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Abstract: Optical fiber pre-warning systems (OFPS) based on Φ-OTDR are applied to many different
scenarios such as oil and gas pipeline protection. The recognition of fiber vibration signals is one
of the most important parts of this system. According to the characteristics of small sample set, we
choose stochastic configuration network (SCN) for recognition. However, due to the interference of
environmental and mechanical noise, the recognition effect of vibration signals will be affected. In order
to study the effect of noise on signal recognition performance, we recognize noisy optical fiber vibration
signals, which superimposed analog white Gaussian noise, white uniform noise, Rayleigh distributed
noise, and exponentially distributed noise. Meanwhile, bootstrap sampling (bagging) and AdaBoost
ensemble learning methods are combined with original SCN, and Bootstrap-SCN, AdaBoost-SCN,
and AdaBoost-Bootstrap-SCN are proposed and compared for noisy signals recognition. Results show
that: (1) the recognition rates of two classifiers combined with AdaBoost are higher than the other two
methods over the entire noise range; (2) the recognition for noisy signals of AdaBoost-Bootstrap-SCN
is better than other methods in recognition of noisy signals.

Keywords: noisy optical fiber vibration signal recognition; optical fiber pre-warning system; stochastic
configuration network; bootstrap sampling; AdaBoost

1. Introduction

At present, inflammable and explosive resources such as oil and natural gas are mainly transported
through pipelines, which is convenient and fast. Meanwhile, problems such as resource waste and
environmental pollution caused by pipeline leakage also exist. Therefore, real-time monitoring
for pipelines’ status is essential [1–3]. In the process of pipeline monitoring, the research of
OFPS mainly focused on monitoring and recognition of vibration signals [4,5]. In the field of
recognition of optical fiber vibration signal, there are two types of institution at present, reflection
and interference. The Mach–Zehnder (MZ) method is an interference method, which can be used to
detect sensitive characteristics of vibration signal. In addition, the phase-sensitive optical time-domain
reflectometer (Φ-OTDR) is a reflection method, which can be used to detect concurrent vibration
signals. Compared with other monitoring methods, optical fiber pre-warning systems (OFPS) based
on Φ-OTDR are a very common method of long-distance detection and security protection due to
their advantage in design (anti-interference, small additional damage, easy upgrade of back-end, low
energy consumption in the field and suitable for long-distance defense) [6].

When we choose OFPS based on Φ-OTDR to recognize fiber vibration signals, how to improve the
recognition rate of different vibration signals and noisy vibration signals is a challenging task. On the
one hand, some scholars studied from the aspect of traditional feature extraction [7–14], on the other
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hand, some scholars studied from the aspect of combining neural network [15,16], and all of them
achieved certain results.

The recognition methods of vibration signals based on neural network is studied by many scholars,
because it is simple to operate and does not require too much preprocessing of vibration signals. At the
same time, the vibration signal recognition methods based on neural network is also a challenging
research field. With the improvement of computing power, neural networks or artificial intelligence
will be widely used in the field of optical fiber vibration signal recognition.

The main contribution of this paper is combining original SCN with bootstrap sampling of
Bagging and AdaBoost, and proposing three improved methods: Bootstrap-SCN, AdaBoost-SCN, and
AdaBoost-Bootstrap-SCN for noisy fiber vibration signal recognition in the case of small sample set.
Likewise, the robustness of the proposed methods is tested by using noisy vibration signals. In the
experimental part, we first pretreat collected signals and superimpose various types of noise. Then,
we send noisy signal sets to five methods (including original SCN and random vector functional link
(RVFL) network) for training. At last, we compare the results of five methods.

The article is divided into the following parts: the second section describe the details of related
works; the third section briefly introduces original SCN, proposed methods, and methods for generating
various types of noisy signals; the fourth section makes a presentation of the optical fiber pre-warning
system, original data of fiber vibration signals, and signal pretreating process; the fifth section shows
the experiments and analysis; the sixth section is the discussion of experimental results; and the last
section concludes this study.

2. Related Work

Scholars have done in-depth studies on the recognition technology of optical fiber signals,
including instrument improvement, optical fiber signal processing, and classification. Traditional
analysis methods are based on time and frequency domain [7–10]. Bi et al. [11] and Qiu et al. [12]
applied constant false alarm rate (CFAR) commonly used in radar signal detection to optical fiber
signal processing, and proposed cell averaging-CAFR (CA-CAFR) algorithm with small computational
complexity and strong adaptability. However, CA-CAFR algorithm is applicable when the input
signals of detector are independent identically distribution (IID) Gaussian random variables, otherwise,
ideal effect cannot be achieved. Sun et al. [13] proposed a feature extraction method combining with
wavelet energy spectrum and wavelet information entropy, and proved its feasibility in experiments.
Yen et al. [14] used wavelet packet transform to extract time domain information from vibration signals
to recognize vibration signals, and the experimental results showed that this method could effectively
distinguish three kinds of intrusion signals. At the same time, some scholars used neural networks
to recognize fiber vibration signals. King et al. [15] designed an optical fiber water sensor system by
using signal processing method, neural network and fast Fourier transform (FFT). Makarenko [16]
proposed a method for establishing a signal recognition deep learning algorithm in distributed optical
fiber monitoring and long period safety systems. It can recognize seven classes of signals and receive
time–space data frames as input. However, if a small sample set is used to train deep learning network,
the network training will not be in place, which affect recognition effect.

It is also necessary to recognize fiber vibration signals in the case of small sample set. Because
not only the acquisition of a large number of fiber vibration signals is difficult, but also the sample
calibration work is heavy. Once there is a problem in the calibration of samples, it will directly
affect the training of classifier. If a deep network is used for training in the case of small sample
set, the network could not be trained effectively. In the field of small networks, Wang et al. [17]
proposed an improved classification algorithm that considers multiscale wavelet packet Shannon
entropy, which uses radial basis function neural networks for classification and the accuracy rate is 85%.
In addition, some new small networks have been created in recent years. Igelnik et al. [18] proposed
a three-layer network. Its randomly generated parameters of hidden layer nodes not only improve
the generalization performance of network, but also save a lot of iterative operations. Based on RVFL



Sensors 2019, 19, 3293 3 of 22

network, Wang et al. [19] proposed stochastic configuration network (SCN) to change the generation
method of hidden layer nodes, which makes the size setting of network more flexible.

At the same time, since OFPS usually works in a complex environment and is susceptible to various
disturbances, the acquired fiber vibration signals contain various noises. During the propagation of
backscattered light, the remaining types of scattered light generated in fiber may become the optical
noise of the system. Photoelectric detectors based on avalanche photo diode module (APD) generate
random noise during the fiber conversion and amplification process. All these noises overwhelm
the fiber signals of the system [20]. Sun et al. [21] used the theoretical model to verify the influence
of Rayleigh optical noise more intuitively on the accuracy of system measurements. It can be seen
that various types of noises seriously affect the recognition of fiber vibration signals. Therefore,
it is an important research field to improve the recognition accuracy of fiber vibration signals in
noisy environment.

For the recognition task of noisy fiber signals, common methods are to use synchronization
overlapping average algorithm to suppress the white noise of the system. The increase of the number of
accumulations can effectively promote the signal–noise ratio (SNR) and improve the performance of the
system [22]. Since the structure of self-noise is similar to random noise, and median filter is an effective
method to remove random noise, Qin et al. [23] moved the noise from signals in three-dimensional time
domain with median filter. In order to eliminate the influence of coherent Rayleigh noise in coherent
optical time domain reflectometry (COTDR) systems, Liang et al. [24] proposed a noise reduction
method based on timed frequency hopping. This method could effectively suppress the noise in
COTDR system and improve the long-distance sensing performance of the system. In order to reduce
the influence of background noise on vibration detection, Ibrahim Ölçer et al. [25] proposed an adaptive
time-matching filtering method, which significantly improved the SNR of independent adaptive
processing. However, when performing long-distance monitoring, it is necessary to introduce optical
amplification to increase the distance of laser irradiation, which will affect the effect of this method.

In the recognition of noisy fiber vibration signals with a small sample set, the problem of low
classification accuracy still occurs in the use of SCN, and the recognition rate is sometimes even lower
than 50%. This shows that the SCN after training is less robust in this case. Combining models with
ensemble learning methods is a common choice in solving the problem of low robustness [26,27]. In the
field of ensemble learning methods, Boosting and Bagging are two representative types of methods.
Fernandes et al. [28] used AdaBoost and random weight neural networks (RWNN) in the spectral data
processing of grape stems to obtain better classification results than other methods. Asim et al. [29]
also proposed an earthquake prediction system that combines earthquake prediction indicators with
genetic programming and AdaBoost, and obtained better results in earthquake prediction. Likewise,
Okujeni et al. [30] used a small share of training samples and a low number of Bagging iterations
to generate accurate urban fraction maps. Akila et al. [31] combined the Bagging method with
Risk Induced Bayesian Inference method to form a cost-sensitive weighted voting combiner, which
indicated 1.04–1.5 times reduced cost in the Brazilian bank data experiment. Wing et al. [32] proposed
a bagging boosting-based semi-supervised multi-hashing method with query-adaptive re-ranking,
which outperformed state-of-the-art hashing methods with statistical significance.

3. Theoretical Explanation

3.1. Original SCN

SCNs are a class of randomized neural networks proposed by Wang and Li in [18], which originally
contributed to the development of randomized learning techniques. Its structure is shown in Figure 1.
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From Figure 1, we can see that the input is Xn×N = [x1, · · · , xi, · · · , xN], xi =
[
xi1, · · · , xi j, · · · , xin

]T
∈

Rn and the output is Ym×N =
[
y1, · · · , yi, · · · , yN

]
, yi =

[
yi1, · · · , yi j, · · · , yim

]T
∈ Rm, where N is the

number of training samples, n is the dimension of sample’s input, m is the dimension of sample’s
output. Meanwhile, we define the input weight matrix as ωn×L = [ω1, · · · ,ωi, · · · ,ωL] ∈ Rn×L, the
bias vector as bL = [b1, · · · , bi, · · · , bL]

T
∈ RL, where L is the number of hidden layer nodes. Then, we

calculate the output of hidden layer nodes of network according to the input of network, input weight
matrix and bias vector. Herein, the output of the Lth hidden layer node is expressed as

hL(X) = [h1L, · · · , hiL, · · · , hNL]
T = σ

(
ωT

L X + bL
)
, (1)

where

hiL = σ
(
ωT

L xi + bL
)
=

 1

1 + e−ω
T
L xi+bL

. (2)

The output weight matrix isβL×m = [β1, · · · ,βi, · · · ,βm],βi =
[
βi1, · · · , βi j, · · · , βiL

]L
∈ RL. Combine

with the output of hidden layer H(X) = [h1(X), · · · , hi(X), · · · , hL(X)] and the weight matrix of output

βL×m, we can get corresponding output y′i =
[
y′i1, · · · , y′i j, · · · , y′im

]
∈ Rm. Meanwhile, we can calculate

the current corresponding residual matrix EN×m(X) of network according to the output yi corresponded
to the input

EN×m(X) =
[
e(l−1)1(X), · · · , e(l−1) j(X), · · · , e(l−1)m(X)

]
, (3)

where
e(l−1) j(X) =

[
e(l−1) j(x1), · · · , e(l−1) j(xi), · · · , e(l−1) j(xN)

]T
∈ RN, (4)

e(l−1) j(xi) =
∣∣∣∣yi j − y′i j

∣∣∣∣. (5)

When adding the Lth hidden layer node, the constraint condition is expressed as

ξLj =

(
eT
(L−1) j

(X) · hL(X)
)2

hT
L (X) · hL(X)

− (1− r− µL)eT
(L−1) j(X)e(L−1) j(X) > 0, (6)

where j = 1, 2, · · · , m, r is a sequence greater than 0 and less than 1, and varies in the process of finding
parameters, µL ≤ 1− r and lim

L→∞
µL = 0.

The training process of SCN is as follows. When adding the Lth hidden layer node, ωiL and biL

are randomly generated within a certain range [λmin,λmax]
n and [λmin,λmax], and made up into a

candidate set
{
(ω1L, b1L), · · · , (ωiL, biL), · · · (ωuL, buL)

}
, where u is the number of candidate nodes. Then,

one set (ωiL, biL) is selected when ξLj > 0 (6) and minimizing ε = 1/N
∑N

i=1

∣∣∣yi − y′i
∣∣∣. If there is no one

in the candidate set satisfies the constraint condition, the range will be appropriately expanded and
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the selection will be made again, but the scope of scalability is limited. The network stops training
when it meets one of the following three conditions: (1) the number of hidden layer nodes reaches to
the preset maximum value Lmax; (2) the training error is lower than the preset error value εmin; (3) the
(ωiL, biL) that satisfies the condition cannot be found within the maximum range.

It can be seen from the above description that the difference between SCN and other neural
networks lies in its unique training mode. It gives up the traditional iterative method of updating
network parameters, and uses the pattern of adding hidden layer nodes under constraints, which makes
the scale of network flexible and controllable, and greatly reduces the loss of computing resources.

3.2. SCN-Based Methods

The robustness of the model refers to the ability to resist or overcome adverse conditions. In these
experiments, the stronger models’ ability to overcome noisy environment, the better the robustness of
models. In order to strengthen the robustness of original SCN, we combine the original SCN with two
ensemble learning methods. We also strengthen the robustness of model by combining two ensemble
learning methods based on original SCN.

3.2.1. Bootstrap-SCN Method

Bagging is a parallel ensemble learning method, its process is as follows. First, we randomly
sample a number of different training subsets with the same number of training set samples from
training set, and this step is called bootstrap sampling. Then, we use these different training subsets
to train corresponding base classifiers with the same type of classifier models. Finally, these base
classifiers are combined by simple voting or other methods to form the final classifier. Here, bootstrap
sampling is the core step of bagging.

By using bootstrap sampling in the case of small training set, on the one hand, these base classifiers
will have a larger difference between each other according to training subsets; On the other hand, it
also avoids the problem that training subsets are too small which caused by dividing the completely
different subsets, and finally the base classifiers are not trained well.

Combined with the training process of SCN, we propose Bootstrap-SCN method. This method
generates a training subset by using bootstrap sampling before adding hidden layer nodes to SCN.
This training subset is used for the generation of new hidden layer node of SCN. After that, we repeat
this step to generate more hidden layer nodes until the end of training. The flow of this method is
shown in Figure 2, and the pseudo code is shown in Algorithm 1.
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Algorithm 1: Pseudo code of Bootstrap-SCN method.

Given training set T =
{(

x1, y1

)
, · · · ,

(
xi, yi

)
, · · · ,

(
xN , yN

)}
, training subset by bootstrap sampling{

T1, · · · , T j, · · ·Tn
}
, SCN model Γ, current and maximum number of hidden layer nodes L and Lmax, training

error ε, expected error tolerance εmin

Initialize Γ and ε;
1: While L ≤ Lmax AND ε > εmin do
2: Generate T j using bootstrap sampling on the basis of T;
3: Train Γ and generate a new hidden layer node with T j;
4: j = j + 1;
5: End while
Return: G(x) = Γ(T).

3.2.2. AdaBoost-SCN Method

When we train network with small sample sets, it is very likely that the network training is not in
place and the robustness of network is poor. AdaBoost can be used to reduce the deviation and improve
the effect of network on the vibration signal recognition [33]. Meanwhile, because the hidden layer
nodes of original SCN are generated one after another, which conforms to the form of serially training
different base classifiers of AdaBoost. In this method, we use AdaBoost when generating the hidden
layer nodes of SCN, so as to improve the effect of original SCN in fiber vibration signal recognition.

In the process of SCN training, we consider the hidden layer nodes generated by each training
round as different classifiers. When SCN is in the initial state, the weights of samples are the same.
When training the network, the samples’ weights are adjusted according to the training error of SCN
and the recognition results of samples after each time the hidden layer node is added, and are used for
the calculation of training error when the hidden layer node is added next time. Then, we repeat this
step to generate more hidden layer nodes until the end of training. The flow of this method is shown
in Figure 3, and the pseudo code is shown in Algorithm 2. For the sake of simplicity, we do not assign
weights to the hidden layer nodes of trained network, which means all hidden layer nodes have the
same weights in calculation process.
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Algorithm 2: The pseudo code of AdaBoost-SCN method.

Given training set T =
{(

x1, y1

)
, · · · ,

(
xi, yi

)
, · · · ,

(
xN , yN

)}
, SCN model Γ, current and maximum number of

hidden layer nodes L and Lmax, training error, expected error tolerance εmin, weights of training set
Dk = (αk1, · · · ,αki, · · · ,αkN)

Initialize Γ and ε, D1(x) = 1/N, k = 1;
1: While L ≤ Lmax AND ε > εmin Do
2: G(x) = Γ(T, Dk);
3: ε = Px∼Dk (G(x) , y);
4: if ε > 1/2 then set L = L− 1 and abort loop
5: δ = ε

1−ε ;

6: Dk+1(x) =
{

Dk(x)δ1−I(G(xi),yi), if G(x) = f (x)
Dk(x), if G(x) , f (x)

;

7: End while
Return G(x) = Γ(T).

3.2.3. AdaBoost-Bootstrap-SCN Method

According to Sections 3.2.1 and 3.2.2, the two main ensemble learning methods can be used in
the training of SCN and applied to the recognition of fiber vibration signals. From the perspective
of bias-variance decomposition, AdaBoost mainly focuses on reducing the bias of classifier, while
bagging mainly focuses on reducing the variance of classifier. However, there is a conflict between
bias and variance in the training process of a classifier. When the classifier is not trained enough, it
cannot fit neither training set and testing set well. At this time, the bias of the classifier dominates the
classification error rate. As the training continues, when the training is too much, the classifier can fit
training set well, but it cannot fit testing set well. At this time, the variance dominates the classification
error rate [34]. Therefore, in order to balance the bias and variance of classifier, we could combine
these two ensemble learning methods with SCN simultaneously.

The way we combine two ensemble learning methods with SCN is as follows. During the process
of training SCN, we need to update the weights of the samples according to the training error and
samples’ recognition results of current network before adding new hidden layer node. Then we use
bootstrap sampling to generate a training subset and choose the corresponding weights of samples in
the training subset. At last, we use this training subset and the corresponding weights to train SCN
and obtain a new hidden layer node. We repeat this step to generate more hidden layer nodes until
the end of training. The flow of this method is shown in Figure 4, and the pseudo code is shown in
Algorithm 3. For the sake of simplicity, we do not assign weights to the hidden layer nodes of the
trained network, which means all hidden layer nodes have the same weights in calculation process.Sensors 2018, 18, x FOR PEER REVIEW  8 of 22 
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Algorithm 3: The pseudo code of AdaBoost-Bootstrap-SCN method.

Initialize Γ and ε, D1(x) = 1/N, k = 1;
1: While L ≤ Lmax AND ε > εmin do
2: Generate T j using Bootstrap Sampling on the basis of T;
3: Generate D jk with Dk and T j;
4: G(x) = Γ

(
T j, D jk

)
;

5: ε = Px∼D jk (G(x) , y);
6: if ε > 1/2 then set L = L− 1 and abort loop
7: δ = ε

1−ε ;

8: D′ jk(x) =
{

D jk(x)δ1−I(G(xi),yi), if G(x) = f (x)
D jk(x), if G(x) , f (x)

;

9: Update Dk with D′ jk to Dk+1;
10: End while
Return G(x) = Γ(T).

3.3. Simulated Noise

Due to the unique nature of OFPS, it needs to work in complex environments for long periods of
time. The various noises also cause some interference to the recognition of the vibration signals of
system. In order to eliminate the influence of noises, we need to improve the robustness of classifiers.
In this paper, we mainly use four common noises for simulation and verify the effectiveness of the
proposed methods.

3.3.1. White Gaussian Noise

White Gaussian noise is a kind of noise whose instantaneous value obeys Gaussian distribution
and power spectral density obeys uniform distribution. It is commonly used to simulate ambient noise
because its probability distribution is normally distributed. In order to analyze the influence of noise
on signal recognition performance, we combine pretreated fiber vibration signals with white Gaussian
noise to obtain noisy vibration signals

PG
i (t) = Pi(t) + αG · nG

i , (7)

where Pi(t) is original fiber vibration signal, αG is the multiple of superimposed noise, PG
i (t) is the fiber

vibration signal superimposed by Gaussian white noise, nG
i ∼ N(0, 1) is simulated white Gaussian

noise. The frequency domain expression of nG
i is

NG
i (z) =

1
√

2π
exp

(
−

z2

2

)
. (8)

In order to accurately understand the interference of different noise intensities on signal recognition,
we use the variable αG to control the amplitude of noise, and the same operation is applied to the
subsequent noise.

3.3.2. White Uniform Noise

White uniform noise refers to the noise whose power spectral density is constant in the whole
frequency domain. In this paper, the vibration signal superimposed white uniform noise is defined
as PU

i
PU

i (t) = Pi(t) + αU · nU
i , (9)
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where Pi(t) is original fiber vibration signal, αU is the multiple of superimposed noise, PU
i (t) is the

fiber vibration signal superimposed by white uniform noise. The frequency domain expression of nU
i is

NU
i (z) =

{ 1
b−a , a ≤ z ≤ b

0 , others
. (10)

In this paper, the parameters of white uniform noise are set to: a = −5, b = 5.

3.3.3. Raleigh Distributed Noise

Rayleigh distributed noise refers to the noise whose instantaneous value obeys Rayleigh
distribution. In this paper, the vibration signal superimposed Raleigh distributed noise is defined as PR

i

PR
i (t) = Pi(t) + αR · nR

i , (11)

where Pi(t) is original fiber vibration signal, αR is the multiple of superimposed noise, PR
i (t) is the fiber

vibration signal superimposed by Raleigh distributed noise. The frequency domain expression of nR
i is

NR
i (z) =

z
σ2 exp

(
−

z2

2σ2

)
, z ≥ 0. (12)

In this paper, the parameter of Raleigh distributed noise is set to: σ = 2.

3.3.4. Exponentially Distributed Noise

Exponentially distributed noise refers to the noise whose instantaneous value obeys exponential
distribution. In this paper, the vibration signal superimposed exponentially distributed noise is defined
as PE

i
PE

i (t) = Pi(t) + αE · nE
i , (13)

where Pi(t) is original fiber vibration signal, αE is the multiple of superimposed noise, PE
i (t) is the fiber

vibration signal superimposed by exponentially distributed noise. The frequency domain expression
of nE

i is

NE
i (z) =

{
λe−λz , z > 0

0 , z ≤ 0
. (14)

In this paper, the parameter of exponentially distributed noise is set to: λ = 2.5.

4. Description of System and Data

4.1. Optical Fiber Pre-Warning System (OFPS)

The acquisition of fiber vibration signals was completed by the OFPS developed by the authors’
laboratory, and the schematic diagram of the OFPS is shown in Figure 5. The OFPS uses Φ-OTDR to
detect intrusion vibration signals. Specifically, light is emitted from the cabinet and injected into the
single mode fiber. Vibrations generated on the ground change the refractive index of fiber in that place,
causing the back Rayleigh scattered light to change. After the acquisition, we analyze the Rayleigh
scattered light and judge the type of vibration generated on the ground according to the change.
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4.2. Fiber Vibration Data and Sample Pretreating 

The fiber vibration signals used in this experiment was collected from the experimental site in 
the suburbs of Beijing. These signals include pickaxe, electric drill, and shovel. When we perform 
pretreating process on these signals, we first remove the direct current (DC) part of the acquired 
signals. Three types of vibration samples after removing DC part are shown in Figure 6. As it can be 
seen from the figures, three signals have different characteristics. Wherein, the electric drill signal (b) 
has periodicity, and the amplitude of the pickaxe signal (a) is greater than the shovel signal (c). 
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4.2. Fiber Vibration Data and Sample Pretreating

The fiber vibration signals used in this experiment was collected from the experimental site in
the suburbs of Beijing. These signals include pickaxe, electric drill, and shovel. When we perform
pretreating process on these signals, we first remove the direct current (DC) part of the acquired signals.
Three types of vibration samples after removing DC part are shown in Figure 6. As it can be seen
from the figures, three signals have different characteristics. Wherein, the electric drill signal (b) has
periodicity, and the amplitude of the pickaxe signal (a) is greater than the shovel signal (c).
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4.2. Fiber Vibration Data and Sample Pretreating 

The fiber vibration signals used in this experiment was collected from the experimental site in 
the suburbs of Beijing. These signals include pickaxe, electric drill, and shovel. When we perform 
pretreating process on these signals, we first remove the direct current (DC) part of the acquired 
signals. Three types of vibration samples after removing DC part are shown in Figure 6. As it can be 
seen from the figures, three signals have different characteristics. Wherein, the electric drill signal (b) 
has periodicity, and the amplitude of the pickaxe signal (a) is greater than the shovel signal (c). 
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Figure 6. Fiber vibration signals in time domain: (a) pickaxe; (b) electric drill; (c) shovel.

Meanwhile, the dashed boxes in Figure 6a,c show that the vibration part of a signal has a short
duration and the position in the time dimension is not fixed, which makes the vibration parts of the
same type of signals have different position in the time dimension. If the samples are sent directly to the
classifier for training after removing DC part, it will affect the recognition of classifier. FFT transforms
the signal from time domain to frequency domain, which ignores the information of time domain, and
unifies the vibration signals of same type. Therefore, we perform 128-point FFT on vibration signals.
Figure 7 shows the result of performing FFT on the signals shown in Figure 6.

Then we randomly divide these three kinds of signals into a training set and a testing set in a
4:1 ratio. The training set is a set of samples used for learning, which is to fit the parameters of the
classifier. The testing set is used only to assess the performance of a fully specified classifier. The data
is shown in Table 1.
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In our experiments, we assume that the vibration signals used are relatively pure and simulate the
noisy signal recognition task by superimposing different artificial noises. It can be seen from Figure 6
that the largest amplitude of vibration signals is about 800 mV in pickaxe signal (a). In order to fully
analyze various degrees of noisy interference, we add integer multiples of various noises according to
Equations (7), (9), (11), and (13) on the basis of original vibration signals until it completely covers all
signals. Figure 8 shows the results of superimposing different multiples of white Gaussian noise based
on pickaxe signal in Figure 6a.

Table 1. Samples of training set and testing set

Training Set Testing Set Overall

Pickaxe 167 42 209
Electric drill 192 48 240

Shovel 172 43 215

Overall 531 133 664
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Figure 8. Pickaxe signal superimposed with white Gaussian noise according to Equation (9): (a)
αG = 20; (b) αG = 40; (c) αG = 60; (d) αG = 80; (e) αG = 100; (f) αG = 120; (g) αG = 140; (h) αG = 160;
(i) αG = 180; (j) αG = 200.

5. Numerical Experiment

After preparing fiber vibration signals and the signal sets superimposed by four different noises,
we use these noisy signal sets to train SCNs which combine with different ensemble learning methods.
The recognition effects of different methods on the noisy signal sets is obtained and compared. In order
to eliminate the influence of the random generation of hidden layer nodes on the experimental results,
we repeat each experiment and average the experimental results. Here, we set network to stop training
when the hidden layer nodes of network exceed 100. Meanwhile, the maximum number of hidden
layer candidate nodes is set to 100 (one of these candidate nodes is selected when adding a hidden
layer node). During the training process, each time a hidden layer node is added, the accuracy of
training and testing is recorded.

Here, we have four classifiers including original SCN, Bootstrap-SCN, AdaBoost-SCN, and
AdaBoost-Bootstrap-SCN and different multiples of white Gaussian noise, white uniform noise,
Rayleigh distributed noise and exponentially distributed noise. First, we train four different types of
classifiers with the signal sets superimposed by different types and intensities of noises. In order to
eliminate the influence of randomness on experimental results, each sample set is performed 10 times
of training and testing on each classifier. Then, the experimental results are averaged to obtain the
actual classification effect of classifier in current sample set. Afterwards, we find the position with the
highest testing accuracy in the case of each intensity of noises, and use the highest testing accuracy
to form the testing accuracy curve. In addition, we use this training method to obtain the results for
other signal sets superimposed by different types and intensities of noises. Figure 9 shows the average
results when signals superimposed by different intensities of white Gaussian noise are sent to original
SCN. The positions of the maximum testing accuracy are also indicated in figures. Meanwhile, the
testing accuracy curve composed of the highest testing accuracy is shown in Figure 10.
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Figure 9. Original SCN’s training and testing accuracy for signals superimposed by white Gaussian
noise: (a) αG = 0; (b) αG = 20; (c) αG = 40; (d) αG = 60; (e) αG = 80; (f) αG = 100; (g) αG = 120; (h)
αG = 140; (i) αG = 160; (j) αG = 180; (k) αG = 200.
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Figure 10. The maximum testing accuracy of original SCN with white Gaussian noise.

5.1. Recognition with Original SCN

According to the calculation method mentioned above, we first use original SCN to recognize the
vibration signals superimposed by four kinds of noises. The results are shown in Figure 11.
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Figure 11. The maximum testing accuracy of original SCN with different noises.

From Figure 11, we can see that the recognition accuracy of original SCN decreases with the
increase of noise’s amplitude. By observing the recognition effect of signals with equal multiple of
noises, it can be seen that different noises have different degrees of interference with signals. For white
Gaussian noise, testing accuracy decreases from 0.8746 of noiseless signals to 0.5254 when the multiple
of noises is 200; For white uniform noise, the testing accuracy decreases from 0.8582 of noiseless
signals to 0.4388 when the multiple of noises is 200. For Rayleigh distributed noise and exponentially
distributed noise, the testing accuracy decreases from 0.8657 and 0.8463 with the noiseless signal to
0.6045 and 0.6642 when the multiple of noises is 200.

5.2. Recognition with Bootstrap-SCN

In this section, we combine bootstrap sampling with SCN to recognize noisy vibration signals.
The comparison of the recognition accuracy between original SCN and Bootstrap-SCN is shown in
Figure 12.
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Figure 12. The maximum testing accuracy of original SCN and Bootstrap-SCN with different noises:
(a) white Gaussian noise; (b) white uniform noise; (c) Rayleigh distributed noise; (d) exponentially
distributed noise.

Figure 12 shows the recognition rates of original SCN and Bootstrap-SCN as the superimposed
noises’ multiplier increases. When the multiplier of superimposed noise increases, the recognition
rates of both methods decrease. For signals superimposed by white Gaussian noise, the recognition
rate of Bootstrap-SCN decreased from 0.8776 of noiseless signals to 0.5910 when the multiple of noises
is 200. For signals superimposed by white uniform noise, Rayleigh distributed noise and exponentially
distributed noise, the recognition rate of Bootstrap-SCN decreased from 0.8761, 0.8791, and 0.8925 of
noiseless signals to 0.5463, 0.6507, and 0.6881 when the multiple of noises is 200.

The above results show that Bootstrap-SCN and original SCN have the same recognition effect
when there is no superimposed noise. In the case of superimposing four kinds of noises, the recognition
rate of Bootstrap-SCN is slightly higher than that of original SCN, but the effect is not obvious.

5.3. Recognition with AdaBoost-SCN

In this part, we use another ensemble learning method to improve the recognition rate of SCN.
We combine AdaBoost with SCN to recognize four kinds of noisy signals. The recognition results of
noisy signals by original SCN and AdaBoost-SCN are shown in Figure 13.
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Figure 13. The maximum testing accuracy of original SCN and AdaBoost-SCN with different noises:
(a) white Gaussian noise; (b) white uniform noise; (c) Rayleigh distributed noise; (d) exponentially
distributed noise.

Figure 13 shows the recognition rates of four kinds of noisy signals by original SCN and
AdaBoost-SCN as the superimposed noises’ multiplier increases. For signals superimposed by white
Gaussian noise and white uniform noise, the recognition rate of AdaBoost-SCN decreases from 0.9767
and 0.9820 of noiseless signals to 0.6143 and 0.5278 when the multiple of noises is 200. For signals
superimposed by Rayleigh distributed noise and exponential distributed noise, the recognition rate of
AdaBoost-SCN decreases from 0.9729 and 0.9752 of noiseless signals to 0.6759 and 0.7902 when the
multiple of noises is 200. It can be seen from the comparison with original SCN that the recognition
accuracy of AdaBoost-SCN is about 0.1 higher than that of original SCN in the case of different
superimposed noise.

5.4. Recognition with AdaBoost-Bootstrap-SCN

After the above experiments of two combination methods, we carried out experimental verification
on the proposed AdaBoost-Bootstrap-SCN. The recognition rates of noisy signals by original SCN and
AdaBoost-Bootstrap-SCN are shown in Figure 14.
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Figure 14. The maximum testing accuracy of original SCN and AdaBoost-Bootstrap-SCN with
different noises: (a) white Gaussian noise; (b) white uniform noise; (c) Rayleigh distributed noise;
(d) exponentially distributed noise.

Figure 14 shows the recognition rates of four kinds of noisy signals by original SCN and
AdaBoost-Bootstrap-SCN as the superimposed noises’ multiplier increases. For signals superimposed
by white Gaussian noise and white uniform noise, the recognition rates of AdaBoost-Bootstrap-SCN
decreased from 0.9940 and 0.9940 of noiseless signals to 0.7463 and 0.6373 when the multiple of
noises is 200. For signals superimposed by Rayleigh distributed noise and exponential distributed
noise, the recognition rate of AdaBoost-Bootstrap-SCN decreased from 0.9970 and 0.9970 of noiseless
signals to 0.8254 and 0.8850 when the multiple of noises is 200. Compared with original SCN,
AdaBoost-Bootstrap-SCN can improve 0.1–0.15 on the basis of original SCN in the case of no noise
superposition, and the recognition rate is more than 0.99. Meanwhile, the recognition of this method is
improved more than 0.2 on the basis of original SCN when the multiple of noises is 200.

5.5. Comparison with Other Methods

Because the structure of RVFL network is similar to SCN, we use RVFL network for comparison.
RVFL network have three layers. Its input layer has 128 nodes, which is the same as the dimension of
vibration samples. The number of output layer nodes is the same as the dimension of sample’s label.
As the number of hidden layer nodes is a hyper-parameter, which need be set before network training,
we need to record the experimental results of RVFL network with different numbers of hidden nodes.
In order to eliminate the influence of the randomness in network training, we repeat each experiment
10 times and average experimental results. The condition of stopping training is set as: when testing
error is less than 0.01. The experimental results are as follows.

Figure 15 shows the comparison of recognition effects of RVFL network and original SCN with
different noises. We can see that the recognition effect of original SCN is 0.04–0.2 better than that of
RVFL network, which is why we choose original SCN as the research object.
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Figure 15. The maximum testing accuracy of original SCN and RVFL network with different noises:
(a) white Gaussian noise; (b) white uniform noise; (c) Rayleigh distributed noise; (d) exponentially
distributed noise.

6. Discussion

The recognition results of four kinds of noisy signals with four classifiers are shown in Figure 16
and Table 2. From the figures we can see that when there is no noise superimposed, the recognition rates
of original SCN and Bootstrap-SCN are between 0.85–0.9, while the recognition rates of AdaBoost-SCN
and AdaBoost-Bootstrap-SCN are greater than 0.95, which indicates that the use of AdaBoost can
improve the recognition rate of the vibration signal in the case of noiseless superposition and noisy
superposition. As the multiplier of superimposed noise increases, the recognition effect of each
classifier decreases. However, the recognition effect of AdaBoost-Bootstrap-SCN is slower than other
methods. When superimposing 200 times of noise, the recognition results of Bootstrap-SCN and
AdaBoost-SCN have a small increase compared with that of original SCN, while the recognition results
of AdaBoost-Bootstrap-SCN have a great improvement. Meanwhile, AdaBoost-Bootstrap-SCN is also
improved by about 0.1 on the basis of AdaBoost-SCN when superimposing 200 times of noise.
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Figure 16. The maximum testing accuracy of different methods with different noises: (a) white Gaussian
noise; (b) white uniform noise; (c) Rayleigh distributed noise; (d) exponentially distributed noise.

Table 2. Performance comparison of different classifiers

RVFL Network Original SCN Bootstrap-SCN AdaBoost-SCN AdaBoost-Bootstrap-SCN

Original signals (average) 0.7516 0.8612 0.8813 0.9767 0.9955

Adding 200
times noise

White
Gaussian

noise
0.4596 0.5254 0.5910 0.6143 0.7463

White
uniform

noise
0.3568 0.4388 0.5463 0.5278 0.6373

Rayleigh
distributed

noise
0.4528 0.6045 0.6507 0.6759 0.8254

Exponentially
distributed

noise
0.5279 0.6642 0.6881 0.7902 0.8850

Average 0.4493 0.5582 0.6190 0.6520 0.7735

It can be seen from the above discussion that: (1) after combining bootstrap sampling method
with original SCN, the robustness of SCN can be improved slightly; (2) by combining AdaBoost
method with SCN, the recognition rate of SCN can be improved over the entire noise range; (3)
when bootstrap sampling method and AdaBoost method are combined with SCN simultaneously,
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AdaBoost-Bootstrap-SCN can improve the robustness of classifier on the basis of AdaBoost-SCN and
achieve better recognition results.

7. Conclusions

In the case of small sample sets, this paper proposes three improved methods (Bootstrap-SCN,
AdaBoost-SCN, and AdaBoost-Bootstrap-SCN) to improve the recognition rate of noisy optical fiber
vibration signals. These methods enhance the robustness of SCN model by combining two ensemble
method (Bootstrap and AdaBoost) when original SCN adds hidden layer nodes. These three
improved methods have been trained and tested with noiseless and noisy optical fiber vibration
signals. Compared with the existing research results, the prediction results of these methods are
improved. In the noiseless vibration signal recognition task, the recognition accuracy is improved from
0.8612 of original SCN to 0.9955 of AdaBoost-Bootstrap-SCN. In the noisy vibration signal recognition
task, the recognition accuracy is improved from 0.5582 (average) of original SCN to 0.7735 (average)
of AdaBoost-Bootstrap-SCN. By combining SCN with ensemble learning methods, it can not only
effectively reduce the impact of different noises on vibration signals, but also enhance the robustness of
original SCN, which allows classifier to adapt to more complex and varied scenarios. Future efforts are
aimed towards reducing the training time of AdaBoost-Bootstrap-SCN and improving the recognition
effect of noisy optical fiber vibration signals.
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