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Tracing PRX1+ cells during molar formation and periodontal
ligament reconstruction
Xuyan Gong1,2, Han Zhang1,2, Xiaoqiao Xu1,2, Yunpeng Ding1,2, Xingbo Yang3, Zhiyang Cheng3, Dike Tao1,2, Congjiao Hu1,2,
Yaozu Xiang3 and Yao Sun 1,2✉

Neural crest-derived mesenchymal stem cells (MSCs) are known to play an essential function during tooth and skeletal
development. PRX1+ cells constitute an important MSC subtype that is implicated in osteogenesis. However, their potential
function in tooth development and regeneration remains elusive. In the present study, we first assessed the cell fate of PRX1+ cells
during molar development and periodontal ligament (PDL) formation in mice. Furthermore, single-cell RNA sequencing analysis
was performed to study the distribution of PRX1+ cells in PDL cells. The behavior of PRX1+ cells during PDL reconstruction was
investigated using an allogeneic transplanted tooth model. Although PRX1+ cells are spatial specific and can differentiate into
almost all types of mesenchymal cells in first molars, their distribution in third molars is highly limited. The PDL formation is
associated with a high number of PRX1+ cells; during transplanted teeth PDL reconstruction, PRX1+ cells from the recipient alveolar
bone participate in angiogenesis as pericytes. Overall, PRX1+ cells are a key subtype of dental MSCs involved in the formation of
mouse molar and PDL and participate in angiogenesis as pericytes during PDL reconstruction after tooth transplantation.
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INTRODUCTION
The cranial neural crest-derived mesenchymal stem cells (MSCs)
regulate multiple events of the tooth development process.1–4

Although a variety of MSC subtypes are involved in tooth
development, the mechanism underlying their specific participa-
tion during molar development and remodeling of periodontal
tissues needs to be investigated.5 Recently, genetic Cre-mediated
lineage-tracing studies have revealed diverse populations of MSCs
and differentiated functional cells.6,7 It is believed that lineage-
tracing studies about MSC functions will open a new perspective
to investigate tooth development and regeneration.
The paired-related homeobox gene-1 (Prx1) is a transcription

factor that is widely expressed in the limb bud mesenchyme and
constitutes a subset of craniofacial mesenchyme.8–10 PRX1+ cells
are MSCs that are extensively involved in the development of limb
bones and craniofacial mesenchyme from the early embryonic
stage.11–14 In addition, PRX1+ cells participate in the repair and
regeneration of tissues; PRX1+ cells and their progeny are
responsible for the regeneration of calvarial bones.15 During a
fracture, perivascular PRX1+ cells elicit a periosteal and endosteal
response,16 which could be a major source of osteoblasts and
chondrocytes in the fractured callus.17 A recent study reported
that Prx1 is involved in the periodontal regeneration of mouse
incisors.18 Meanwhile, Prx1 is essential for the development and
maintenance of the blood.19 Thus, the function of PRX1+ cells in
tissue regeneration and repair could be related to angiogenesis.20

The development of molars significantly differs from incisors in
mouse21 and is more similar to that of humans. However, the
function of PRX1+ cells in molar development and regeneration of
molar periodontal ligament (PDL) remains elusive. In the present

study, we investigated the potential function of PRX1+ cells in
molar development and PDL tissue regeneration by exploring the
fates of PRX1+ cells during molar development using a lineage-
tracing mouse model and single-cell sequencing (scRNA-seq). In
addition, we defined the functions of PRX1+ cells in PDL
reconstruction using an allograft tooth model.

RESULTS
Distribution of PRX1+ cells during early tooth development
In mice, molar development initiates at around the embryonic day
(E) 11.5. Prx1 is expressed in the mesenchyme before E11.5.10,22

We used a transgenic mouse model—Prx1-cre; R26RtdTomato, PRX1+

cells labeled with tdTomato (in red) to observe the distribution of
PRX1+ cells in molars and incisors. Prx1-expressing cells and their
progeny (all expressing tdTomato) are primarily located within the
mesenchyme space of the first molar, including both the cap stage
of morphogenesis (Fig. 1a) and the cyto-differentiation stage
(Fig. 1b1–b2). No difference was observed in the distribution of
PRX1+ cells in M1 (the first molar) of the upper (Fig. 1a1–a3) and
lower jaws (Fig. 1a4–a6). In addition, we studied whether the
positive cells in different molars had the same distribution pattern.
PRX1+ cells were primarily distributed in the pulp cavity of M1,
with a reduced distribution in M2. There were almost no positive
cells in M3 (Fig. 1c).
A stem cell niche exists at the root of the mouse incisor which is

continuously renewed throughout life.23 We observed the incisors of
1-week-old mice and found that PRX1+ cells appeared in the stem
cell niche between the labial and lingual cervical loop. However, it
was difficult to observe in the pulp of incisor (Fig. 1b3–4).
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Differentiation of PRX1+ cells during root formation
We next checked the differentiation of these cells in cyto-
differentiation stage. RUNX2 is required for the differentiation of
multipotential mesenchymal progenitor cells into preosteoblasts/
preodontoblasts.24 OSX is required at a later maturation stage of
preosteoblasts/preodontoblasts into functional osteoblasts/odon-
toblasts.25 Both these proteins are strongly co-expressed with
PRX1+ cells (Fig. 2a, b). Although PRX1+ cells are also co-expressed
with odontoblast marker COL1A1 (Fig. 2c), these are not co-
localized with epithelial-derived ameloblasts (Fig. 2d). Overall,
PRX1+ cells differentiate into odontoblasts and dental pulp cells
during odontogenesis.

Identification of PRX1-expressing cells in adult human molars
ScRNA-seq technology has been used in dental research to
reveal the atlas of mouse tooth26,27 and explore the functions

of a subtype of cells. Based on a recent study of single-cell
atlas of human teeth,28 we explored the cell distribution
pattern of PRX1+ cells in human molars. We found that PRX1+

cells occupy a high proportion of the third molar periodontal
cells (652/2,883) (Fig. 3a, b). Further analysis showed that
PRX1-expressing cells were primarily distributed in clusters 0
and 4 (Fig. 3b). Cluster 0 expresses MSC markers, and also
highly expresses perivascular markers, such as TAGLN
(Fig. 3c1), which is ubiquitously expressed in vascular and
visceral smooth muscle, and is an early marker of smooth
muscle differentiation. In other words, PRX1-expressing
cells in PDLCs highly overlap with the population of perivas-
cular cells. Cluster 4 is a fibroblast population that secretes
broad-spectrum collagen proteins COL1A1 and COL3A1, as well
as extracellular matrix proteins, namely ASPN and POSTN that
are specifically expressed in the PDL (Fig. 3c2). ASPN and
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POSTN are markers of mature PDL and are preferentially
expressed in PDL.29,30 In addition to scRNA-seq data, we also
detected the expression of Prx1 in human PDLSC and
angiogenesis-related cells HUVEC cultured in vitro. High
expression of PRX1 was also detected in human PDLSC, but
not in HUVEC (Fig. 3d).

Tracing PRX1+ cells in mouse PDL
The staining and scRNA-seq analysis revealed that PRX1+ cells
were distributed in large numbers in PDLCs and overlapped
with perivascular cells. We further tested PRX1+ cells in the
molar PDL of adult Prx1-cre; R26RtdTomato mice. The PDL of adult
mouse molars contains a high number of PRX1+ cells (Fig. 3e).
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The relationship between PRX1+ cells and blood vessels in PDL
was shown by co-staining of tdTomato with endothelial cell
markers CD31. We observed the relationship between PRX1+

cells and blood vessels in three areas of the periodontal: the
upper half of the root (Fig. 4a), the lower half of the root
(Fig. 4b), and the alveolar crest (Fig. 4c). The results showed that
blood vessels were often accompanied by PRX1+ cells in molar
PDL (Fig. 4a–c). Since most of the cells in the gingival are of
epithelial origin (not PRX1+ cells), this phenomenon is extremely
obvious: newly migrating PRX1+ cells appeared around vascular
endothelial cells (Fig. 4a).
Based on the finding that Prx1+ cells are involved in the

angiogenesis of PDLCs, we wanted to study whether the
absence of Prx1 changed the angiogenesis ability of PDLCs.

Therefore, we knocked down Prx1 in PDLSCs (Fig. 4d), and co-
cultured the PDLSCs with HUVECs. A decline in CD31 and VEGF
was detected (Fig. 4e).

Establishment of allograft tooth transplantation model
To study whether PRX1+ cells could participate in the regenera-
tion of molar PDL, we established an allograft model and explored
the functions of PRX1+ cells in PDL repair and regeneration of
molars. The process of construction of the model was shown in
Fig. 5a, namely transplanting the molars of wild-type (WT) mice
into Prx1-cre; R26RtdTomato mice. Two weeks after surgery, nearly
half of the mice (10/18) recovered well, and the other half showed
root resorption (8/18). Micro-CT analysis (Fig. 5b) and H&E staining
showed root resorption in the allograft group (Fig. 5d).
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PRX1+ cells are involved in angiogenesis during periodontal
ligament reconstruction
In order to compare and observe the migration of PRX1+ cells in
tooth transplantation model, we showed three models at the
same time (model A, B, C). In wild-type mice (model A), we can
only observe CD31-labeled (green) blood vessels in PDL
(Fig. 6a). In Prx1-cre; R26RtdTomato mice (model B), the PDL was
almost all marked in red (except for the epithelial cell rests of
Malassez), as shown in Fig. 6b and Fig. 4a–c. In the allograft
tooth transplantation model (model C), vibrant endothelial cells
from the recipient mice migrated to the damaged PDL to

restore the nutrient supply (Fig. 6c). In the allogeneic tooth
graft model, PRX1+ cells from recipient mice were labeled in
red, and cells from donor mice were without fluorescence.
Accompanied by the migration of vascular endothelial cells into
the PDL of the implanted WT M1, a substantial migration of
PRX1+ cells to the recovered PDL was observed. These
migrating PRX1+ cells were actively involved in the angiogen-
esis during PDL reconstruction (Fig. 6c, d). The role of PRX1+

cells as pericyte during PDL reconstruction was shown in
Fig. 6d, in the form of immunofluorescence picture (Fig. 6d1)
and schematic diagram (Fig. 6d2).
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Fig. 4 Distribution of PRX1+ cells in the PDL of adult mouse molars and its function in angiogenesis. a–c In the PDL of Prx1-cre; R26RtdTomato

mice, the relationship between PRX1+ cells and vascular endothelial cells in three parts of the periodontal: the upper half of the root (a), the
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Prx1 in PDLSCs. **P < 0.01. e Co-culture of HUVECs and PDLSCs with down-regulation of Prx1, test the expression of CD31 and VEGF (n= 4).
**P < 0.01
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DISCUSSION
Recently, Prx1 has been used to label MSCs during the
development of bones and teeth. However, the exact function
of PRX1+ cells in tooth development has remained unclear.
Therefore, the Prx1-cre; R26RtdTomato reporter mice were used to
study the distribution pattern and fate of PRX1+ cells during the
organogenesis of molar and PDL formation. Our results showed
that PRX1+ cells and their progeny occupied most of the first
molar mesenchyme, starting from dental papilla at the cap stage.
PRX1+ cells can differentiate into the majority of cell types in M1,
including odontoblast progenitor cells, odontoblasts, fibroblasts,
and dental pulp cells in cytodifferentiation stages.
It is not clear if the development mechanism of each molar is

the same. In general, all molars of mice share a similar gene
expression pattern during development.31 Therefore, stem cells
originating from these molars are similar. We reported that MSCs
subtypes between molars could be different. The distribution of
PRX1+ cells varied significantly between the mandibular first,
second, and third molars, especially if M1 is compared to the M3.
Although PRX1+ cells are rich in the mesenchymal of M1, only a
few PRX1+ cells were observed even in the bell-stage papillae of
M3. This could be attributed to different developmental time
points between M1 and M3. M1 starts at the embryonic stage and
completes crown morphology at birth, whereas M3 only begins
to develop after birth. There exists a difference in the types of
MSCs in the embryonic period and after birth.32,33 The results
indicate the heterogeneity of MSCs of molars, a finding similar to
that reported recently in bone development, which stated that
bone formation before and after adolescence is controlled by
distinct progenitors.34 In addition, the heterogeneity of MSCs is

related to the location of their origin.35,36 MSCs in different
mouse molars contain different concentrations of key tooth
development signaling molecules, i.e., bone morphogenetic
proteins (BMPs), or respond differently to sonic hedgehog
(Shh). These differences, in turn, lead to varying MSCs behaviors,
eventually resulting in teeth with different crown morphologies
and root numbers. The findings on PRX1+ cell distribution
provide insights into further understanding of the dental
development rhythm and the gene expression characteristics
among molars.
In addition to murine lineage-tracing approaches, scRNA-seq

technology has greatly contributed to the study of characteristics
of certain dental cell subgroups in recent years.37,38 The scRNA-
seq analysis of periodontal ligament cells has revealed a
subgroup of PRX1+ cells that express markers of perivascular
cells, which is consistent with the pro-angiogenic function of
PRX1+ cells reported in the previous literature.39 For example,
Prx1 promotes angiogenic differentiation during the develop-
ment of the pituitary gland.40 In addition, MSC is a major
constituent of the hematopoietic stem cell (HSC) niche and a
source of perivascular cells.41 Prx1-expressing cells constitute a
classic MSC subpopulation, which is involved in angiogenesis
during organ development and tissue repair.42 In addition, PRX1+

cells participate in cranio-maxillofacial tissue regeneration and
damage repair. It is reported that Prx1 contributes to the
regeneration of periodontal tissue of mouse incisors.15,17,18 To
investigate the specific function of PRX1+ cells in mouse molar
PDL remodeling and regeneration, we used WT mice as donors
and Prx1-cre; R26RtdTomato mice as recipients and established an
allograft tooth transplantation model. Mouse M1 highly expresses
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PRX1 (Fig. 3e and Fig. 4a–c), so we chose mouse M1 for tooth
transplantation experiments. The PRX1+ cells in the recipient
mice were marked with red fluorescence; the red cells from the
recipient actively migrated to the donor WT M1’s PDL, always
accompanied by the distribution of new blood vessels in PDL. This is
new evidence that confirms that PRX1+ cells are involved in
angiogenesis during PDL repair, which could provide a new
molecular target for regulating blood vessel regeneration in PDL.
Next, we implanted the teeth of Prx1-cre; R26RtdTomato mice in WT
recipient mice; however, we found that the PRX1+ cells in residual
donor PDL did not migrate to WT mice (data not shown), which

could be related to the source and activity of PDLSCs. PDLSCs
derived from the alveolar bone had a higher proliferative ability and
stronger differentiation potential than PDLSCs derived from the
conventional tooth root surface.43 It is worth noting that the root
canal therapy of replanted teeth may also affect the vitality of
PDLSCs. In the future, root canal therapy of the donor tooth before
transplantation should be considered to prevent severe inflamma-
tion, and whether it could improve the vitality of the implanted
donor PDLCs remains to be explored. In future studies, Prx1 could be
knocked out in the allograft model to further study how PRX1+ cells
participate in angiogenesis during PDL tissue repair.
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Fig. 6 PRX1+ cells in the reconstruction of PDL. a–c PDL and blood vessels of WT mice (a), Prx1-cre; R26RtdTtomato mice (b), tooth replantation
model mice (c), respectively. c,d Recipient PRX1+ cells (labeled in red) migrated to the PDL of the implanted WT M1 to form new blood vessels,
and white arrows in c3 and d1 point to the new angiogenesis in WT PDL, white arrowheads point to migrated PRX1+ cells. d2, Schematic
diagram of PRX1+ cells involved in angiogenesis as pericyte during the restoration of PDL. n= 18 in tooth transplantation model (including
Fig. 5 and Fig. 6)

Tracing PRX1+ cells during molar formation and periodontal ligament...
Gong et al.

7

International Journal of Oral Science            (2022) 14:5 



In conclusion, PRX1+ cells are involved in the development of
M1 and the differentiation of almost all mesenchymal cell types
required for M1 development. The distribution of PRX1+ cells
between molars varies and is of great significance in our
understanding of the temporal development characteristics of
M1–M3 molars in mice. In addition, PRX1+ cells overlap with
perivascular cells in the PDLCs of adult molars, which are
involved in the angiogenesis in PDL development and repair.
These findings provide new clues to understand the significance
of Prx1, an important stem cell subtype, in molar development
and regeneration.

MATERIALS AND METHODS
Animals
The transgenic mouse lines studied included Prx1-cre mice
(targeting MSC progenitors), and Rosa26LoxP-STOP-loxP-tdTomato;
these were purchased from Cyagen (Beijing, China). The Prx1-
cre mice were crossed with R26RtdTomato mice (Prx1-cre;
R26RtdTomato mice) and the expressing PRX1 and their progeny
emitted red fluorescence. The proliferation, differentiation, and
migration of Prx1+ cells were tracked. Animals were maintained
in a specific pathogen-free (SPF) facility under a 12:12-h day/
night illumination cycle. Animals were euthanized by cervical
dislocation after inhalation anesthesia. The Animal Welfare
Committee of the Affiliated Stomatology Hospital of Tongji
University (2019-DW-040) approved all animal experimental
protocols used on mice.

Re-analysis of scRNA-seq data
The scRNA-seq data were obtained from the GEO database
(GSE161267).28 The analysis was performed using Seurat v4.0.5
and R version 4.0.4. Clusters were visualized using t-Distributed
Stochastic Neighbor Embedding (tSNE). Data were scaled and
transformed using sctransform_0.3.2 for variance stabilization. Any
subsequent analysis was done using raw data and not data
transformed after integration.

Establishment of the allograft tooth model
First, the right maxillary first molars of 6-week-old WT mice were
extracted, and were placed in normal saline after being rinsed
gently. Next, the upper first molars of the 6-week-old Prx1-cre;
R26RtdTomato mice were extracted, and after ensuring that no roots
remained, the first molars of the previously prepared WT mice
were implanted immediately. The mice were fed soft food after
the operation. Samples were sacrificed after two weeks. A total of
18 mice were used in the allogeneic tooth replantation models in
Figs. 5 and 6.

Immunofluorescence and image acquisition
Maxillary or mandibular bones of mice were decalcified in 10%
ethylene diamine tetraacetic acid (EDTA) (pH 7.4) at 4 °C for 21 d.
For immunofluorescence staining, specimens were embedded in
optimal cutting temperature compound (OCT), and sectioned
into 10-μm thick sections. Sections were treated with 3%
hydrogen peroxide and goat serum blocking, and then they
were incubated with a primary antibody. The following primary
antibodies were used: anti-Osterix (1:300; Abcam, Cambridge,
UK), anti-RUNX2 (1:100; Abcam), anti-type I collagen (1:200;
Boster Biological Technology, Wuhan, China), anti-Amelogenin
(1:100; Santa Cruz Biotechnology, Dallas, TX), anti-CD31 (1:100;
Affinity Biosciences, Changzhou, China). Sections were subse-
quently incubated by Alexa Fluor 488 IgG (1:1000; Invitrogen)
and/or Alexa Fluor 568 IgG (1:1000; Invitrogen), and counter-
stained with DAPI (Sigma-Aldrich).
The images were captured using a confocal microscope (Nikon,

TI2-E+ A1 R, Japan), and processed using the ImageJ software
(US National Institutes of Health, United States).

Microcomputed tomography (micro-CT) analysis
Alveolar bones with teeth dissected from mice were fixed in 4%
paraformaldehyde (PFA) for 48 h. Use micro-CT (μCT50, Scanco
Medical, Zurich, Switzerland) for tissue tomography and output in
DICOM format. Image data were reconstructed and analyzed using
the Mimics 13.0 software.

Isolation, culture, and transfection of human PDLSCs
Normal impacted third molars (n= 8) were collected from five
individuals aged 18–25 years at the Department of Oral and
Maxillofacial Surgery, School & Hospital of Stomatology, Tongji
University, Shanghai, China. The use of human tissue for research
was approved by the Ethics Committee at the Affiliated
Stomatology Hospital of Tongji University. Human PDLSCs were
freshly isolated according to previously reported protocols44,45

and cultured in alpha-modification of Eagle’s medium (α-MEM,
HyClone, USA) containing 10% fetal bovine serum (FBS, Gibco,
USA), 100 units per mL penicillin–streptomycin (HyClone), and
100 μmol·L−1 ascorbic acid (Sigma–Aldrich). Cells at passages
P3–P5 were used for cytological experiments
PEI transfection reagent (proteintech, Wuhan, China) was used

for the transfection of siRNAs. Sequences of siRNAs used were:
GAAUAGGACAACCUUCAAUTT (5′−3′) and AUUGAAGGUUGUCC

UAUUCTT (5′−3′).

RNA extraction and real-time quantitative polymerase chain
reaction
The co-cultured PDLSCs and ECs were crushed into Trizol reagent
(Invitrogen) according to the manufacturer’s protocol. First-stand
complementary DNA (cDNA) was synthesized using a Transcriptor
First Strand cDNA Synthesis Kit (Roche, Basel, Switzerland). The
primer sequences were:
Prx1: 5′-CACCTGCTAGACCTGGAGGAA-3′ and 5′-GCTGCTATTGAAG

GTTGTCCTATT-3′; β-actin: 5′-AGGGCATACCCCTCGTAGAT-3′ and 5′-A
CGTTGCTATCCAGGCTGTG-3′; CD31: 5′-TGTCAAGTAAGGTGGTGGAG
TCT-3′ and 5′-AGGCGTGGTTGGCTCTGTT-3′; Vegf: 5′-CCCACTGAGGA
GTCCAACAT-3′ and 5′-AAATGCTTTCTCCGCTCTGA-3′.

Statistical analysis
All data were performed by SPSS 20.0 and GraphPad Prism 8.0.
Comparisons between two groups were analyzed by Student’s t-
test. P < 0.05 was considered statistically significant.
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