Bacillus species: B. sonorensis NBRC 101234T (AYTN01000016),
B. haynesii NRRL B-41327T (MRBL01000076), B. licheniformis
ATCC 14580T (AE017333), and B. paralicheniformis KJ-16T

(KY694465), respectively). The isolated strain was named Bacillus
sp. FEB-1. In general, Bacillus sp. FEB-1 can survive at 20–50◦C,
pH 6–8, and 0–4% salinity. Optimal growth conditions were
35◦C and pH 7. In addition, no virulence genes (Supplementary
Figure 2) and hemolytic activity based on the pathogenic strain
B. cereus KCTC 3624 were detected

Survival Rate and Growth of Anguilla
japonica Larvae
Table 1 shows the survival rate, body length, and depth
(vertical measurement) 30 days after hatching according to
diet. The survival rate was significantly increased in the group
supplemented with Bacillus sp. FEB-1 (BAC) compared with that
of the control group (Con). However, body length and depth did
not significantly differ between the two groups.

Microbiota Analysis
The diversity estimates of the BAC group significantly differed
from those of the Con group. The Shannon value of the BAC
group (2.84 ± 0.11) decreased compared with that of the
Con (3.60 ± 0.13) groups. The Simpson value of the BAC
group (0.21 ± 0.02) increased compared with that of the Con
(0.05 ± 0.01) groups. The richness estimates of the two groups
did not significantly vary (Table 2).

Figure 1 shows the results of β-diversity analysis at the genus
level based on the UniFrac metric using principal coordinate
analysis. The Con and BAC groups had relatively long distances,

TABLE 1 | Survival rate, total length (TL), and body depth (BD) of Anguilla
japonica larvae.

Groups Survival rate (%) TL (mm) BD (mm) BD/TL (%)

Con 50.40 ± 2.24a 11.72 ± 0.74 1.13 ± 0.13 9.66 ± 0.68

BAC 66.73 ± 6.87b 11.51 ± 0.84 1.11 ± 0.15 9.63 ± 0.98

Values with different superscript letters within the same column are significantly
different (P < 0.05). The lack of superscript letter indicates no significant differences
(P > 0.05).

indicating low similarity, whereas each sample in the same group
had a relatively close distance. Therefore, Principal coordinate
analysis elucidated clear differences between the groups.

The comparison of the relative abundance within the groups
at the phylum level revealed that both groups were abundant
in the order of Proteobacteria and Bacteroidetes. However,
Proteobacteria accounted for a high rate of 78.48% in the Con
group and a relatively low rate of 49.29% in the BAC group. The
proportions of Bacteroidetes, Actinobacteria, and Acidobacteria
in the BAC group were higher than those in the Con group. At
the order level, Cellvibrionales was relatively abundant in the Con
group, and Flavobacteriales and Rhodobacterales were abundant
in the BAC group. At the genus level, Spongiibacter, Ruthia family
(unclassified), and Crocinitomix were abundant in the Con group,
and Tenacibaculum and Psychrobacter were relatively abundant
in the BAC group (Figure 2).

The heatmap analysis highlighting the relatively high or low
levels of the top 30 selected genera is shown in Figure 3.
Microbial abundance evidently differed between the two groups.
In particular, 14 genera, including Flavobacteriaceae_uc and
Nautella, were relatively abundant in the Con group. Conversely,
16 genera, including Microthrix and Serinicoccus, were abundant
in the BAC group.

Linear discriminant analysis effect size was used to identify
significant differences in the taxa of the intestinal microbiota
of A. japonica larvae. The Con group showed significant
differences in Proteobacteria (phylum), Gammaproteobacteria
(class), Cellvibrionales (order), Spongiibacteraceae (Family),
Spongiibacter (genus), Ruthia (order to genus), Crocinitomicaceae
(Family), and Crocinitomix (genus). the BAC group
showed significant differences in the Acidimicrobiia
(class), Acidimicrobiales (order), Acidobacteria (phylum),
Blastocatellia (class), Blastocatellales (order), Blastocatellaceae
(Family), Actinobacteria (phylum), Bacteroidetes (phylum),
Flavobacteriales (order), Flavobacteria (class), Flavobacteriaceae
(Family), and Tenacibaculum (genus) (Figure 4).

Changes in the presumptive metabolic functions of the
microbiota of A. japonica larvae were analyzed on the
basis of metagenome prediction via PICRUSt. The metabolic
function significantly increased in the BAC group (Figure 5).
The proportions of starch and sucrose metabolism, amino
sugar and nucleotide sugar metabolism, galactose metabolism,
pentose and glucuronate interconversions, ABC transporters,
phosphotransferase system, and quorum sensing pathways in the
BAC group were significantly higher than those in the Con group.

TABLE 2 | Alpha diversity of the bacterial communities of A. japonica larvae.

Groups Richness estimate Diversity estimate

ACE CHAO Jackknife Shannon Simpson

Con 730 ± 151 693 ± 140 769 ± 159 3.60 ± 0.13b 0.05 ± 0.01a

BAC 515 ± 25 487 ± 29 527 ± 36 2.84 ± 0.11a 0.21 ± 0.02b

Values with different superscript letters within the same column are significantly
different (P < 0.05). The lack of superscript letter indicates no significant differences
(P > 0.05).
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FIGURE 1 | Principal coordinate analysis based on the weighted unifrac metrics of bacterial operational taxonomic units between the different diets.

FIGURE 2 | Average composition and relative abundance of bacterial communities of Anguilla japonica fed different diets at the phylum (A), order (B), and genus (C)
levels.

DISCUSSION

In this study, bacteria were isolated from the intestine of wild
glass eel, and the isolated strain was identified through 16S rRNA
sequencing analysis as a Bacillus sp. Bacillus spp. are abundant in

fish intestines and known to provide various beneficial effects to
their host (Jang et al., 2021; Santos et al., 2021). For example, they
enhance digestive and antioxidant enzyme activity, immunity,
and stress-related gene expression; they also produce natural
antibacterial compounds that antagonize pathogens, thereby
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FIGURE 3 | Heatmap analysis of the genus abundance within the A. japonica microbiota from each group. Green represents the more abundant genus in the
corresponding sample and red represents the less abundant genus.

FIGURE 4 | Linear discriminant analysis effect size (LEfSe) analysis of differential abundance of taxa within A. japonica microbiota from each group. (A) Linear
discriminant analysis (LDA) score of abundance of taxa; (B) cladogram showing differentially abundant taxa between the two groups of phylum to genus.

improving the ability of fish to resist pathogenic microbes (Nayak,
2010; Cha et al., 2013; Buruiană et al., 2014; Kuebutornye et al.,
2019; Santos et al., 2021). With these advantages, Bacillus spp. can
be used as probiotics in aquaculture. Many studies have reported

the positive effects of Bacillus as probiotics on various fish species
(Hasan et al., 2019; Jang et al., 2021).

Van Doan et al. (2020) defined host-associated probiotics
(HAPs) as bacteria originally isolated from rearing water or the
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FIGURE 5 | Presumptive metabolism functions of microbiota in A. japonica with different diets. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway was
obtained from 16S metagenomic sequences using PICRUSt.

gastrointestinal tract of hosts for improving the growth and
health of hosts. When used as probiotics, they may have superior
functionality because they can evade their hosts’ defense system
and are better adapted to the host gut environment (Van Doan
et al., 2020; Jang et al., 2021). Bacillus sp. FEB-1 isolated from
the intestines of wild glass eels is also a HAP and may provide
beneficial effects on the intestines of farmed eels.

Thus far, the most suitable feed for eel larvae is a slurry-
type diet based on shark-egg powder developed by Tanaka
et al. (2003). Although many studies have been conducted since
then, further studies on feed ingredients and composition more
suitable than slurry-type diet based on shark-egg powder have
yet to be performed (Kim et al., 2014). However, this slurry-
type diet is not well digested and absorbed in the intestine of eel
larvae; consequently, their growth is slow, and their survival rate
is low (Hsu et al., 2015). Therefore, research on feed development
for the advancement of artificial propagation technology on a
commercial scale is important (Shin et al., 2021).

Marine snow, known as eel food in nature, contains a high
amount of carbohydrates belonging to various monosaccharides
and polysaccharides, such as glucose and galactose (Cowen and
Holloway, 1996; Skoog et al., 2008). Saccharides are necessary for
the synthesis of hyaluronan, the main component of the bodies
of preleptocephali and leptocephali; they are also important
for larval growth (Pfeiler, 1991; Hsu et al., 2015). Hsu et al.
(2015) conducted transcriptome analysis and reported that
preleptocephalus and leptocephalus stages have low transcript
levels of carbohydrate-digesting enzymes. They suggested that
the gut microbiota may play an important role in low nutrient
digestion and immune processes in fish (Nayak, 2010; Hsu
et al., 2015). They further highlighted the importance of the
activity of enzymes such as glucosidase detected in bacteria
isolated from marine snow (Rath and Herndl, 1994; Hsu
et al., 2015). In the present study, FEB-1 supplementation
likely changed the microbiota composition of eels, possibly
increasing metabolism related to various carbohydrates,
such as starch, sucrose, galactose, and glucuronate. These
metabolic changes might have increased the survival rate of the

larvae. However, further studies involving transcriptome and
western blot analysis are needed to confirm whether microbial
supplementation actually induces alterations in carbohydrate
metabolism in eel larvae.

Other studies have used microorganisms to increase the
digestibility and survival rate of larvae. Kim et al. (2018) used
biofloc technology (BFT) involving Bacillus species. They fed
larvae with biofloc similar to marine snow and investigated its
effects on survival and growth. They found that the growth
and survival rates of larvae fed with the BFT diet were lower
than those fed with a conventional slurry-type diet. Kim et al.
(2018) reported that these results may be due to differences in
the composition and content of carbon compounds. Tarnecki
et al. (2019) investigated the effect of Bacillus supplementation
on common snook (Centropomus undecimalis) larvae. They
reported that Bacillus supplementation can enhance the survival
rate, but it cannot be accounted for the rapid larval growth
(Tarnecki et al., 2019). Similarly, our result revealed that the
survival rate of eel larvae increased, but their overall length did
not significantly differ. Tarnecki et al. (2019) noted that Bacillus
supplementation positively affects the fish immune system, but
further studies are needed to identify this protective mechanism.

The gut microbiota composition of fish is influenced
by numerous factors, such as habitat, water quality, water
temperature, growth stage, and feed (Jang et al., 2021). Changes in
microbiota composition can affect fish metabolism and ultimately
health (Ye et al., 2011; Semova et al., 2012; Ni et al., 2014). In
this study, notable changes in microbial composition at the genus
level was observed in Tenacibaculum. For example, T. maritimum
is a well-known pathogenic bacterium in wild and farmed marine
fish (Pérez-Pascual et al., 2017). However, information about its
virulence mechanisms is limited (Avendaño-Herrera et al., 2006).
In this study, we could not suggest a clear association between the
increased survival rate of eel larvae and increased Tenacibaculum
in the microbiota of eel larvae by Bacillus supplementation.
However, we found that T. maritimum possesses genes encoding
the biosynthesis of exopolysaccharide, protease, and glycoside
hydrolase (Pérez-Pascual et al., 2017). This finding suggested
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that these genes may influence the nutrient digestion and
absorption of eel larvae.

CONCLUSION

Bacillus sp. FEB-1 supplementation could improve the
survival rate of artificially produced eel larvae and increase
carbohydrate metabolism in eel larvae by changing the
microbiota composition. Microbial supplementation might
be used to increase survival rate in artificially produced eel
larva aquaculture.
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