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Homeostasis in vertebrate systems is contingent on normal cardiac function. This, in
turn, depends on intricate protein-based cellular machinery, both for contractile function,
as well as, durability of cardiac myocytes. The cardiac small heat shock protein (csHsp)
chaperone system, highlighted by αB-crystallin (CRYAB), a small heat shock protein
(sHsp) that forms ∼3–5% of total cardiac mass, plays critical roles in maintaining
proteostatic function via formation of self-assembled multimeric chaperones. In this
work, we review these ancient proteins, from the evolutionarily preserved role of
homologs in protists, fungi and invertebrate systems, as well as, the role of sHsps and
chaperones in maintaining cardiac myocyte structure and function. We propose the
concept of the “sarcostat” as a protein quality control mechanism in the sarcomere.
The roles of the proteasomal and lysosomal proteostatic network, as well as, the
roles of the aggresome, self-assembling protein complexes and protein aggregation
are discussed in the context of cardiac myocyte homeostasis. Finally, we will review the
potential for targeting the csHsp system as a novel therapeutic approach to prevent and
treat cardiomyopathy and heart failure.

Keywords: aggregates, autophagy, ubiquitin 26S-proteasome system, lysosome, heat shock proteins

INTRODUCTION

Evolving over the previous 600 million years (Poelmann and Gittenberger-de Groot, 2019),
the metazoan circulatory system is at the center of the explosion of multicellular functionality,
culminating in the human era. From primordial heart tubes in early protostomes to the four-
chambered hearts of mammals, each of these circulations have ensured nutrient and oxygen supply,
maintenance of temperature, as well as waste removal. In each instance, the circulatory system
is driven by contractile cells, from the endo-symbiotic contractile elements in ancient protists a
billion years ago, to the cardiac myocytes of chordates. The highlight of all these cells is a complex
network of protein assemblies that form organized contractile machines. Cardiac myocytes are
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unique in lifespan, size, structure, function, durability, and
metabolism. Each of these features is essential in ensuring
continuous uninterrupted cardiac function, from early embryo,
through the entire duration of post-natal life. Morphologically,
the cardiac syncytium is similar to that observed in many
protists and yeasts. In addition to the unusually large energetic
apparatus, essential for powering the contractile machinery,
cardiac myocytes, like yeast, require a complex proteostatic
system. Unlike the dominant role of the proteasome in
other cell types, cardiac myocyte lysosome function, like the
vacuole in bacteria, plants and yeast, plays a major role in
integrating metabolism (Mani et al., 2018) with both synthetic
and degradation machinery for the contractile proteins. Thus,
lysosome dysfunction results in metabolic derangement, as well
as, proteotoxicity. This ultimately presents as cardiomyopathy
and heart failure (Platt et al., 2012). Given the enormous and
dynamic proteostatic load, in both long-lived monads as well as
cardiac myocytes, evolutionarily preserved chaperones, like the
small heat shock protein, αB-crystallin (CRYAB), play a critical
role in maintaining cardiac homeostasis. sHsp mutations as well
as those in proteostatic machinery components, such as BAG3,
have been implicated as mediators of cardiomyopathy. In this
review, we highlight the role of these proteostatic systems that
constitute the underpinnings on normal cardiac function, as well
as their roles, both, as arbiters of heart failure and, as potential
novel therapeutic targets.

PROTEOSTATIC FAILURE IN HEART
DISEASE: THE DEVIL IN THE HEART

Given the primacy of their contractile function in homeostasis,
diseases affecting cardiac myocytes result in impairment of, either
or both, systolic (contractile) and diastolic (relaxation) properties
of the heart. This ultimately presents as cardiomyopathy and
heart failure leading to death. From a public health point
of view, unlike advances in infectious diseases and cancer,
epidemiologic indices have lagged with regards to the societal
impact of cardiovascular disease, especially heart failure (Virani
et al., 2020). This is despite considerable advances in neuro-
hormonally targeted approaches in pharmacotherapy, as well
as hemodynamically focused and perfusion-directed invasive
procedures and devices. A critical lacuna remains in development
of strategies specifically directed toward the cardiac contractile
system. Notably, with the limited efforts to augment or
replace cardiac contractility, current approaches in the form
of mechanical assist devices, stem cell therapy and, select
pharmacological therapies, have minimal overall lasting benefits.
Furthermore, recent epidemiologic trends show a worrisome
reversal of hard-fought prior gains with improvements in
cardiovascular mortality and mortality (Virani et al., 2020),
dictating a sense of urgency. Optimal cardiac function depends
on both optimal function of the cardiac myocytes as well as
preservation of the tissue architecture. Thus, targeting the protein
quality control systems in rebuilding, and possibly enhancing,
the unique cardiac contractile protein network, in situ, is a very
attractive strategy.

Cardiomyopathies are traditionally classified by etiology,
either as sequelae of ischemic heart disease (due to occlusion
of coronary arteries) [ischemic cardiomyopathy (ICM], or
those without ischemic insults [non-ischemic cardiomyopathy
(NICM)] (McKenna et al., 2017). Despite this differentiation,
the transition from incipient to overt heart failure in both forms
of cardiomyopathy shares many common mechanisms such as
incremental hemodynamic stresses, metabolic alterations,
abnormal tissue perfusion and inflammatory changes.
Abnormalities in protein quality control also appear to play
roles in both ischemic and non-ischemic dilated cardiomyopathy
(reviewed in Henning and Brundel, 2017). Similar to the
“second hit” hypothesis in malignant transformation, it has been
suggested that genetic predisposition in the form of abnormal
protein quality control may provoke changes in the sarcomere
that result in cardiomyopathy and heart failure (Predmore
et al., 2010; Herrmann et al., 2013; Rainer et al., 2018). Indeed,
while mutations in candidate protein quality control machinery
proteins like αB-crystallin, BAG3, HspB7, Vps34, p97 appear to
play mechanistic roles in inducing dilated cardiomyopathy in
genetic myofibrillar myopathies (Vicart et al., 1998; Bova et al.,
1999; Fang et al., 2017; Judge et al., 2017; Kimura et al., 2017;
Dominguez et al., 2018; Brody et al., 2019); variants in many
of these, such as BAG3 and KLHL3 are also associated with
cardiomyopathy in population-based genomic analyses (Aragam
et al., 2018; Myers et al., 2018; Shah et al., 2020). Conversely,
mutations in sarcomeric components like desmin, titin, actin,
myosin, myosin binding protein C (cMyBP-C) are associated
with features of abnormal proteostasis and are similarly reflected
in population genomic studies as well (Goldfarb and Dalakas,
2009; Herman et al., 2012; Schlossarek et al., 2012; Esslinger
et al., 2017; Hoorntje et al., 2017; McNally and Mestroni,
2017; Glazier et al., 2018). Interestingly, in humans, autosomal
recessive deletion-mutant of αB-crystallin at M1 (Ma K. et al.,
2019) as well as missense mutations in this protein at D109A
(Fichna et al., 2017), D109H (Sacconi et al., 2012), R120G (Vicart
et al., 1998), and R157H (Inagaki et al., 2006) result in early
fatality. In contrast, a murine model of αB-crystallin ablation
(which is accompanied with unintended ablation of Hspb2;
Brady et al., 2001) results primarily in skeletal myopathy which
manifests with aging; and forced overexpression of αB-crystallin
mutants (such as R120G) has been required to replicate human
cardiomyopathy phenotype in a much more insidious and
delayed fashion (Wang et al., 2001; Rajasekaran et al., 2007). This
highlights differences in protein quality control mechanisms
between species, whereby caution is warranted in interpreting
findings from murine experiments as models of human disease.

A key feature of protein quality control pathways is the
efficient functioning of systems to degrade misfolded, damaged
and potentially superfluous proteins. Tagging of proteins to target
them for degradation is typically achieved by ubiquitination,
which involves a covalent attachment of the protein to a 76
amino acid protein ubiquitin moiety to a lysine residue; which
may further expand via a variety of branching mechanisms
to achieve poly-ubiquitination (Kwon and Ciechanover, 2017).
In the process of poly-ubiquitination, a ubiquitin moiety can
be conjugated to another one via one of its seven lysine
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residues or its methionine residue to confer specificity in
further processing of the host protein that is ubiquitinated.
Ubiquitination of proteins can confer signaling roles, or result
in degradation of the protein. Studies have demonstrated that
linkages via lysine 48 (K48) and lysine 11 (K11) target proteins
for degradation via the proteasome, whereas lysine 63 (K63)
linkages confer signaling roles or are targeted for degradation
via the autophagy-lysosome pathway (Kwon and Ciechanover,
2017). The proteasome is a specialized organelle in the cell
comprised of a complex of proteolytic enzymes organized in two
subunits, a catalytic 20S subunit; and a regulatory 19S subunit,
which together form a cylindrical structure that de-ubiquitinates,
unfolds and cleaves peptide bonds in proteins to generate
amino acids (Bard et al., 2018). Ubiquitin tagging of aggregate-
prone proteins is essential for their efficient removal (Galves
et al., 2019). However, studies have documented impairment
in the ubiquitin proteasome pathways by mutant αB-crystallin
(R120G) (Chen et al., 2005; Zhang et al., 2010, 2019; Gupta
et al., 2014) and desmin mutants (Liu et al., 2006a,b) that
are linked to cardiomyopathy in humans; suggesting that
worsening protein aggregate pathology is linked at least in
part to progressive impairment in this arm of the protein
quality control machinery. Moreover, recent studies conclusively
demonstrate rapid development of fulminant cardiomyopathy
and death in mice lacking Psmc1 (that encodes for an essential
component of the 19S proteasome subunit) (Pan et al., 2020);
with concomitant upregulation of the autophagy-lysosome
machinery as an adaptive response to remove accumulated
protein aggregates.

Autophagy, a lysosomal degradative pathway that sequesters
proteins, organelles and other cellular constituents is another
mechanism for degradation of long-lived proteins and damaged
proteins, and acts as a back-up in the setting of proteasome
dysfunction (Pohl and Dikic, 2019). Autophagy or “self-
eating” occurs via multiple pathways that involve sequestration
of cargo within double membrane bound autophagosomes
(termed as macroautophagy), direct uptake of proteins with
a specific KFERQ motif into the lysosome via chaperone-
mediated autophagy, or lysosomal membrane invagination
and sequestration of proteins via microautophagy (reviewed
in Dikic and Elazar, 2018). Studies from our lab as well
as others have demonstrated that the autophagy-lysosome
pathway also becomes progressively impaired with expression of
aggregate-prone proteins in cardiac myocytes, such as R120G
mutant of αB-crystallin (Ma X. et al., 2019; Pan et al.,
2019); which is mechanistically secondary to suppression of
the lysosome biogenesis program. Conversely, many lysosomal
disorders including Danon’ disease, Pompe’s disease and Fabry’s
disease result in a cardiomyopathy with evidence of failed
proteostasis (reviewed in Sciarretta et al., 2018a). Failure
of the ubiquitin-proteasome system and autophagy-lysosome
pathways has also been implicated in more common forms
of cardiomyopathy and heart failure resulting from ischemia-
reperfusion injury and pressure overload stress (reviewed in
Wang et al., 2011). Specifically, we have uncovered evidence for
lysosome impairment in cardiac myocytes (Ma et al., 2012a,b)
and macrophages (Javaheri et al., 2019) in the setting of

myocardial ischemia-reperfusion injury, at least in part due
to suppression of the lysosome biogenesis program (Godar
et al., 2015; Ma et al., 2015). This impairment of autophagy-
lysosome pathway is associated with accumulation of poly-
ubiquitinated proteins (Godar et al., 2015), pointing to a critical
role for this pathway in protein quality control in the setting of
ischemia-reperfusion injury. Moreover, autophagy suppression is
also observed in the chronic phase after myocardial infarction
and contributes to development of ischemic cardiomyopathy
(Maejima et al., 2013). This is associated with formation
of “aggresomes” which are p62-containing protein aggregates
formed as a cellular response to sequester mis-folded and
damaged proteins when their removal is impeded (Johnston
et al., 1998). In this study (Maejima et al., 2013), the autophagy
suppression was mechanistically driven by activation of Mst1
(mammalian Ste20-like kinase 1), a serine-threonine kinase
component of the Hippo signaling pathway, which is sufficient
to phosphorylate Beclin-1 to promote its sequestration by Bcl-
2 and inhibit autophagosome formation. Indeed, work from this
group subsequently demonstrated that stimulation of autophagy-
lysosome pathway with trehalose was effective in clearing p62
and rescuing post-myocardial infarction ventricular dilation
and dysfunction (Sciarretta et al., 2018b). p62 has also been
described to play a critical role in aggresome formation in
the setting of R120G αB-crystallin mutant or desmin mutant
expression, which protects cardiac myocytes from cell death
(Zheng et al., 2011). Other components of the aggresome
have been uncovered in studies with laser microdissection of
intracytoplasmic inclusions identified in muscle biopsies from
patients with reducing body myopathy (RBM) which led to the
identification of mutations in Xq26.3-encoded four and a half
LIM domain 1 (FHL1) protein as a cause for cardiomyopathy
(Schessl et al., 2008).

Impairment of the autophagy-lysosome pathway has also
been described with progression of pressure-overload induced
hypertrophy and cardiac failure (reviewed in Sciarretta et al.,
2018a), which accompanies failure of ubiquitin proteasome
system and impaired protein quality control (Wang et al.,
2011). Recent also studies demonstrate that coupling of
poly-ubiquitinated proteins to extra-proteasomal receptors,
specifically Ubiquilin 1, plays an important role in removal of
K48-linked poly-ubiquitinated substrates in cardiac myocytes
to maintain homeostasis in response to ischemia-reperfusion
stress (Hu et al., 2018). Conversely, activation of the ubiquitin-
proteasome system or the SUMOylation pathways (with UBC9
overexpression) were sufficient to rescue many features of
cardiomyopathy induced by expression of the R120G αB-
crystallin mutant (Gupta et al., 2016). Taken together, these
observations suggest an intricate relationship in the delicate
balance between the sarcomere and proteostatic systems that are
key to the otherwise robust, durable and reliable functioning
of the sarcomere and the cardiac myocyte. Conceivably, while
inciting event may differ based upon the individual pathology,
failed proteostasis machinery and increased abundance of
aggregate-prone protein may be part of a vicious cycle where
either impairments trigger a feed forward loop to drive
the pathology.
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SARCOMERES: SOMETHING IN THE
WAY THEY MOVE

In order to understand the key function of cardiac myocytes,
it is imperative to focus on the complex protein architecture
that define the essential contractile unit of the heart, namely
the sarcomeres (see Figure 1). Consisting of repeating units
of a near-identical arrangement of contractile, non-contractile
proteins as well as a complex of regulatory proteins, up to
300 of these 2.2 µm-long sarcomeres are joined end-to-end
to form the myofibrils that power cardiac contractility (Clark
et al., 2002; van der Velden and Stienen, 2019; see Figure 1).
Thus, each myofibril consists of repeating sarcomeres. Similar
to the arrangement of proteins in the lens, a crystalline
arrangement of large proteins in the sarcomeres results in
the formation of the contractile system, which is key to the
essential function of cardiac myocytes. This system of contractile
proteins is held in place, attached to the sarcolemma and the
extracellular matrix via integrins in a non-contractile protein
assembly known as costameres. Unlike simpler myofibrils in
other cell types, striated muscle cells (cardiac and skeletal
myocytes) have organized bundles of myofibrils associated with
a reticulum of both modified smooth endoplasmic reticulum
[sarcoplasmic reticulum (SR)] and mitochondria. While the
former coordinate the excitation-contraction coupling from the
sarcoplasmic depolarization via local release of calcium, the latter
are responsible for production of high-energy phosphates to
power the contraction. As myocytes are attached to each other
with an intercalated disk consisting of proteins like actinin and
vinculin, contraction of individual myocytes in series results
in shortening of myofibrils; and simultaneous shortening of
myofibrils in parallel drives myocyte contraction. Therefore, the
sum of individual sarcomere shortening, both in series across
individual myofibrils, as well as in parallel across myofibrils in the
same bundle and across bundles in an individual myocyte, results
in contraction of the entire myocyte and consequently the muscle.

Each sarcomere is bound by sarcomeric a-actinin-rich and
electron-dense Z-lines on either side that form the essential
platform as well as a central M-line that forms the two ends of
the platform on which sarcomeric shortening occurs (Figure 1).
Contractile proteins arranged as isotropic thin filaments attached
to the Z-lines on either side are pulled inwards by the movement
of anisotropic thick filaments attached to the central M-line,
resulting in sarcomeric shortening. Simultaneous activation of
the entire myofibril driven by coordinated calcium fluxes in the
SR results in a summed contraction across the entire myofibril
as well as myofibril bundles, and consequently contraction of the
entire cell. While the arrangement of the motor proteins, actin
and myosin in the thin and thick filaments respectively, results in
contraction, it is the creation of a platform for these elements as
well the anchors to the myofibril and cell architecture that are key
to successful generation of a force from a functional sarcomere.
Of these platform proteins, the giant proteins, titin, obscurin and
nebulette, form the underlying structure on which the cardiac
sarcomere is constructed. The largest protein in mammals, titin
(MW 3.7 Md) (Tskhovrebova and Trinick, 2003), consists of both
elastic and inelastic elements that are key to both structural and

mechano-transductive functions. In addition, the titin skeleton
provides a platform for both regulatory and degradative elements
for repair of sarcomere elements and adaptation to stress.

As touched on previously, anchor proteins such as desmin,
are essential to anchor the filaments to the Z-line as well
as to costameres linking the myofibrils to the sarcolemma,
the extracellular matrix as well as other myocytes via the
intercalated (I) disk. In addition, desmin appears to be key
in binding the mitochondria, the endoplasmic reticulum and
the lysosomes to the myofibrils. Unlike mitochondria in other
tissues, the reticular arrangement of these sarcomere-associated
mitochondria is facilitated by desmin and result in enhanced
functioning of these mitochondria (Milner et al., 2000). Thus,
loss of desmin, during stress states results in both disruption of
the sarcomere as well as mitochondrial dysfunction reflected in
abnormal giant mitochondrial with swelling of the cristae and
membrane depolarization (Milner et al., 1999; Maloyan et al.,
2005; Diokmetzidou et al., 2016). Loss of desmin function, either
due to mutation (Dalakas et al., 2000) or stress related post-
translational modifications (Rainer et al., 2018; Tsikitis et al.,
2018) result in destabilization of the sarcomere characterized by
widening and loss of definition of the otherwise sharp electron
dense actinin rich Z-lines and I-disks. Contractile dysfunction
in this setting results from the disarray of the elements of
the sarcomere as well as disruption of the attachment of the
myofibrils to the cell membrane and ECM, as well as from the
interaction with the nuclear lamina resulting in loss of nuclear
homeostasis (Heffler et al., 2020). While initially identified in
desmin-related genetic cardiomyopathies (Goldfarb and Dalakas,
2009), these features of desmin mis-localization, as well as
sarcomeric disarray, are increasingly identified as features of
cardiomyopathy in general (Coats et al., 2018; Tsikitis et al., 2018;
Nakano et al., 2019).

While the contraction of an individual sarcomere is a
remarkable marvel of electromechanical and metabolic
coordination, the real achievement is the scaling of this in
a coordinated syncytial pattern to the level of the myofibril,
myocyte, and, ultimately, the cardiac muscle resulting in a
functional heartbeat. Furthermore, this repeats, without fail,
from the embryonic contraction of cardiac precursors through
to the adult heart for many decades. In fact, until recently, the
cessation of heartbeat was the sine qua non of death, in general,
prior to recognition of “brain death.” With the exception of
tonic contractility (albeit at lower frequencies) of the skeletal
musculature powering respiration, cardiac myocyte function
as well as the incredibly complex electromechanical cardiac
syncytium is characterized by the amazing mechanical advantage
generated by this unique morphology of the heart. This manifests
with translating a 5–10% myofibril shortening into a 50–70%
reduction in cardiac volume with each heartbeat. Thus, small
disruptions in the contractility of individual sarcomeres result
in equally dramatic and, potentially lethal, consequences to the
organism. The close relationship of the sarcoplasmic reticulum,
as well as sarcomere-associated mitochondria and lysosomes
result in the ability to maintain unique metabolic signatures as
well as a remarkable ability of the heart to endure during states
of duress to the organism. Furthermore, the presence of direct
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FIGURE 1 | The sarcomere from the protein quality control perspective. Cardiac myocytes contain multiple myofilament bundles running through the length of the
cell and are attached on either end to the intercalated disk between adjacent cells. Each myofilament, in turn, consists of a series of repeating units of contractile
assemblies, known as sarcomeres. Each sarcomere is 2.2 microns in length and extends between two electron dense lines, the Z-lines with alternating areas of
isotropic (I band) and anisotropic (A band) with a slender electron dense central M-line. The A band consists of an overlap zone with both thick and thin filaments,
while the I band extends from the Z-line consisting of only thin filaments. Around the M-line, there is a relatively isotropic area consisting of only thick filaments known
as the H-zone. The thin filaments are attached to the Z-lines via the anchor protein desmin, which also results in anchoring sarcomeric mitochondria and lysosomes
to the sarcomere. Each sarcomere is also attached via integrins and laminins to the extracellular matrix via costameres that also anchor the sarcomere to the
sarcolemma as well as to the intercalated disk. Disruption of desmin results in disruption of the sarcomere, mitochondrial dysfunction, and cardiac myocyte
dysfunction, ultimately presenting with fatal cardiomyopathy. The Z-lines are formed via assemblies of actinin, actin, as well as a host of Z-line associated proteins.
The underlying skeleton of the entire sarcomere is created via the giant proteins, titn, obscurin, and nebulette. The titin sarcomeric skeleton extends from the Z-line to
the M-line. Over the titin skeleton, thick, and thin filaments are assembled. High energy phosphate driven movement of the myosin (thick filaments) against the actin
filaments, triggered by calcium fluxes from sarcolemmal depolarization, results in shortening of the sarcomere. Summation of sarcomere contraction results in
cardiac myocyte and ultimately, the heartbeat. Cognate chaperones (e.g., unc-45) as well as multifunctional chaperones [CRYAB (αB-crystallin)/Bag3] play roles in
maintaining the sarcomere and are listed above. The proteins at the above noted structures and associated chaperones are listed underneath in yellow and orange
background.

points of communication (via integrins to the cell membrane and
the extracellular matrix as well the between the myofibrils and
the nucleus), allow the cardiac myocyte to maintain morphologic
stability while dynamically adapting to continually variable
hemodynamic, electromechanical, metabolic, and energetic
changes (Henderson et al., 2017).

SARCOSTAT: A PROPOSED
FRAMEWORK TO UNDERSTAND
SARCOMERIC PQC
As maintenance of this assembly of large, otherwise insoluble,
proteins is the key to homeostasis in chordates who depend on
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the continuous contractile function of the cardiac system, it is
necessary to understand how these sarcomeres assemble, endure
stress, remodel and how these proteins are degraded. Unlike the
cardiac myocytes that have a remarkably long life and low (if any)
replacement potential in post-natal life, myofibrils, costameres,
and organelles have a comparatively short existence. Half-lives of
sarcomeric proteins vary but most proteins are replaced within
a matter of days and weeks (Martin, 1981; Rudolph et al., 2019).
While hemodynamic stress results in increased protein synthesis
(Schreiber et al., 1981), this is often accompanied by accelerated
degradation, consistent with stable stoichiometry and steady
state half-lives. Furthermore, it was recently demonstrated that
both overexpression experiments with troponin I as well as with
photobleaching experiments in a titin-GFP transgenic mouse
line, that the overall stoichiometry suggests dynamic movement
between the sarcomere and a reserve pool in the cytosol exists
(Feng et al., 2009; da et al., 2011). This is remarkable given the
fact that these proteins are regarded as highly insoluble and in
the case of titin, remarkably large. Despite data showing that
mRNA localizes to the sarcomere with local ribosomal synthesis
of protein (Lewis et al., 2018), the question remains as to how
cardiac myocytes are able to efficiently maintain the structure
and function of the sarcomeres with accurate replacement of
both damaged components and reintegrate “repaired” proteins,
particularly in the setting of ischemic stress. To understand the
dynamic nature of these processes, we propose the concept of a
“sarcostat” (see Figure 2).

In addition to contractile and cytoskeletal elements, each
sarcomere has a variety of proteins which function to maintain
optimal contractility of the sarcomere. These include association
of calpain 3 and 4 with the M-line; and of the autophagic
adaptors, p62 and NBR1, on the titin kinase domain on the thin
filament. Also, a host of specific ring finger proteins (MuRFs)
are associated with the sarcomere, which function both as E3
ligases to facilitate protein degradation via K48 ubiquitination
of sarcomeric proteins (Kedar et al., 2004) and for lysosomal
targeting (or activation of signaling) via K63 ubiquitination
(as occurs via CHiP) (Ulbricht et al., 2013). In contrast to
their expected function, the sarcomeric calpains do not degrade
proteins but merely facilitate removal of individual proteins
from the sarcomere by making single cuts (Williams et al.,
1999). In this proposed model (see Figure 2), the released
proteins are then directed to the sarcostat (infra vide) and
either recycled or degraded, via either the ubiquitin-protesomal
system or the autophagy-lysosomal pathway. As many of the
sarcomeric proteins are large complex structures, they need to be
chaperoned to prevent misfolding and aggregation. For instance,
the anchor protein desmin, which is essential for maintaining
sarcomere integrity as well as cardiac sarcomeric mitochondria, is
characterized by a large intrinsically disordered (low complexity)
domain with a predisposition to form stable misfolded oligomers
in the absence of its cognate chaperone αB-crystallin (Wang et al.,
2001; Sharma et al., 2017; Kedia et al., 2019). This phenomenon
is also seen in the case of filamin C, actin and myosin (Wojtowicz
et al., 2015; Szikora et al., 2020). The discovery of variants of the
giant protein titin in genomic studies of cardiomyopathy (Tharp
et al., 2019), has also had a major impact in our understanding

of how sarcomeric proteins are chaperoned in homeostasis and
under stress. αB-crystallin appears to interact with the n2b region
of titin in cardiac muscle and this binding plays a role in the
stiffness of the sarcomere (Bullard et al., 2004). Similar to the
effect of preventing aggregation of desmin, the binding of CRYAB
to titin prevents aggregation of the disordered aggregation prone
PEVK domain in titin. This facilitates optimal titin folding and
maintains sarcomere elasticity (Kotter et al., 2014).

Studies have demonstrated that all sarcomeric proteins are
produced far in excess of the actual observed protein content
in the sarcomere (Lewis et al., 2018), and a significant fraction
of sarcomeric proteins is actively in flux to and from a
presumed “pool” to the sarcomere. Most of these proteins are
large (if not giant), intrinsically insoluble and thus, aggregate
prone. Although protein aggregation has been demonstrated
during stress states (i.e., hemodynamic and metabolic stress),
microscopy of normally functioning sarcomeres do not show
where this “lost” protein pool of insoluble proteins exists or
even why this stoichiometric excess production and flux exists.
The concept of a myocytoplasmic “sarcostat” helps explain these
apparent inconsistencies (see Figure 2). The sarcostat consists
of a complex of chaperone proteins (Bag3, Unc-45, Hsp90 as
well as the sHsps [HspB1 and HspB5-8 (including CryAB)],
adapter proteins (p62, nBR1, and atg8), and “sensor” protein
kinases and phosphatases (PKA, PKC isoforms, mTORC1, p38
MAPK, calcineurin and the titin kinase domain of titin). These
are also complexed with anchor proteins (e.g., desmin), structural
proteins (e.g., titin and obscurin), RNA binding proteins,
sarcomeric ribosomes, adjacent sarcoplasmic reticulum, intra-
sarcomeric calpain proteases, proteasome-directed (MuRFs) and
autophagy-lysosome (CHIP/STUB) directed ubiquitin ligases,
protein aggregates, stress granules, sarcomeric mitochondria and
last, but not least, the sarcomere-associated lysosomes. In this
model, the sarcostat is critical in continuously building, repairing,
remodeling and degrading the sarcomere, thus reinforcing the
notion of a dynamic sarcomere that actively and rapidly responds
to changes in loading and environmental cues, rather than the
prior static model of a singular contractile apparatus. Evidence
for this model, albeit fragmented, already exists. In addition to
the stoichiometric argument, the energetic argument to be able
to draw on a local pool of protein, rather than solely relying
on newly synthesized protein adds tremendous flexibility during
states of metabolic stress when transcription and translation may
be affected. Furthermore, augmentation of the protein quality
control machinery (both proteasomal as well as the autophagy-
lysosomal pathway) is associated with benefits and sarcomere
recovery in a variety of heart failure models associated with
sarcomere dysfunction even in the absence of correction of
the primary genetic abnormality (such as mutations in MYH7,
desmin, and CryAB) (Li et al., 2011; Pattison et al., 2011; Ranek
et al., 2013; Gupta et al., 2014; McLendon et al., 2014; Cabet et al.,
2015; Su et al., 2015; Dahl-Halvarsson et al., 2018; Ma X. et al.,
2019). Thus, various elements of the “sarcostat” are in dynamic
equilibrium, whereby perturbations in one element (either
genetic or environmental) induce structural and functional
abnormalities, and therapeutic targeting of this inciting stimulus
or another balancing node can restore homeostasis.
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FIGURE 2 | Proposed model of the cardiac sarcostat. In this model, mRNA and proteins are located in stoichiometric excess, in vicinity of the sarcomere, as a
myocytoplasmic pool. As most sarcomeric proteins are highly insoluble and aggregate prone, concerted action of a variety of sarcomeric chaperones (in green
letters) and chaperone associated sarcomeric proteins (in red letters) is required to ensure normal sarcomere structure and function. These chaperones also appear
to be integral to sarcomere assembly as well as repair and maintenance of sarcomeric proteins, in situ. When the damaged proteins are detected (often due to
exposure of kinase sites) by the “sarcostat damage sensing mechanism,” the proteins are removed from the sarcomere (via sarcomeric calpains) and returned to the
myocytoplasmic reserve pool. When sarcomeric proteins acquire unfolded states due to nascent status, or are misfolded as a result of synthetic errors or due to
damage, sarcostat chaperones assist in their refolding and in enabling dynamic equilibrium between the sarcomere-associated and the reserve pools. The proteins
that are beyond the capacity of the refolding mechanism or require to be stored in the anticipation of continued stress, undergo aggregation under the action of
Bag3, CryAB, and p62. As a result of liquid-liquid phase transition, these proteins and their cognate chaperones remain outside the osmotic load of the cell, stacked
in a compact arrangement due to their intrinsic disordered domains (IDRs). These aggregates can be a source to release protein back in to the myocytoplasmic pool
and, thus, the sarcomere. Normal lysosomal function and, possibly mitochondrial aggregate uptake (via a pathway termed as “MAGIC,” see text), result in
continuous flux of these aggregates. In addition, normal proteolysis of isolated proteins occurs via the ubiquitin proteasome system and the autophagy-lysosomal
pathway. During states when the ubiquitin proteasome pathway is inhibited, proteins are diverted into storage as protein aggregates or for degradation via the
autophagy-lysosomal pathway. As many disease states also result in lysosomal dysfunction, the accumulation of the protein aggregates accompanies failure of the
sarcostat. In these states, upregulation of the sarcostat protein degradation machinery (both UPS and ALP), results in improved sarcomeric protein quality, while
concurrently increasing aggregate removal.
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PROTEIN AGGREGATION IN CARDIAC
MYOCYTES: FRIEND OR FOE?

A fundamental question in protein aggregate pathologies across
multiple organ systems is whether protein aggregates are “good”
or “bad” (Cox et al., 2018). When viewed as part of the
static sarcomere model, protein aggregates have always been
regarded as a pathologic, potentially toxic entity (Henning and
Brundel, 2017). Indeed, akin to the pathology observed in
neurodegenerative diseases, both pre-amyloid oligomers (Del
Monte and Agnetti, 2014) and protein aggregates, consisting
of a combination of normal sarcomeric proteins with or
without mutated proteins, have been ascribed toxic roles. This
notion is reinforced by studies that show that intracytoplasmic
accumulation of these pre-amyloid oligomers, aggregates or
their “toxic” constituents, recapitulates cardiotoxicity (Sanbe
et al., 2004; Pattison et al., 2008, 2011); akin to a toxic
role for pre-amyloid Aβ oligomers postulated as a pathogenic
mechanism in Alzheimer’s disease (Demuro et al., 2011). Yet,
the appearance of cardiac myocyte protein aggregates following
hemodynamic stress in the pressure-overloaded left ventricle
(Tannous et al., 2008) may be akin to the transient non-
toxic Aβ plaques seen in traumatic brain injury (Scott et al.,
2016) or reversible hyaline change in hepatic injury models
(Kucukoglu et al., 2014); and may represent an adaptive state,
to park large insoluble (and often ubiquitinated), proteins in a
transitional state.

Understanding the dichotomous roles ascribed to such protein
aggregates and assemblies will require experimental interrogation
of their physico-chemical state using state of the art tools. A key
feature of many protein aggregates is the presence of β-pleated
sheets, which allow for efficient stacking of proteins as well as
the concept of the liquid-liquid phase separation. Rather than
conceptualizing these as precipitated solids in an otherwise liquid
cytosol, protein aggregates can be considered as membrane-
less organelles, similar to nucleoli, ribosomes, stress granules
and P-bodies (Mitrea and Kriwacki, 2016; Uversky, 2017). As
discussed in the subsequent section, protein aggregates in lower
species are understood to play clearly adaptive roles as well
as have potential toxic effects. The difference between the two
functional states appears to be driven by the constituents of
the aggregates rather than the aggregates themselves. Based on
their currently understood role in protein aggregate formation
in a variety of systems and species, the co-chaperone Bag3
(Meriin et al., 2018), the adaptor protein p62 (Komatsu et al.,
2007; Sun et al., 2020) and small heat shock proteins (Ungelenk
et al., 2016; Mogk and Bukau, 2017) (including the remarkably
cardiac myocyte enriched chaperone αB-crystallin; Rajasekaran
et al., 2007) appear to be critical in facilitating cardiac myocyte
proteostasis. Of these, αB-crystallin (and its homologs) appears
to be a universal component of these aggregates from bacteria to
man (reviewed below). The presence of intrinsically disordered
domains in all three of these proteins (Rauch et al., 2017; Wang
et al., 2018; Haslbeck et al., 2019) as well as the potential for prion-
like effects of proteins such as αB-crystallin that can exported via
exosomes (D’Agostino et al., 2019) may result in both paracrine
as well as potential endocrine effects.

In lower organisms, p62-enriched aggregates are believed
to protect cells by sequestering toxic proteins [e.g., Keap1
(Pan et al., 2016) and mutant αB-crystallin (Zheng et al.,
2011)]. In mammals, the preponderance of evidence points
to protein aggregates being associated with cardiac pathology,
suggesting that aggregates may be pathogenic (vide infra).
Contrary to this assertion, the appearance of protein aggregates in
cardiac myocytes after hemodynamic stress (pressure overload)
in the myocardium (Tannous et al., 2008) may be adaptive
as suggested by studies targeting TRIM21, a RING finger
domain-containing ubiquitin E3 ligase that ubiquitylates p62 on
lysine 7 to prevent is ability to aggregate (Pan et al., 2016).
Mice lacking TRIM21 demonstrated near complete protection
against pressure overload-induced left ventricular dilation and
dysfunction, associated with marked aggregation of p62 and
ubiquitylated proteins, suggesting that the inability to form
protein aggregates worsens cardiomyopathy in this setting. This
suggests that there is a “cinderella-zone” with respect to protein
aggregate formation, akin to models seen in lower species (as
discussed below). In this context, we speculate that the poorly
understood “semi-crystalline” sarcomere assembly mechanism
may share considerable similarity to the assembly of amyloid
and protein aggregates; as mutations of key chaperones and
components of the proposed cardiac sarcostat [i.e., Bag3 (Hishiya
et al., 2010) and HspB7 (Mercer et al., 2018)] result in defects
in sarcomere assembly, sarcomere maintenance and repair
(see Figure 2).

A striking example of the physiologic role for such protein
assemblies and aggregates was uncovered in studies focused
on differentiation of neural stem and progenitor cells, wherein
both ATP-dependent (TRiC/CCT) and ATP-independent sHsps
(specifically CRYAB/HSPB5) promoted sequestration of mis-
folded proteins into protective aggregates termed the “proteostat”
to confer stress resilience (Vonk et al., 2020). Furthermore, the
ability to form these protective aggregates declines with aging
which may predispose to accelerated neurodegeneration with
aging (Vonk et al., 2020); a premise that will require experimental
testing in future studies. Another example of this phenomenon
where heat shock proteins play a role in a “crystalline” structure
is the role of HspA1 and HspB5 (αA- and αB-crystallin) in the
lens (Horwitz, 2000). These findings support the notion that
protein aggregates may not only be associated with pathology;
but also play a protective role or trigger pathology in a context-
dependent fashion.

While much evidence has been uncovered to understand the
mechanisms for toxicity of aggregate prone proteins, such as the
R120G mutant of αB-crystallin, potential mechanisms whereby
protein aggregates confer cytotoxicity have largely remained
unclear. In recent studies, we have uncovered a potential
mechanism whereby protein aggregates induce toxicity in cardiac
myocytes (Ma X. et al., 2019). Toxic mutations in aggregate-
prone proteins (such as R120G αB-crystallin mutant) result in
sticky aggregates that remove useful proteins (such as desmin)
beyond the ability of the cardiac myocyte to compensate and
result in sarcomere disruption and mitochondrial dysfunction
as seen with expression of the R120G mutation in αB-crystallin
that results in a desmin-deficient state (Ma X. et al., 2019).

Frontiers in Physiology | www.frontiersin.org 8 June 2020 | Volume 11 | Article 586

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00586 June 2, 2020 Time: 20:47 # 9

Islam et al. Protein Aggregates in Cardiac Homeostasis

Moreover, some mutant proteins such as the R120G mutant
of αB-crystallin result in very large and sticky amorphous
hydrophobic aggregates (unlike those resulting from stacking
of β-sheets) that not only remove useful proteins beyond the
ability of the cardiac myocyte to compensate but also cause
formation of mechanical intracellular barriers (Hipp et al., 2014;
Mogk et al., 2018), and result in sarcomere disruption, and
mitochondrial dysfunction. While cardiac myocytes attempt
to correct this by upregulating other chaperones, as well as
increasing activation of protein quality control pathways, namely
the ubiquitin-proteasome system and autophagy; emerging
evidence points to dysfunction in the ubiquitin-proteasome
pathway at an earlier stage of the disease (Chen et al.,
2005) and for autophagy-lysosome pathway dysfunction at late
stages as a mechanism for disease progression (Ma X. et al.,
2019). Indeed, serial assessment of the autophagy-lysosome
pathway in a mouse model of R120G αB-crystallin-induced
cardiomyopathy demonstrates early induction of autophagic
flux with development of cardiac hypertrophy, followed by
subsequent impairment with disease progression predating
cardiomyopathic dysfunction (Pan et al., 2019). Mechanistically,
this appears to secondary to mTOR activation likely secondary
to long standing lysosomal amino acid release due to accelerated
protein breakdown, which results in phosphorylation of TFEB
(transcription factor EB, a master regulator of autophagy and
lysosome biogenesis) and its inactivation with sequestration
away from the nucleus on lysosomes and in the cytosol
(Ma X. et al., 2019; Pan et al., 2019). Activation of the
autophagy-lysosome pathway by intermittent fasting or targeted
activation of transcription factor EB (Settembre et al., 2011)
even at an advanced stage of disease pathogenesis was sufficient
to restore normal function and rescue cardiomyopathy by
restoring normal desmin localization (Ma X. et al., 2019;
Mukai et al., 2019).

These observations suggest that a strategy targeting removal
of aggregate-prone proteins may be effective in preventing
or delaying cardiac pathology. Indeed, driving removal
of aggregates via stimulation of the ubiquitin-proteasome
pathway (Ranek et al., 2013; Gupta et al., 2014; Zhang
et al., 2019) or of the autophagy-lysosome pathway (with
activation of ATG7-stimulated autophagy or exercise; Bhuiyan
et al., 2013) prevents toxicity of the R120G αB-crystallin
mutant protein (Pattison et al., 2011; Pan et al., 2017)
to attenuate cardiomyopathy development in this model.
Another example of toxic protein aggregates and aggregate-
prone desmin was uncovered in studies with modeling the
cardiomyopathy-causing mutation H222P in the lamin A/C
gene (Galata et al., 2018). Both a strategy of overexpressing
αB-crystallin that resulted in chaperoning desmin to its
physiologic location, or inducing haplo-insufficiency of
desmin rescued cardiomyopathy by preventing desmin-
induced sequestration of sarcomeric proteins from their
physiologic location.

Taken together, there data suggest that aggregate-prone
proteins, rather than protein aggregates are the initial
drivers of pathology and their sticky nature makes protein
aggregates “pathogenic” by hijacking and sequestering normal

proteins at advanced stage of disease pathogenesis. Moreover,
it is critical to recognize that all instances of proteostatic
dysfunction do not manifest with aggregate pathology. Indeed,
mutations in BAG3, a critical proteostatic mediator in cardiac
myocytes induce cardiomyopathy without formation of protein
aggregates, likely because BAG3 is required for aggregate
formation (Fang et al., 2019). For example, studies modeling
cardiomyopathy-associated mutations in BAG3 in iPSC-
derived cardiac myocyte demonstrate myofibrillar disarray
and marked proteostatic dysfunction without appearance
of protein aggregates (Judge et al., 2017; McDermott-Roe
et al., 2019). And, targeted ablation of BAG3 in the murine
heart or expression of cardiomyopathy-associated BAG3
mutants induces myofibrillar degeneration (Hishiya et al.,
2010) with increased portioning of proteins to detergent
insoluble fraction (revealing their aggregate prone state) without
formation of protein aggregates in the context of fulminant
cardiomyopathic manifestations (Fang et al., 2017). While
BAG3 plays a critical role in chaperone-assisted selective
autophagy of proteins whereby its loss-of-function affects
proteostasis (Ulbricht et al., 2013), BAG3 mutations are also
associated with dysfunction of the macro-autophagy-lysosome
pathway (Schanzer et al., 2018), which further impairs protein
quality control mechanisms. Indeed, in instances where
BAG3 mutations do induce protein aggregates and provoke
cardiomyopathy, the mutant BAG3 protein acquires a gain-of-
function aggregate-prone state, which forms protein aggregates
with Hsp70, its natural binding partner and Hsp70 clients
(Meister-Broekema et al., 2018). These data points to a critical
need for mechanisms to efficiently remove damaged and
dysfunctional proteins as an effective countermeasure against
development of pathology.

These data suggest that the sarcomere functions in a
semiautonomous state of proteostasis with independent
components for protein synthesis (peri-sarcomeric ribosomal
complexes and sarcomeric mRNA), and sarcomere-linked
chaperone proteins (sHsps and Hsp90 analogs as well as p62
and Bag3) that facilitate folding of key sarcomeric proteins
(see Figure 2). These components also appear to play a
role in stabilizing and maintaining the “reserve” sarcomeric
protein to provide a ready source of replacement parts to
ensure continuous function. Furthermore, sarcomere damage
due to stretch and load, ischemia, and heat stress result in
misfolding of components. These “damaged” components
are released from the sarcomere by calpains and enter the
“reserve” pool where the cognate chaperones assess the
integrity of the protein and either assign these for removal
via the uniquitin-proteasome system, or via the autophagy
lysosomal pathway. In the latter, this takes the form of either
chaperone-assisted selective autophagy (Tan and Wong,
2017) mediated by Bag3, p62, CHIP, and sHsps (HspB8 and
CryAB) or via aggrephagy of protein aggregates directly.
Each of these elements is proposed to contribute to the
proposed cardiac sarcostat (Figure 2). Thus, failure of the
sarcostat is predicted to engender sarcomere disruption and
contractile dysfunction, culminating in cardiomyopathy, heart
failure and death.
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HEAT SHOCK PROTEINS: WITH A
LITTLE HELP FROM MY CHAPERONES

As discussed in the prior sections, cardiac myocytes are unusually
large cells that are dependent on complex quaternary structures
of protein complexes to maintain homeostasis (Figure 1). Thus,
it is critical to understand the biology of the chaperones
that helps maintain an appropriate folded state of these
proteins from synthesis, through deployment, and finally, to
removal and degradation. Initially seen in Archaea as small
moieties conferring resistance against heat denaturing insults
(Macario et al., 1991), the so-called heat-shock proteins have
evolved into a multitude of classes and, remarkably, have
retained their underlying structure and function through the
course of evolution.

Heat shock proteins can be broadly classified as large and
small heat shock proteins. Large heat shock proteins (70–90 kDa)
are known to have ATPase function and use energy dependent
mechanisms to fold (foldase) proteins (Moran Luengo et al.,
2019). By contrast, small heat shock proteins (15–30 kDa) have
traditionally been thought to be energy-independent chaperones
that sequester proteins and prevent misfolding (i.e., holdase)
(Janowska et al., 2019). Newer data (as discussed subsequently)
indicate that their function, both in isolation as well as in
concert with large Hsps and other co-chaperones may be more
complex, and sHsps may function in both BAG3-dependent and
independent manner (reviewed in Fang et al., 2019).

Another class of heat shock proteins exist in bacterial, fungal
and plant systems, i.e., the Hsp110 AAA+ ATPase disaggregases
that can disassemble amyloid and protein aggregates (Torrente
and Shorter, 2013). Recent studies indicate that proteins with
disaggregase function (some with Hsp homology) exist in the
animal kingdom but their role appears to be unclear (Baker
et al., 2017; Taguchi et al., 2019; Avellaneda et al., 2020). In
this context, it is notable that physiologic or reversible protein
aggregates are observed in yeast as a reserve pool of proteins
to respond to stress (Saad et al., 2017). These amyloid proteins
are disrupted by a yeast protein disaggregase, hsp104, which has
been lost in metazoans and can drive rapid ATP and Hsp70/40-
dependent disaggregation of amyloid protein in both yeast and
metazoan cell types (Yokom et al., 2016; Gates et al., 2017;
Shorter, 2017). Indeed, Hsp104, when exogenously introduced
into models of neurodegenerative diseases, namely Parkinson’s
disease and frontotemporal dementia has demonstrated efficacy
in disaggregating TDP-43, FUS, and α-synuclein with resulting
attenuation of cellular pathology (DeSantis et al., 2012; Jackrel
et al., 2014). Whether these protein systems are functional in
mammalian cardiac myocytes or can be harnessed for therapeutic
potential, remains to be explored.

Another exciting recent discovery has been the observation
that mitochondria participate in taking up cytosolic misfolded
proteins to facilitate their aggregation on the mitochondrial
surface via a mitochondria-mediated proteostasis mechanism,
termed MAGIC (mitochondria as guardian in cytosol; see
Figure 2; Ruan et al., 2017). These aggregates are subsequently
removed by mitochondrial fission and subsequent mitophagy to
remove the fissioned-off mitochondria (Li et al., 2019). Hsp104

can forcibly disaggregate these mitochondrial protein aggregates
and target their import into the mitochondrial matrix for
degradation by Pim1 (LON protease). Whether mitochondrial
handling of cytosolic protein aggregates participates in cardiac
myocytes homeostasis and stress response, remains unknown.

A unifying factor across all heat shock proteins is HSF-1,
the master regulator of the heat shock response in eukaryotes
(Gomez-Pastor et al., 2018); which was demonstrated to be
essential for thermos-tolerance in mammalian systems using a
targeted genetic approach (McMillan et al., 1998). The HSF
family of transcription factors (HSF1-6 in humans) appears to
not only drive the various heat shock proteins but also induce
a concerted array of stress response genes that respond to a
variety of stimuli, including heat, oxidative stress, metals and
proteotoxicity (Murshid et al., 2018). In response to stress,
inactive monomeric HSF-1 is activated resulting in formation
of a DNA-binding homotrimer via leucine-zipper domains. This
multimerization results in activation of the bipartite NLS and
nuclear translocation where the DNA binding N-terminal helix-
turn-helix domain binds to the nGAAn consensus sequence
on promoters. A bevy of heat-shock proteins (as well as 14-
3-3, VCP, and TRiC proteins) are able to hold the HSFs
in a monomeric state and are part of a feedback loop to
prevent continued activation of the HSF target gene activation
(Gomez-Pastor et al., 2018).

In mammals, Hsp70 and Hsp90 are the most prominent class
of the large Hsp family of proteins. Both of these are notable
for the presence of a nucleotide-binding domains, peptide-
binding domains and variable C-terminal regions (reviewed in
Moran Luengo et al., 2019). The Hsp90 proteins have greater
substrate specificity as compared with the Hsp70 family. By and
large, Hsp70 proteins play a role in protein folding from the
nascent polypeptide chains at the ribosomes, through complex
quaternary structures prior to protein deployment. In contrast,
Hsp90 proteins collaborate with C-terminal Hsp-Interacting
Protein (CHIP) and BAG3, directing their actions to specific
targets (Ranek et al., 2018). Both of these proteins are key
elements of the intracellular “sarcostat” in cardiac myocytes
(Figure 2), and have been observed to play important roles in the
pathogenesis of heart failure. Interestingly, in the setting of αB-
crystallin R120G mutation, while overexpression of the foldase
Hsp70 is unable to rescue the phenotype resulting from misfolded
unchaperoned desmin, while overexpression of the holdase sHsps
(HspB5, 6, and 8) was sufficient to confer rescue (Hussein et al.,
2015). This suggests that many of the properties of the individual
classes of proteins are more nuanced in vivo as compared to
in vitro predictions.

Working hand-in-hand with these energy-dependent
chaperones, small Hsps consist of a relatively diverse family of
proteins with molecular weights mostly ranging from 15 kDa
through 40 kDa. Unlike the large ATP-dependent Hsps that are
conserved through fungi and eukaryotes, mammalian sHsps
are also conserved with those in prokaryotes, Archae as well as
viruses. Previously believed to be mere “holdases” that are critical
in holding proteins in stable conformations in the cytosol, new
evidence indicates far more diverse and complex roles (Fang
et al., 2019; Haslbeck et al., 2019; Janowska et al., 2019). The
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sHsps (HspB1-10 in humans) are present in many tissues, and
observed to play roles in nearly every disease from infections
through degenerative diseases. Of these, HspB-1, 2, 3, 5, 6, 7,
and 8 have been shown to be present at relatively high levels in
the heart with significant functional roles noted in both mouse
models as well as human disease. With the exception of HspB7,
which has a significant monomeric function, all of these appear
to function as chaperones in an oligomeric state. This varies from
dimers and trimers in the case of Hspb6 and HspB8 (Bukach
et al., 2004; Shatov et al., 2018) to the 30–40-mers seen with
CryAB (HspB5) (Aquilina et al., 2003; Janowska et al., 2019).
Nonetheless, each of these sHsps and all of their evolutionary
forebearers, are characterized by the presence of a β-sheet
enriched “α-crystallin” domain (ACD) (Horwitz, 1992; Janowska
et al., 2019) consisting of 6–8 β-sheets. Flanking this are relatively
disordered N- and C-terminal (NTR and CTR) regions. While
the CTR is rich in polar amino acids and may play a role in
solubility (Janowska et al., 2019), the NTR is hydrophobic and
may play a role predominantly in substrate specificity. Despite
the overall structural similarities, the sHsps vary in presence
of I/VXI/V motifs in either the CTR or the NTR that result in
interaction of either regions with the hydrophobic cleft of the
ACD. Notably, the CTR interacts with the hydrophobic groove
in ACD between (β4 and β8) (Janowska et al., 2019). These
folding events in sHsps appear to be key in determining their
chaperone function as well as the multimerization, either as
homo-polymers or heteromers.

CRYAB AND SHSPS THROUGH
EVOLUTION: THE LONG AND WINDING
ROAD

Cardiac myocytes are unique with regards to structure, function
and replacement potential. Similar to prokaryotes and yeast,
survival of individual cardiac myocytes is critical to maintaining
cardiac architecture and function. Thus, it is likely that many
mechanisms that are essential for monad survival may also be
specifically relevant to cardiac myocyte homeostasis, but not
necessarily for homeostasis in other replicating cell types. Given
the importance of proteostasis in cardiac myocytes (as discussed
above), looking for phylogenetic survival and proteostatic
pathways in lower organisms could be key in understanding
the role of human cardiac proteostasis in homeostasis. Of
the multitude of proteins that participate in the proteostatic
pathways, αB-crystallin/CRYAB//HspB5 is unique in being very
heavily expressed in the cardiac myocytes (3–5%) of total
cardiac protein (Bennardini et al., 1992). At baseline, αB-
crystallin functions as a chaperone as a ∼24–40 mer, with
a soccer ball shaped 0.5–1 mDa complex (Aquilina et al.,
2003). Stress-induced activation of p38 MAPK (Ito et al., 2001)
results in phosphorylation of CryAB at S59 (Simon et al.,
2007), thus changing it from a 24 to 32-mer to a 6-mer
and is associated with increased partitioning to the insoluble
fraction. This phenomenon is observed in the myocardium
during ischemia-reperfusion (Golenhofen et al., 1998), oxidative
stress (Prasad et al., 2013), hyperglycemia (Reddy et al., 2014),

high fat diet (Prasad et al., 2013), hemodynamic stress with
transverse aortic constriction (Pereira et al., 2014), and chronic
heart failure (Dohke et al., 2006; Marunouchi et al., 2013;
Fung et al., 2017); and appears to portend a poorer prognosis
in human studies (Clements et al., 2007, 2011). From a
functional standpoint as a chaperone, 30–40-mer multimeric αB-
crystallin chaperone binds the N2B subunit of titin (Bullard
et al., 2004), thus preventing unfolding and colocalizes with
the Z-line, along with desmin (Ma X. et al., 2019). This
association is disrupted by the R120G mutation, associated with
Z-line disruption, as seen in heart failure models (Zhu et al.,
2009). While the αB-crystallin/HspB2 double knockout (due to
overlapping exons), has increased stress induced cardiomyopathy
with ischemia-reperfusion injury (Morrison et al., 2004) and
myocardial pressure overload (Kumarapeli et al., 2008), the
phenotype is not seen with a functional HspB2 knockout
(Ishiwata et al., 2012), reinforcing αB-crystallin’s importance.
As aging is often associated with protein aggregates and
increased αB-crystallin S59 phosphorylation, it is interesting that
the αB-crystallin/HspB2 null is protected against ischemia in
aging mice (Benjamin et al., 2007). Therefore, understanding
and extrapolating the properties and phenomena associated
with primordial homologs of this unique cardiac enriched
protein hold considerable promise for development of targeted
therapeutics for myocardial pathology.

An interesting example of a bacterial crystallin homolog
is Hsp16.3 in Mycobacterium tuberculosis. Functioning as a
chaperone, this protein is able to facilitate the survival of the
bacterium by promoting the dormant state during stress (Jee
et al., 2018). Similarly, the chaperone sHsp16 in Trypanosoma
cruzi functions by allowing the organism to resist oxidative and
heat stress (Perez-Morales et al., 2009). However, the earliest
example of sHsp is MjHsp16.5 in the archaean, Methanococcus
jannaschii (Feil et al., 2001). Analysis of the ACD shows
considerable homology with the MTB Hsp16.3, Ohhsp16.9
(rice), Hsp16.2 (C. elegans); as well as murine HspB6 and
bovine CRYAB/HspB5 (Kim et al., 1998). The most impressive
demonstration of the significance of sHsp homologs appears
to be in C. elegans where the lifespan prolongation in the
ultra-long-lived insulin resistant daf-2 mutant was dependent
on protein aggregates containing the CryAB homolog Hsp16.1
(Walther et al., 2015). Furthermore, recent work indicates that
a non-canonical sHsp (Hsp-17) functions as an “aggregase” and
loss of function mutants have shorter lifespan (Iburg et al.,
2020). Similarly, the yeast analog Hsp42, harboring a prion-like
domain in the N-terminus, is endowed with both chaperone
and aggregase functions (Grousl et al., 2018). As in C. elegans,
this aggregase function appears to be critical for proteostasis in
heat stress (Grousl et al., 2018). In yeast, there are subcellular
deposition sites called the “insoluble protein deposit (IPOD)”,
where, upon exposure to environmental stress, damaged or
misfolded proteins are targeted for degradation or refolding
helped by molecular chaperones (Rothe et al., 2018). Soluble
protein aggregates are targeted to JUNQ/INQ (juxtanuclear
or intranuclear aggregates), or to the CytoQ (cytoplasmic
accumulation); whereas amyloid aggregates accumulate in IPOD
site (Rothe et al., 2018). In Drosophila, sHSPs have diverse
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functions. Hsp23, Hsp26, and Hsp27 could be involved in embryo
morphogenesis by their ability to bind actin and microtubule
(Goldstein and Gunawardena, 2000; Gong et al., 2004; Fisher
et al., 2008; Hughes et al., 2008). Hsp26 has been shown to interact
with myosin 10A, the Drosophila myosin XV homolog, a protein
involved in regulating filopodial dynamics during dorsal closure
(Liu et al., 2008). Hsp22 is the sHsp preferentially expressed
during aging and its level of expression is partially predictive
of longevity in individual flies (King and Tower, 1999; Yang
and Tower, 2009). Drosophila host defense against pathogenic
bacteria, fungi and viruses involves Toll, Imd, JNK, JAK-STAT,
and p38 MAPK pathways (Eleftherianos and Castillo, 2012;
Kingsolver et al., 2013); and these pathways activate Hsf and
requires the proper expression of Hsp26, Hsp27, Hsp60D, and
Hsp70Bc to mediate host defense (Chen et al., 2010). These
observations point to the evolutionary conserved nature of sHsp
biology as well as the remarkable ability of organisms to harness
their potential to sustain critical life-sustaining processes, which
culminate in mechanisms that maintain cellular homeostasis
in highly specialized and long-lived cell types such as the
cardiac myocytes.

TARGETING HEAT SHOCK PROTEINS
FOR CARDIOPROTECTION: LET’S
COME TOGETHER TO A BETTER PLACE

Understanding and exploring sHsps as a therapeutic target
has been at the forefront of protein quality-centric efforts
to prevent and treat pathology. Studies have demonstrated
protective effects of exogenous sHsps on cardiac myocytes under
various stresses, in vitro: (1) with expression of multiple heat
shock proteins in ischemia (reviewed in Martin et al., 1997);
(2) with activation of HspB1 in preventing aggregate formation
with R120G αB-crystallin mutant expression (Zhang et al., 2010);
and (3) with αB-Crystallin expression that prevents adrenergic
stimulation-induced hypertrophic growth (Kumarapeli et al.,
2008). Transgenic overexpression of αB-crystallin was effective
in restoring mitochondrial quality and rescuing cardiac myocytes
death in mice with genetic ablation of desmin (Diokmetzidou
et al., 2016), a mouse model for desminopathies that result from
loss of function of desmin due to genetic mutations. Cardiac
myocyte targeted overexpression of αB-crystallin was also
sufficient in attenuating development of dilated cardiomyopathy
in a mouse model of H222P mutation in Lamin A/C gene, by
restoring desmin localization (Galata et al., 2018). Transgenic
αB-crystallin overexpression in cardiac myocytes protects against
development of pathologic hypertrophy by attenuating NFAT
activation after pressure overload (Kumarapeli et al., 2008); and
αB-crystallin interacts with focal adhesion kinase and protects its
proteolysis by calpains under stretch, protecting cardiac myocytes
from apoptosis under pressure overload stress (Pereira et al.,
2014). αB-crystallin was also shown to be a part of the cardiac
sodium channel complex by interacting with Nv1.5, the pore-
forming submit, with effects on increased sodium channel density
and current (Huang et al., 2016); pointing to the potential
for harnessing this biology toward treatment of arrhythmias

induced by sodium channel dysfunction. Substantial evidence
has also accumulated indicating a beneficial role for BAG3
gain of function in protecting against various stress stimuli.
In vitro studies have demonstrated the efficacy of exogenous
BAG3 in protecting against hypoxia-induced cell death, (Zhang
et al., 2016), improving mitochondrial quality in hypoxia-
reoxygenation injury (Cheung et al., 2019), in suppressing αB-
crystallin R120G mutant-induced protein aggregation and cell
death (Hishiya et al., 2011) and in nuclear protein quality control
under proteotoxic stress (Gupta et al., 2019). Analogously, we
have demonstrated that TFEB-induced upregulation of HspB8,
a BAG3 partner, was essential for chaperoning desmin back to
its physiologic localization state in a mouse model of R120G
αB-crystallin induced cardiomyopathy (Ma X. et al., 2019).
Our findings with shRNA mediated knockdown on HspB8
demonstrated that the benefits of enhancing the autophagy-
lysosome-pathway on R120G-induced cardiomyopathy were
lost with loss-of-function of HspB8. HspB8 (Hsp22) also
plays a critical role in cardiac homeostasis as mice with
germline ablation of HspB8 develop worse cardiomyopathy and
increased mortality as compared with wild-type controls in
response to pressure overload (Qiu et al., 2011). Interestingly,
transgenic expression of BAG3 in cardiac myocytes reduced
small heat shock protein levels specifically leading to a reduction
in αB-crystallin and HspB1 accompanied by development
of cardiomyopathy (Inomata et al., 2018), pointing to the
critical stoichiometric balance with these protein families in
cardiac physiology.

Targeted activation of the large heat-shock chaperone
family members has also been explored as a potentially
useful target for cardioprotection. Transgenic expression of
Hsp70 or its interacting protein CHIP (Carboxyl terminus
of Hsp70-interacting protein (CHIP), a ubiquitin ligase) was
protective against doxorubicin-induced cardiomyopathy (Naka
et al., 2014; Wang et al., 2016). Furthermore, an aggregate
of studies suggest that activation of Hsp70 signaling in
protective against cardiac ischemia-reperfusion injury (Song
et al., 2019). However, a note of caution is relevant given a
role for Hsp70 described in promoting cardiac hypertrophy in
response to pressure overload, which is typically pathologic and
results in decompensation (Kee et al., 2008). Also, treatment
with a Hsp90 inhibitor attenuated activation of Ras/Mek/Erk
mitogen activated protein kinase (MAPK) signaling pathway
to attenuate cardiac hypertrophy in the remote non-infarcted
myocardium in the post-myocardial infarction left ventricle
(Tamura et al., 2019).

Intriguingly, recent studies point to the exciting prospect of
employing oxysterols to alter the aggregation properties of cHsps
such as the R120 mutant of αB-crystallin (Makley et al., 2015;
Molnar et al., 2019), and cataract-causing Y118D mutant in
αA-crystallin (Zhao et al., 2015) which were highly effective in
restoring protein solubility in the lens to attenuate established
cataracts. Understanding how heat shock proteins are regulated
via post-translational mechanisms (Gomez-Pastor et al., 2018)
will be essential to develop novel therapeutics (such as oxysterols)
to therapeutically target them for prevention and treatment of
cardiac pathologies.

Frontiers in Physiology | www.frontiersin.org 12 June 2020 | Volume 11 | Article 586

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00586 June 2, 2020 Time: 20:47 # 13

Islam et al. Protein Aggregates in Cardiac Homeostasis

CONCLUSION
Cardiac myocytes are characterized by the roles of semi-
crystalline protein assembly (the sarcomere) as well as by
the various roles of the cardiac-enriched sarcostatic oligomeric
complexes of heat shock proteins, i.e., the “crystallins.” These
crystalline proteins mirror their function in the ocular lens,
to turn large insoluble proteins into a dynamic robust and
durable machine with uninterrupted function through the
lifetime of an organism. While prior work indicated that akin
to neurodegeneration, the appearance of protein aggregation
was purely a pathogenic phenomenon, recent studies indicate
that a more nuanced approach is necessary. An enhanced
understanding of the evolutionarily preserved small heat shock
proteins (that share the same oligomeric properties from Archaea
to man), as well as the potential protective roles of amyloid
and aggregates in lower species associated with these sHsps
is essential in developing new sarcomere-preserving strategies.

It is our hope that development of such sarcomere-targeted
approaches will foster development of the next generation of
therapies for heart failure.
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