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Introduction

High-throughput RNA structure probing by means of selective 
2'-hydroxyl acylation analyzed by primer extension (SHAPE) 
technology was first described in 2005.1 SHAPE has revolution-
ized the analysis of structured RNA molecules. This technology 
allows one to determine the reactivity of nearly all nucleo-
tides (nts) in a lengthy RNA molecule such as the 9 kb HIV-1 
genome.2 The SHAPE reactivities provide information on RNA 
structure: regions with low reactivity signify domains with sub-
stantial base paired RNA secondary structure and high SHAPE 
reactivity marks regions with largely unstructured nts.1-5 The 
availability of detailed RNA structure information is important 
for addressing the biological function of small RNA domains 
or complete RNA molecules. In particular, the genomes of cer-
tain RNA viruses have been proposed to adopt a genome-scale 
ordered RNA structure (GORS) that is critical for virus replica-
tion, e.g., to resist the action of intracellular RNases or to allow 
the melting of double-stranded RNA replication intermedi-
ates.6,7 This aspect has not yet been studied for the RNA genome 
of retroviruses like the human immunodeficiency virus type 1 
(HIV-1).

An RNA secondary structure model for the complete hIV-1 genome has recently been published based on shApe 
technology. several well-known RNA motifs such as TAR and RRe were confirmed and numerous new structured motifs 
were described that may play important roles in virus replication. The 9 kb viral RNA genome is densely packed with 
many RNA hairpin motifs and the collective fold may play an important role in hIV-1 biology. We initially focused on 16 
RNA hairpin motifs scattered along the viral genome. We considered conservation of these structures, despite sequence 
variation among virus isolates, as a first indication for a significant function. Four relatively small hairpins exhibited 
considerable structural conservation and were selected for experimental validation in virus replication assays. Mutations 
were introduced into the hIV-1 RNA genome to destabilize individual RNA structures without affecting the protein-
coding properties (silent codon changes). No major virus replication defects were scored, suggesting that these four 
hairpin structures do not play essential roles in hIV-1 replication.
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RNA structure information is also important for certain 
applications. For instance, antiviral gene therapy based on the 
mechanism of RNA interference (RNAi) uses short hairpin RNA 
(shRNA) inhibitors that target the viral RNA genome.8,9 We 
previously demonstrated that RNAi attack is influenced by the 
local RNA structure of the HIV-1 RNA target sequence10,11 and 
more recently reported that the design of shRNA inhibitors can 
be significantly improved by the exclusive targeting of accessible 
HIV-1 RNA domains as determined by SHAPE technology.12

The new structure model of the HIV-1 RNA genome revealed 
many local folds like stem-loop or hairpin motifs that may play 
a distinct role in the virus replication cycle. Several well-known 
and important RNA structures were confirmed, such as the TAR 
hairpin and the RRE domain that serve as binding sites for the 
essential HIV-1 regulatory proteins Tat and Rev, respectively. 
The TAR hairpin is present at the extreme 5' end of all HIV-1 
transcripts and facilitates binding of Tat and host cell co-factors 
to stimulate transcription from the LTR promoter.13-16 The RRE 
structure binds Rev to support the nuclear export of unspliced 
transcripts.17 Other RNA structures were also confirmed, includ-
ing the hairpin of the translational frameshift signal that facili-
tates Pol translation18,19 and hairpins that regulate the accessibility 
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Figure 2B and C show some of the 14 structured motifs (M 
and B, respectively) that are not supported by this phylogenetic 
survey (marked in gray in Table 1) and that will be discussed 
below. The structural conservation of the motifs E, F, H and O 
is remarkable because there is considerable sequence variation 
among the isolates and especially the subtypes. For instance, we 
scored 4–8 nt changes in motif O in the non-B subtypes com-
pared with the NL4-3 strain (Table 1, motif O). This provides 
some phylogenetic support for structural conservation, which 
hints at a biological function of the candidate RNA structures. 
On the other hand, it is clear that the new candidate hairpins are 
not as stable stem-loop structures as the well-known TAR and 
RRE motifs. Based on these results, we selected the most promis-
ing small hairpin motifs—E, F, H and O—for further functional 
analysis. Although we assume that these relatively small RNA 
hairpins were conserved during HIV-1 evolution and diversifi-
cation, thus suggesting a role in HIV-1 biology, it cannot for-
mally be excluded that they arose by convergent evolution. These 
four structures were renamed POL1, POL2, POL3 and NEF1, 
respectively, according to their position in the HIV-1 genome 
(Fig. 1A). POL3 is a small hairpin and the other motifs represent 
tandem hairpin structures with two subdomains, termed A and 
B. We also probed these four structures in the more divergent 
simian immunodeficiency virus chimpanzee isolate (SIV-cpz), 
which confirmed the SHAPE-like folding (Table 1).

All other 12 hairpin candidates were dismissed because no 
SHAPE-like structure was consistently predicted by mfold 
(marked in gray in Table 1). For five hairpin motifs, none of 
the prototype sequences of different HIV-1 subtypes adopt the 
SHAPE-proposed folding as the most favorite RNA conforma-
tion (Table 1, motifs B, D, I, K, L). For example, a wide range of 
structural presentations are apparent for motif B (Fig. 2C). For 
seven hairpin motifs, an intermediate result was obtained, i.e., 
prediction of a non-SHAPE structure for at least one subtype 
(Table 1, motifs A, C, G, J, M, N and P). For instance, motif 
M adopts SHAPE-like structures only for the NL4-3 isolate 
(Fig. 2B). We realize that this in silico mfold analysis is certainly 
not appropriate to formally rule out some of the predicted hairpin 
motifs. This information was however used to select the SHAPE-
determined RNA structures that have the strongest phylogenetic 
support.

As a next test for the four conserved hairpins that were selected, 
we probed the sequence variation in all virus isolates for the pres-
ence of base pair co-variations that could provide phylogenetic sup-
port for the proposed base pairing schemes. We used the sequence 
information present in the HIV-1 2010 compendium (subtype A 
with 16 isolates, B = 34, C = 21, D = 11 and SIV-cpz = 5).39 We 
checked whether the available sequence variation does maintain or 
destabilize the proposed hairpin structure. We first performed this 
phylogenetic analysis within each subtype. Figure 3 illustrates this 
analysis for subtype B for the four structures POL1, POL2, POL3 
and NEF1. Analyses of all inspected subtypes A, B, C, D and SIV-
cpz are presented in the Figure S1. Of special interest are structure-
conservative mutations on one strand (e.g., G-U to G-C, marked 
blue in Fig. 3) or on both strands of the base paired stem (e.g., A-U 
to G-C co-variation, marked red in Fig. 3). We identified several 

of polyadenylation20 and splicing signals.21 Other RNA motifs 
that cluster in the 5' untranslated region (5' UTR) have been 
implicated in dimerization and packaging of the RNA genome in 
virion particles and the subsequent process of reverse transcrip-
tion.21-31 In addition, several long-distance base pairing interac-
tions have been proposed.32-34

The SHAPE-derived HIV-1 RNA structure model revealed 
a multitude of novel structures that may play a role in virus 
replication. For instance, HIV-1 genomic RNA structures were 
recently proposed to orchestrate virus recombination events.35 In 
this study, we set out to test the functional significance of some 
individual small hairpin RNA structures.

Results

Phylogenetic analysis of structured RNA motifs. We selected 
16 candidate hairpin motifs across the SHAPE-derived RNA 
secondary structure model of the genome of the HIV-1 NL4-3 
isolate for initial inspection (motifs A through P in Fig. 1).2 RNA 
structures that play important biological functions usually dem-
onstrate robust structural conservation despite the presence of 
sequence variation in diverse virus isolates.2,15,36-38 The best exam-
ple of such structural conservation is the occurrence of base pair 
co-variations, e.g., A-U converted into G-C in another virus iso-
late. We therefore set out to focus on phylogenetically conserved 
RNA motifs as the most likely candidates to fulfill an important 
function in HIV-1 biology.

We analyzed the folding of the proposed hairpins with 5' and 
3' flanks of maximal 5 nts in diverse HIV-1 isolates for which 
the full-length genome sequence is known. Isolates belonging to 
the major HIV-1 subtypes A, B, C and D, for which multiple 
full-length genome sequences are available, were aligned with the 
QuickAlign Analysis Tool (www.hiv.lanl.gov/) (July 2010). For 
each of the 16 hairpin fragments, we selected the most prevalent 
sequence per subtype as the prototype sequence. For example, 
we picked a subtype B sequence for hairpin H that occurs in 59 
out of 235 sequences (Table 1, fourth column). The 64 proto-
type sequences were subsequently probed by the mfold program 
to allow the large scale analyses of predicted RNA secondary 
structures (Fig. 2). First, we analyzed the mfold prediction for 
the HIV-1 subtype B NL4-3 isolate that was used to generate 
the SHAPE-directed RNA structure model. Only 10 of the 16 
hairpins are predicted to fold according to the SHAPE model, 
consistent with the observation that inclusion of experimental 
data tends to yield significantly different structures than those 
predicted by mfold-type algorithms alone (listed in Table 1, last 
column as “+” for SHAPE-like or “-” for non-SHAPE with the 
thermodynamic stability in kcal/mol). When a non-SHAPE 
structure was predicted, the SHAPE-structure was sometimes 
seen as sub-optimal RNA fold, but frequently not predicted 
within the 5% energy window set by the mfold program.

Mfold analyses of the 16 hairpin segments among the four 
HIV-1 subtypes provided a wide range of results. Some SHAPE-
like hairpins were recapitulated by mfold, not only for subtype 
B but for all four subtypes (Table 1, motifs E, F, H and O). For 
example, we show the predicted structure for motif H (Fig. 2A). 
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Figure 1. position of the 16 structured RNA motifs in the hIV-1 genome. (A) Motifs A through p on the hIV-1 DNA map. (B) shApe-derived model of the 
hIV-1 RNA secondary structure.2 The 16 RNA motifs are marked.
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Table 1. phylogenetic analysis of 16 RNA structures in the hIV-1 genome

Name Positiona Subtype Prototype sequenceb nt differencesc
RNA structure

ΔG (kcal/mol)d Conservatione

A

1,076–1,142 NL4-3 -22.9 +

gag, p24 A 2/6 (33%) 4 -22.9 +

B 23/235 (10%) 1 -22.9 +

c 12/397 (3%) 9 -16.1 -

D 6/49 (12%) 4 -21.3 +

B

1,459–1,522 NL4-3 -12.5 -

gag, p2 A 1/6 (17%) 13 (3 del) -8.0 -

B 7/371 (2%) 2 -15.0 -

c 3/399 (1%) 23 (4 del) -11.3 -

D 2/51 (4%) 15 -11.3 -

c

1,823–1,859 NL4-3 -19.1 +

gag, p6 A 2/6 (33%) 11 -7.9 1/2Bf

pol, prot B 41/371 (11%) 2 -18.1 +

c 11/399 (3%) 10 -17.1 -

D 3/51 (6%) 5 -17.5 +

D

2,388–2,484 NL4-3 -23.1 -

pol, RT A 1/6 (17%) 10 -34.1 -

B 7/235 (3%) 2 -21.7 -

c 10/397 (3%) 8 -27.5 -

D 1/49 (2%) 6 -21.4 -

e

pOL1

2,619–2,686 NL4-3 -20.7 +

pol, RT A 1/6 (17%) 6 -9.2 +

B 39/235 (17%) 1 -18.5 +

c 26/397 (7%) 4 -17.4 1/2Bf

D 6/49 (12%) 3 -15.0 1/2Bf

cpZ 1/9 (9%) 26 -12.4 +

F

pOL2

2,781–2,835 NL4-3 -23.2 +

pol, RT A 2/6 (33%) 6 -14.5 1/2Af

B 53/235 (21%) 0 -23.2 +

c 122/397 (31%) 4 -20.2 +

D 8/49 (16%) 3 -17.6 +

cpZ 8/49 (16%) 3 -17.6 +

G

3,285–3,358 NL4-3 -23.4 -

pol, RT A 1/6 (17%) 8 -25.2 -

B 25/235 (11%) 1 -23.9 -

c 55/396 (14%) 5 -22.5 1/2Bf

D 4/49 (8%) 3 -23.9 -

h

pOL3

3,606–3,639 NL4-3 -5.8 +

pol, RNase h A 1/6 (17%) 6 -5.1 +

B 59/235 (25%) 2 -2.0 +

c 140/395 (35%) 1 -5.8 +

D 17/49 (35%) 1 -5.8 +

cpZ 17/49 (35%) 1 -5.8 +

(A) NL4-3 coordinates. (B) Number of virus isolates that match the exact prototype sequence, which was identified by primAlign (Los Alamos hIV da-
tabase). (c) compared with NL4-3. (D) calculated by mfold for the prototype sequence. (e) structural similarity between shApe model2 and predicted 
mfold structure; +, structure maintained; -, structure changed. (F) 1/2A, only first domain maintained; 1/2B, only second domain maintained.
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I

5,303–5,343 NL4-3 -12.3 -

vpr A 3/6 (50%) 5 -3.9 -

B 35/234 (15%) 1 -9.8 -

c 78/397 (20%) 6 -4.5 -

D 6/49 (12%) 3 -4.5 -

J

5,530–5,581 NL4-3 -12.4 +

tat(1), rev(1) A 1/6 (17%) 14 -14.7 -

B 6/371 (2%) 4 -10.1 -

c 17/399 (4%) 12 -14.9 -

D 2/51 (4%) 11 -6.9 -

K

5,600–5,645 NL4-3 -7.6 -

A 1/6 (17%) 21 -6.5 -

B 2/235 (1%) 7 -8.8 -

c 3/397 (1%) 30 -0.4 -

D 2/49 (4%) 8 -8.8 -

L

6,536–6,598 NL4-3 -17.8 -

env, gp120 A 1/6 (17%) 11 -10.3 -

B 6/371 (2%) 4 -8.8 -

c 5/398 (1%) 13 -8.4 -

D 2/51 (4%) 9 -11.6 -

M

6,982–7,016 NL4-3 -7.9 +

env, gp120 A 1/6 (17%) 17 -1.3 -

B 1/235 (< 1%) 14 0.7 -

c 1/397 (< 1%) 17 (7 del) -0.6 -

D 1/49 (2%) 13 -1.7 -

N

8,455–8,505 NL4-3 -18.3 +

nef, LTR A 1/6 (17%) 11 -11.8 -

B 24/370 (7%) partial del -1.6 -

c 8/399 (2%) 13 -15.0 +

D 4/51 (8%) 7 -13.4 -

O

NeF1

8,723–8,773 NL4-3 -26.6 +

nef, LTR A 1/6 (17%) 8 -13.3 1/2Bf

B 16/219 (7%) 2 -19.0 +

c 49/396 (12%) 4 -25.1 +

D 9/48 (19%) 4 -19.6 +

cpZ 1/11 (9%) 10 -17.5 +

p

8,867–8,906 NL4-3 -19.5 +

nef, LTR A 3/6 (50%) 13 -11.0 +

B 15/59 (25%) 6 -7.1 +

c 2/25 (8%) 14 -6.0 -

D 1/4 (25%) 11 -3.9 -

(A) NL4-3 coordinates. (B) Number of virus isolates that match the exact prototype sequence, which was identified by primAlign (Los Alamos hIV da-
tabase). (c) compared with NL4-3. (D) calculated by mfold for the prototype sequence. (e) structural similarity between shApe model2 and predicted 
mfold structure; +, structure maintained; -, structure changed. (F) 1/2A, only first domain maintained; 1/2B, only second domain maintained.

POL3 and NEF1 harbor a fair degree of structural conservation, 
although much more extensive phylogenetic evidence was previ-
ously reported for TAR hairpin.15

structure-conservative mutations in these RNA structures and co-
variations were detected in the POL1 and NEF1 hairpins (Fig. 3). 
In total, the four SHAPE-identified hairpin motifs POL1, POL2, 

cont’d
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We first tested the wild-type (wt) and mutant HIV-1 LAI-
based DNA constructs for their ability to produce viral proteins. 
293T cells were transfected and CA-p24 production was mea-
sured in the culture medium after 2 d. All mutants, including 
the combination mutants, exhibited similar CA-p24 produc-
tion as the wt construct (Fig. 5A). These results imply that the 
RNA mutations do not have a significant impact on HIV-1 gene 
expression, including the processes of transcription, splicing and 
translation, but also mRNA stability.

It is important to discuss the NEF1 mutant in more detail. 
The NEF1 hairpin is located within the nef gene, more par-
ticular in the U3 region encoded by the 3'LTR. We introduced 
the NEF1 mutation in the 3'LTR of the LAI molecular clone, 
but these U3 sequences are copied into the 5'LTR during 
reverse transcription. Thus, the viral progeny will carry this 
mutation in the 3' end of the HIV-1 RNA genome and in the 
5'LTR that serves as the transcriptional promoter. The latter 
modification may also have an impact on virus replication. To 
test for such a transcriptional effect, we made LTR-luciferase 

Mutational disruption of selected hairpin motifs. To 
investigate the biological relevance of the four selected hairpin 
motifs, we destabilized the individual hairpins by introducing 
mutations in the genome of the primary CXCR4 using HIV-1 
LAI isolate. We designed silent codon changes in the underlying 
pol and nef genes to exclude adverse effects due to amino acid 
substitutions in the encoded proteins. Additionally, we ensured 
that the introduced mutations did not modify known RNA sig-
nals such as splice donor/acceptor sites. For motifs POL1, POL2 
and NEF1 that consist of two hairpin domains, we chose to 
destabilize the stem region that contributes most to the stabil-
ity of the motif, as determined by mfold analyses (results not 
shown). All possible silent codon changes were analyzed using 
mfold to determine which ones were most disruptive to the 
RNA structure. We designed two to six mutations per motif 
to trigger the formation of an alternative, less stable RNA fold 
(Fig. 4). In addition, we made several combination mutants: 
Double (POL1+POL3), Triple (POL1-3) and Quadruple 
(POL1-3, NEF1).

Figure 2. probing RNA structure conservation among the subtypes. The original shApe-directed model (left) is compared with the mfold prediction 
for the subtype B isolate NL4-3 and the prototype sequence of subtypes A, B, c and D. sequence differences compared with the NL4-3 sequence are 
highlighted in black. structural conservation is illustrated for pOL3, partial conservation for motif M and a lack of conservation for motif B. see Table 1 
for more details. single-stranded RNA segments that lack mutations compared with the NL4-3 sequence are indicated as Nx, with x indicating the 
number of nucleotides.
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sequence, but this will change over time once the fittest virus 
becomes the dominant species. We detected only insignificant 
replication defects for some of the mutants upon extended cul-
turing (results not shown). Thus, these mutations have no or 
only a negligible impact on HIV-1 replication in vitro.

Discussion

The SHAPE-determined structure of the complete 9 kb HIV-1 
RNA genome does reveal an intense collection of structured 

constructs with the wt and Nef1 mutant 
sequences. These constructs were trans-
fected into 293T cells without or with an 
increasing amount of pTat expression plas-
mid. We measured no differences in lucif-
erase expression level between the wt and 
Nef1 constructs, both in basal activity and  
Tat-induced expression (Fig. 5B). Thus, 
the U3 changes introduced in the Nef1 
mutant do not adversely affect LTR pro-
moter activity.

We next performed replication stud-
ies with the wt and mutant HIV-1 viruses 
on the CXCR4-expressing SupT1 T cell 
line that supports efficient replication of 
the LAI strain. We first infected SupT1 T 
cells with equal amounts of virus (based 
on CA-p24) that was produced in 293T 
cells. The cell cultures were monitored on 
a daily basis to score HIV-1 induced cyto-
pathic effects and cell culture superna-
tants were regularly collected to quantify 
the accumulation of CA-p24 as a sign of 
virus replication. We did not observe sig-
nificant differences in replication capac-
ity between the wt and mutant viruses  
(Fig. 5C). Similar results were obtained in 
replication assays that were started by elec-
troporation of the viral DNA constructs 
into SupT1 cells (results not shown). We 
next tested virus replication on peripheral 
blood mononuclear cells (PBMCs) because 
some defects, e.g., the Nef protein minus 
phenotype, become apparent only in pri-
mary cells and not in transformed T cell 
lines.40 We pooled PBMCs of four healthy 
donors and infected them with the wt 
and mutant HIV-1 variants. Again, all 
HIV-1 mutants including the combination 
mutants replicated as efficiently as wt virus 
(Fig. 5D).

We finally applied the ultra-sensitive 
virus competition assay to document 
whether the mutants are truly equal in 
replication capacity to the wt virus. This 
method of direct virus competition was 
specifically designed to reveal very subtle 
differences in virus replication rates.41 We made an equimolar 
mixture of two HIV-1 plasmids (wt and mutant) and trans-
fected SupT1 cells via electroporation to start the competitive 
virus infections. We took cell samples at several time intervals 
(2, 3, 5 and 8 wk post-transfection) and analyzed the proviral 
DNA sequences as a measure of the wt:mutant ratio in order 
to observe outgrowth of the fittest virus. To do so, we isolated 
the proviral DNA and sequenced the relevant DNA segments. 
The input virus population was visible as a mixed population 

Figure 3. The impact of natural sequence variation on the pOL1, pOL2, pOL3 and NeF1 struc-
tures for subtype B sequences derived from the hIV-1 compedium 2010. The majority sequence 
is depicted for each subtype with variations in small circles with a number that refers to the 
particular isolate. Blue circles mark changes that conserve the structure, red circles represent 
base pair co-variation. Isolate code: Number = isolate name: 1 = B.AR.04.04AR143170;  
2 = B.AU.04.ps1038_Day174; 3 = B.BO.99.BOL0122; 4 = B.BR.05.BRepM1081; 5 = B.cA.97.cAN-
B3FULL; 6 = B.cN.05.05cNhB_hp3; 7 = B.cO.01.pcM001; 8 = B.cU.99.cu19; 9 = B.cY.06.cY165; 
10 = B.De.86.D31; 11 = B.DK.04.pMVL_012; 12 = B.DO.05.05DO_160884; 13 = B.ec.89.ec003; 
14 = B.es.07.X2231; 15 = B.FR.92.92FR_BX08; 16 = B.GA.88.OYI; 17 = B.GB.86.GB8_46R; 18 = 
B.Ge.03.03GeMZ004; 19 = B.hT.05.05hT_129389; 20 = B.IN.x.11807; 21 = B.JM.05.05JM_KJ108;  
22 = B.Jp.05.DR6538; 23 = B.KR.04.04KMh5; 24 = B.MM.99.msTD101; 25 = B.NL.00.671_00T36;  
26 = B.RU.04.04RU128005; 27 = B.Th.00.00Th_c3198; 28 = B.TT.01.01TT_cRc50069; 29 = B.TW.94.
TWcYs; 30 = B.UA.01.01UAKV167; 31 = B.Us.07.cR0027M; 32 = B.UY.01.01UYTRA1179; 33 = 
B.Ye.02.02Ye507; 34 = B.ZA.03.03ZAps045MB2.
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RNA elements, mostly local hairpin structures.2 Other studies 
revealed additional long-range RNA interactions.32,33 This may 
suggest an important role for the genome-wide HIV-1 RNA 
structure in virus replication, which could include protection 
against RNases and modulation of the innate immune responses. 
We set out to experimentally probe the importance of several 
small RNA motifs across the viral genome. A total of 16 hairpin 
motifs were examined in silico for conservation among different 

HIV-1 isolates and subtypes, and we selected the four most 
promising hairpin motifs for experimental validation. We 
were not able to score a significant replication deficit of these 
mutants, even in primary T cells and in ultra-sensitive virus 
competition assays. We nevertheless believe that the pres-
ence of many structured RNA motifs in the HIV-1 RNA 
genome does likely reflect the presence of a minor evolu-
tionary pressure that shaped the viral genome over extended 
times, but many of these structured motifs may not have a 
direct and critical replicative function. This result does obvi-
ously not exclude an important function for other SHAPE-
determined RNA-structures in HIV-1 biology. These results 
would argue against the notion that the HIV-1 retrovirus 
belongs to the group of RNA viruses with a global genome-
wide RNA conformation (GORS).

The RNA genome of several but not all RNA viruses 
is highly structured. One of the most intensively studied 
examples is the RNA genome of Escherichia coli RNA phages 
MS2 and Qβ. This RNA is highly structured with 75% 
of the nts estimated to take part in base pairing. Detailed 
RNA structure models have been built based on enzymatic 
and chemical sensitivity of nts, phylogenetic sequence com-
parison and the phenotypes of constructed mutants.42,43 The 
RNA folds into an array of mostly irregular helices and is 
further condensed by several long-distance interactions. 
Substantial conservation of these helices between the related 
coliphages attests to the relevance of discrete RNA folding. 
Certain structured RNA motifs fulfill important roles in 
virus replication, e.g., as protein binding site or to regulate 
translation and replication.44,45 This genome-wide secondary 
structure is thought to prevent permanent annealing of the 
plus and minus strand RNA strands during virus replication 
and/or to confer protection against RNases. Unlike posi-
tive-stranded RNA viruses, HIV-1 is not likely to require 
RNA structure to prevent permanent annealing of plus and 
minus strands during virus replication because retroviruses 
replicate through an RNA-DNA intermediate, of which the 
RNA strand is actively removed by RNase H activity of the 
elongating reverse transcriptase enzyme. The minus strand 
DNA is subsequently copied into double-stranded DNA that 
integrates into the host cell genome.

RNA structures also play a crucial role in the innate 
defense mechanism that protects cells against invading viral 
pathogens. Viral infection results in the generation of non-
self RNA species in the cell, which are recognized by retinoic 
acid inducible gene-I-like receptors (RLRs) to initiate innate 
antiviral responses, including the production of proinflam-
matory cytokines and type I interferon.46 Much research is 

ongoing to specify the non-self RNA patterns that are recognized 
by the defense machinery of the host cell. The double-stranded 
nature of the genome of eukaryotic viruses does relate to the 
presence of innate defense mechanisms of the host cell. Viral 
RNA genomes may use the extensive double-stranded charac-
ter for interaction with a family of structurally related dsRNA-
binding proteins (DRBPs) that are coupled to a wide range of 
antiviral effector pathways.47-49 The dsRNA-dependent protein 

Figure 4. Mutational disruption of the pOL1, pOL2, pOL3 and NeF1 struc-
tures. We marked the nts that were altered in wt (left) to create the mutant 
(right) structures. For pOL1, pOL2 and NeF1 we changed a single stem 
domain.
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kinase (PKR) induces apoptosis and modulates the interferon 
response pathways, and activation of oligoadenylate synthetase 
results in RNase L production and cytoplasmic RNA cleavage.50 
Dicer-mediated cleavage of dsRNA produces small interfering 
RNAs (siRNA) that target complementary RNA sequences for 
destruction by the RNA-induced silencing complex (RISC) of 
the RNAi mechanism, although this option does not hold for 
retroviruses like HIV-1 that lack a dsRNA replication intermedi-
ate. Furthermore, viral RNA genomes may encode hairpin motifs 
that resemble microRNA (miRNA) precursors, which are cleaved 
by the Drosha endonuclease. Such antiviral siRNAs and miRNAs 
have recently also been detected in HIV-infected cells.51-54

The ability of HIV-1 to persist in the host may relate to its 
ability to circumvent these innate defense systems by having a 
highly structured RNA genome. Using bioinformatics, GORS 
were identified in several positive-strand animal and plant RNA 
viruses.6 Using atomic force microscopy, hepatitis C virus RNA 
was visualized as tightly compacted spheroids, while under the 
same experimental conditions the predicted unstructured polio-
virus and rubella virus RNA were pleomorphic with an exten-
sive single-stranded signature.7 There was remarkable variability 
between the virus genera that possess this characteristic; e.g., 
some viruses show evidence for extensive base pairing through-
out the protein-coding sequences that was absent in other viruses. 

Figure 5. phenotype tests of the wt and mutant pLAI constructs. (A) cA-p24 production in 293T cells transfected with pLAI variants. (B) LTR-luc con-
structs for wt and Nef1 were tested for promoter activity in transfected 293T cells. (C) Virus replication in supT1 T cells monitored by cA-p24 produc-
tion. cells were transfected with the indicated constructs at day 0 (x-axis:days post-infection). (D) Virus replication in pBMcs monitored by cA-p24 
production. cells were infected with the indicated hIV-1 variants at day 0 (x-axis:days post-infection) (left: 0.1 ng cA-p24, right: 1 ng cA-p24).
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The presence of a GORS-like RNA genome seems to correlate 
with the capacity of the corresponding viruses to cause a per-
sistent infection in their natural hosts.6 This raises the intrigu-
ing possibility of a role for GORS in the modulation of innate 
intracellular defense mechanisms triggered by double-stranded 
RNA.55,56 Our in vitro virus replication studies may not be appro-
priate to test for such effects. The study by Simmonds et al. also 
revealed that persistent and non-persistent viruses differ in the 
extent of their dinucleotide frequency biases.6 In this respect, the 
HIV-1 RNA genome has a highly biased composition with up 
to 40% A nts.57,58 It is likely that both sequence and structure 
elements of the viral RNA genome control the functional interac-
tions with the host cell.

Materials and Methods

In silico analysis. Sixteen RNA structures in the SHAPE-derived 
HIV-1 RNA model were selected for this study.2 To determine 
phylogenetic conservation of RNA structure motifs, the four 
prototype sequences representing the four dominant HIV-1 sub-
types (A, B, C and D, and in some cases also SIV-chimpanzee 
sequences) were determined with the QuickAlign Analysis Tool 
(Los Alamos HIV database, July 2010). The prototype sequences 
were used to perform mfold RNA structure prediction using 
standard settings.59 Four RNA motifs revealed high structural 
conservation despite sequence variation. The sequence varia-
tion in natural HIV-1 isolates is shown in Figure S1 (number 
of sequences per subtype: A = 16, B = 34, C = 21, D = 11 and 
SIV-cpz = 5).

HIV-1 DNA constructs. To investigate the potential bio-
logical function of the 4 selected RNA motifs, silent mutations 
were introduced into the subtype B molecular clone pLAI with 
oligonucleotides (Table 2). We used mfold to determine which 
silent codon mutations have the greatest structural impact. For 
mutants POL1, POL2 and POL3, the QuikChange Site-Directed 

Mutagenesis kit (Stratagene) was used following the manufac-
turer’s instructions including the Pfu Turbo DNA polymerase. 
For mutant NEF1, a 2-step PCR method was applied using the 
Phusion High Fidelity DNA polymerase (Finnzymes) as this 
sequence appears twice in pLAI in the 5'- and 3'LTR sequences. 
The NEF1-PCR fragment was subsequently cloned into the 
3'LTR pLAI via the restriction sites Aat2 and BamH1. During 
HIV-1 replication, the Nef1 mutation in the 3'LTR will be cop-
ied in the 5'LTR promoter during the process of reverse transcrip-
tion. To test for an effect on promoter activity, the LTR was fused 
to the firefly luciferase gene in pLTR-luc plasmid.60 The Nef1 
mutations were introduced to generate the pLTR-Nef1 luciferase 
construct using the QuikChange Site-Directed Mutagenesis kit. 
All mutations were confirmed via sequencing.

Mutations were combined as follows: pLAI-POL1 was used 
for a second round of site-directed mutagenesis using oligonucle-
otides POL3 fw and rev to create the double mutant, which was 
used to create the triple mutant with the POL2 oligonucleotides. 
Finally, the region encompassing the NEF1 motif was cloned into 
the triple pLAI mutant via the restriction sites Aat2 and BamH1 
to make the quadruple mutant.

Cell culture. 293T cells were maintained in Dulbecco’s 
modified Eagle’s medium (DMEM, Invitrogen) with 100 U/
ml penicillin, 100 μg/ml streptomycin, 10% fetal calf serum 
(FCS, Hydrobond) and minimal essential medium nones-
sential amino acids (DMEM/10% FCS). The SupT1 cell line 
was maintained in Advanced RPMI (Gibco) supplemented 
with L-glutamine, 1% FCS, 30 U/ml penicillin and 30 μg/
ml streptomycin. PBMCs were obtained from fresh buffy coats 
(Central Laboratory Blood Bank) of different HIV-1 negative 
donors using Ficoll-Hypaque gradient. Cells of four donors 
were pooled and stored at -150°C. One week prior to infection, 
cells were thawed, and stimulated for 2 d with phytohemagglu-
tinin (PHA, 4 μg/ml) and Interleukin-2 (IL-2, 100 U/ml) as 
described previously.61 PBMCs were cultured in RPMI medium 

Table 2. Oligonucleotides used for mutagenesis, pcR amplification and sequencing

Name Positiona Sequenceb

pOL1 fw 2651–2696 cAAAATccAGAcATTGTAATATACcAATAcATGGATGATTTGTATG

pOL1 rev cATAcAAATcATccATGTATTGGTATATTAcAATGTcTGGATTTTG

pOL2 fw 2816–2858 GGATGGGTTATGAAcTAcACccTGATAAATGGAcAGTAcAGcc

pOL2 rev GGcTGTAcTGTccATTTATcAGGGTGTAGTTcATAAcccATcc

pOL3 fw 3650–3696 cAAGcAcAAccAGATAAATCAGAAAGCGAGTTAGTcAATcAAATAAT

pOL3 rev ATTATTTGATTGAcTAAcTcGCTTTcTGATTTATcTGGTTGTGcTTG

NeF1 fw 8803–8846 cTTTGGATGGTGcTAcAAGcTTGTCccCGTTGAGccAGATAAGG

NeF1 rev ccTTATcTGGcTcAAcGGGGAcAAGcTTGTAGcAccATccAAAG

FGsA-32-Fb 2289–2308 AAATccATAcAATAcTccAG

TA051 3471–3488 cAGGGAGAcTAAATTAGG

RT-pfo-as 3973–3997 GTTGccATATTccTGGAcTAcAGTc

5'NeF-1 8277–8300 GcAGTAGcTGAGGGGAcAGATAGG

5'NeF-LTR01 8612–8633 cTTTAAGAccAATGAcTTAcAA

tTA-rev1-AD 8925–8946 GTcAAAccTccAcTcTAAcAcT
ahIV LAI. bsilent mutations marked.
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supplemented with 10% FCS, IL-2 and without antibiotics. All 
cells were kept at 37°C and 5% CO

2
.

Luciferase assay. 293T cells were seeded one day prior to 
transfection in the 24-well plate format. Eighty ng of pLTR-luc 
or pLTR-NEF1-luc were mixed with 0–50 ng of pTat to activate 
the LTR promoter. pBluescript was added to 250 ng of total DNA 
amount. Transfection was performed with Lipofectamine 2000 
following the manufacturer’s instructions. Cells were lysed 48 h 
post-transfections with 150 μl of Passive Lysis Buffer (Promega) 
and Firefly expression was measured as described previously.62

HIV-1 production, virus replication and virus competition 
studies. Virus production was measured in 293T cells that were 
seeded in the 24-well plate format and transfected with 200 ng 
of the pLAI variants with the Lipofectamine 2000 protocol. 
Culture supernatants were collected after 48 h and virus pro-
duction was scored by CA-p24 ELISA. These experiments were 
conducted in duplicate or triplicate and performed on three occa-
sions. Variation between the three independent experiments was 
corrected using the factor correction program.63

HIV-1 virus stocks were produced on 293T cells, which were 
seeded in a 6-well plate format one day prior to transfection. 
Four μg of wt or mutant pLAI was transfected following the 
Lipofectamine 2000 protocol and the supernatant was har-
vested at 48 h post transfection. Cells were removed by cen-
trifugation (4,000 × g) and the supernatant was aliquoted and 
stored at -80°C. Virus production was quantified by CA-p24 
ELISA. HIV-1 (0.001 ng of CA-p24) was used to infect 200,000 
SupT1 cells in the 24-well plate format, with three or six paral-
lel cultures. PBMC infections were performed in quadruplicate 
in the 96-well plate format with 200,000 PBMCs and HIV-1 
(0.1–1 ng CA-p24). Supernatants of the SupT1 and PBMC 
cultures were collected three times a week to measure CA-p24, 
and cultures were monitored for cytopathic effects using light 
microscopy.

Virus competition studies were performed to detect subtle 
replication differences. One hundred and fifty ng of the mutant 
plasmids (Pol1, Pol2, Pol3, Nef1, double, triple and quadru-
ple) were individually mixed with an equal amount (150 ng) 
of wt pLAI. Input plasmid mixtures were sequenced to verify 

the equimolar input, which is displayed by a mixed sequence 
with equally high peaks. SupT1 cells were transfected with this 
equimolar plasmid mixture via electroporation (250 V, 975 μF) 
using the Bio-Rad Gene Pulser II.21 Cells were split once or twice 
a week and cell-free virus was passaged onto fresh SupT1 cells 
when massive virus-induced cytopathic effects were detected 
for up to 8 wk.21,64 This was performed in three parallel cul-
tures. The dominant variant in each culture was determined by 
isolation of the total cellular DNA, PCR amplification of the 
mutated region in integrated HIV-1 proviruses and determina-
tion of the population sequence. Total cellular DNA was isolated 
using proteinase K treatment as previously described,65 and the 
regions encompassing the altered motifs were PCR amplified 
and sequenced. For POL1, POL2 and POL3, oligonucleotides 
FGSA-32-Fb and RT-Pfo-as were used to amplify a 1.7 kb Pol 
fragment. For NEF1, primers 5'NEF-1 and tTA-rev1-AD ampli-
fied the respective part of the nef/U3 region. The quality of PCR 
products was checked on agarose gel. Motifs POL1 and POL2 
were subsequently sequenced with FGSA-32-Fb, POL3 with 
TA051 and NEF1 with 5'NEF-LTR01. All oligonucleotides are 
listed in Table 2.
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