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A B S T R A C T

Mathematical epidemiology is a well-recognized discipline to model infectious diseases. It also provides gui-
dance for public health officials to limit outbreaks. Nevertheless, epidemics take societies by surprise every now
and then, for example, when the Ebola virus epidemic raged seemingly unrestrained in Western Africa. We
provide insight to this capricious character of nature by describing the epidemic as a natural process, i.e., a
phenomenon governed by thermodynamics. Our account, based on statistical mechanics of open systems,
clarifies that it is impossible to predict accurately epidemic courses because everything depends on everything
else. Nonetheless, the thermodynamic theory yields a comprehensive and analytical view of the epidemic. The
tenet subsumes various processes in a scale-free manner from the molecular to the societal levels. The holistic
view accentuates overarching procedures in arresting and eradicating epidemics.

1. Introduction

The recent Ebola virus epidemic in Western Africa revealed how
quickly an outbreak may gain momentum in a new environment. The
Ebola virus disease (EVD), caused by Ebola virus (EBOV; formerly Zaire
ebolavirus), was not known among the people of West Africa. This
contrasts with communities in tropical regions of sub-Saharan Africa
where EVD is endemic [1–5]. It is even possible that the virus has been
circulating in West Africa all along without causing outbreaks [6].
Consequently, the epidemic raged seemingly unrestrained over several
countries. When the healthcare infrastructure collapsed, there were
even fears of a pandemic [1,7], although some models assessed the risk
of EVD spreading outside of Africa as small [8].

There is no question, that there are lessons to be learned from post-
epidemic investigations. Indeed, mistakes were made when facing the
EVD outburst [9–12]. Beyond the recommendations that have been
issued for future practice, we believe there is also a profound insight
into epidemics available from the general principles. Namely, the
course of an epidemic, its outbreak and decay follow the same sigmoid
pattern as any other natural process [13] (Fig. 1). Therefore, it is not
only about refining mathematical epidemiology further, but the epi-
demic itself can be understood, like any other process, as a manifesta-
tion of natural law.

We adopt the naturalistic tenet to address the final cause of an
epidemic. In terms of physics, the outbreak is caused by least-time
consumption of free energy [13]. This comprehension about what ul-
timately drives the epidemic, in turn, helps to intervene in its efficient

causes. These are diverse mechanisms that facilitate or impede the
spread of the infectious agent. Obviously, the thermodynamic account
is overlaid with changes in material forms, e.g., in human physiology
due to the infection as well as in social behavior due to the epidemic. In
this holistic manner, we communicate comprehension about epidemics
from the molecular to the societal level. Our scale-free theoretical
perspective is consistent, as it should be, with practical understanding.
Namely, when fighting off epidemics, engagement all levels is vital
[14].

2. Causes and consequences

In limiting and eradicating epidemics it is crucial to understand the
causes [1,10]. First and foremost, the infectious agent must be identi-
fied, and its means of spreading must be recognized [7,15,16]. In
physics, a cause is a force, i.e., an energy difference. Its consumption
powers consequential changes in motion. Here these effects are the
infection, its spreading including all the societal consequences. This
naturalistic stance is, of course, common sense. The size of an epidemic
relates ultimately to the free energy that the epidemic can consume.
Potential carriers embody the free energy. The susceptible population,
on the other hand, depends on the mechanisms that the epidemic can
exploit and deploy when spreading. When the infectious agent is pre-
vented from accessing further resources of free energy bound to the
healthy population, the spread of the disease will invariably decline.

Comprehending causality of epidemics in terms of physics may
suggest that the cause would fully determine the effect. This is not the
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case as we will shortly explain. Still, we acknowledge that deterministic
equations, such as the logistic equation, are well founded. In many
cases, they are excellent approximations of the courses of epidemics. In
contrast to common belief, we maintain that the ultimate inability to
make accurate predictions does not stem from some unknown or im-
precisely known factors [13,17]. This ignorance does prevent making
accurate predictions [7,15,18], but we argue that the ambiguity in
predictions follows from the inherent non-determinism of natural pro-
cesses. Many mathematical models are augmented with stochastic fac-
tors to account for indeterminacy or uncertainty [19–22]. However,
nothing will happen without some force, i.e. a cause. Also, chaos theory
postulates deterministic equations that will inflate minor differences in
initial conditions to major dissimilarities in final states [9,23–25]. Of
course, a seemingly sporadic encounter may trigger an epidemic. Still,
without the susceptible population, there would be no outbreak at all.
Similarly, we argue that the flapping of the wings of a distant butterfly
will not dictate the course of a tornado several weeks earlier, but all
states along the course contribute to the outcome.

It is insightful to acknowledge that the natural processes are path-
dependent, i.e., produce history. This physical portrayal of an epidemic
contrasts also with the tradition of time series modeling. Non-de-
terminism is distinct from indeterminism. It is inherent to the natural
processes [13,17,26]. The non-determinate paths follow from the fact
that causes and effects, i.e., the forces and changes in motions cannot be
separated from each other. Mathematically speaking, since the vari-
ables cannot be separated, the equation of motion cannot be solved.
This characteristic is distinct from deterministic models of ordinary
differential equations, such as simple and general reaction-diffusion
models, e.g., Fisher's equation and integrodifferential equation
[19,20,27,28].

Our comprehension about interdependency between causes and
effects underlying the non-determinate character of natural processes
is, of course, common sense. The rate of infection depends on the
spreading of infection which in turn will affect the rate and so on. In
other words, circumstances for the spreading will change along with the
spreading. Therefore, any epidemic will gain momentum when acces-
sing new means of spreading. Likewise, the rate of infection will be
slowed down when the infectious agent is recognized and appropriate
measures are taken, which, in turn, will improve conditions to limit the
spread of the epidemic further [11,19,20,22]. By the same token, this
interdependence manifests itself so that when the society begins to
recover from the calamity. Then it will become easier to take even more
effective measures, and so on [9]. All in all, non-determinism neither

follows from the complexity of the phenomenon nor from the lack of
knowledge in initial conditions, but from interdependency among the
causes and effects.

Difficulties in making accurate predictions are also at times attrib-
uted to emergent factors [7,29]. For example, a new infectious agent
may emerge from a mutation at the molecular level. Customarily,
emergence is thought to reside beyond physics that, as a discipline, is
geared to reducing systems to their constituents. However, the ther-
modynamic theory [13,17], adopted here, is based on statistical me-
chanics of open systems. Its equations include also flows of energy to
the system from its surroundings and vice versa. Most notably photons
that couple to changes of state, i.e., reactions, are essential ingredients
in addition to the systemic constituents. Thus, emergence is an integral
part of the theory [30].

Our insight into the natural processes does not diminish well-es-
tablished modeling of infectious diseases. It emphasizes that the actual
courses of epidemics are non-determinate. In fact, the various de-
terministic and stochastic equations are oftentimes the best options
there is. Data is limited and imprecise, to begin with. Also, the data are
invariably biased by disparate channels that are available for flows of
information [7,8,12,15,31]. This bias can also be seen in Figs. 1–3,
which highlight the difference between two data sources, namely the
WHO Situation reports and Patient databases, both collected by WHO,
but through different routes. Although the numbers differ, the general
form of the series of events remains the same. Precise data is invariably
hard to collect. In dire conditions, where the whole infrastructure of the
affected society is crumbling, the problem is manifold [11,32]. There is
also the possibility of unexpected variables. The emergent factors in-
clude, e.g., a mutated virus or cultural and geographical differences
between different outbreak instances [3,5,7,9,12,15,17,33,34]. For
these reasons alone even the most sophisticated simulations will fail to
predict epidemics. In addition, we emphasize interdependency in
comprehending the non-deterministic character of natural processes.

We infer that stochastic models simulate quite well the course of
many an epidemic. However, these models do not relate directly to the
physical reality. The causes and effects which correspond to forces and
changes in motions in terms of physics are not explicitly expressed. Put
differently, random processes may mimic quite well non-determinism.
Nevertheless, their parametrization for fluctuations does not relate to
the actual spatial-temporal variation in forces and ensuing changes in
motions. For example, probabilities can be assigned to locations where
the infectious agent could transfer from an animal to a human being,
but these odds do not map one-to-one to the causes of an actual in-
fection.

Likewise, the Bayesian inference may mimic quite well for the path-

Fig 1. Confirmed EVD cases in Guinea, as of Feb 10, 2016. The Western Africa Ebola virus
disease epidemic shows sigmoid curves that are characteristic of natural processes. The s-
shape curves, in turn, accumulate from skewed distributions that are typical of natural
distributions.

Fig 2. Confirmed EVD cases in Liberia, as of Feb 10, 2016. The data displays sigmoid
curve that is common to natural processes.

M. Koivu-Jolma, A. Annila Mathematical Biosciences 299 (2018) 97–102

98



dependent course of an epidemic, i.e., its history. Still, the model's
parametrization does not relate directly to the underlying causes. For
example, human behavior is parametrized, but not explained. The
model does not say why in some countries indications of a disease are
promptly announced while in others they are concealed. Neither are the
models explicit about why measures to vaccinate populations succeed
in one place but fail in another [7,9,11,18,34]. However, also human
behavior, as was foreseen already a long time ago [35,36], can be de-
scribed as natural processes [37]. It is not about parameterizing com-
plex behavior but recognizing the forces directing behavior.

Obviously, it is not only epidemic modeling specifically, but math-
ematical modeling and analysis of biological, medical, societal and
cultural phenomena and natural processes in general, where we wish to
contribute by providing the physical portrayal of epidemics as a natural
process [38]. To this end thermodynamics of opens systems offers a
powerful principle, known as the least-time consumption of free energy.

3. Thermodynamics of epidemics

The equation for the epidemic courses can be derived from the
probabilistic theory of many-body systems in the same way as for other
natural processes [13,26,39]. The notion of probability gives the an-
swer to the question “what it takes to get infected?”, using the general
terms of physics. Obviously, it entails at least encountering the agent,
which itself depends on many things. The formalism of thermodynamic
theory considers all these things. For example, all the evidence points to
the EVD epidemic being introduced in Sierra Leone by a group of 12
people who attended the same funeral ceremony of a local healer in
Guinea [4]. In Guinea, the beginning of the epidemic has been traced to
the probable first case in 2013 [3]. Clearly, it would be, in practice, an
indecipherable jigsaw to predict the individual courses that culminated
in the infection, but formally they all can be denoted mathematically to
maintain consistency with causality. Likewise, numerous factors are
involved before the agent once contacted succeeds in bypassing the
body's defense mechanisms. Still, that can all be presented formally.

The scale-free theory of thermodynamics allows us to derive the
equation for the evolution of the epidemics by considering anyone that
is involved. So, let us exemplify the probability Pj for Nj individuals that
are infected. Obviously, Pj depends on the population of Nk healthy
individuals because without someone who is susceptible there can be
no epidemic. Surely, both the infected and uninfected populations can
be further categorized into distinct populations. For example, the index
k+1 could denote a sub-population that is slightly more susceptible

than the one indexed with k, say, due to a genetic propensity. This
diversity and all others involved are indexed with j and k. In this way,
the mathematical formalism can specify everything.

In terms of physics, the infection is a change of state where the
individuals move from Nk to Nj (Fig. 4). The transformation, specifi-
cally infection, entails a change in energy density that is bound in the
k- and j-populations denoted as ϕk=Nkexp(Gk/kBT) and ϕj=Njexp
(Gj/kBT). The energy difference ΔGjk= Gj – Gk per individual is nor-
malized by kBT, that denotes, for historical reasons, the average en-
ergy of the system comprising the diverse populations. In addition, the
change in the state always couples with influx or efflux of energy. This
dissipation is denoted by the energy difference iΔQjk between the
population-bound chemical potentials μk= kBTlnϕk= kBTlnNk+ Gk

and μj= kBTlnϕj= kBTlnNj+ Gj. The use of chemical potentials is
particularly appropriate here because the processes of life can be ul-
timately broken down into a series of chemical reactions. However,
also changes in society, for example, transportation, production, waste
disposal, etc., can all also be broken down into numerous chemical
reactions. The imaginary part i, in the dissipation term, merely in-
dicates explicitly that the vector potential carried by photons from the
surroundings to the system or vice versa is orthogonal to the scalar
[chemical] potential.

The probability Pj for the population Nj.
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is obtained as the product of the various k-populations including an
influx of photons that couple to the jk-transformations. The division by
factorial Nj! enumerates the inconsequential exchange of individuals in
each population (Fig. 4). If any susceptible k-population were missing
altogether from the product Πk, the specific j-population of infected

Fig 3. Confirmed EVD cases in Sierra Leone, as of Feb 10, 2016. The differences in cases
reported through different routes are noticeable, but the ubiquitous sigmoid curve shows
in both statistics.

Fig 4. The system, such as a society, is depicted in terms of an energy level diagram. At
each level, indexed by k, there is a population of Nk individuals each assigned with energy
Gk. The size of Nk is proportional to probability Pk. When an individual in the population
Nk moves to the population Nj, specifically due to infection, horizontal arrows indicate
paths that are available for the transformation. The transformations, i.e., the spreading of
infection, will change the potential energy bound in the population, ultimately in the
matter. The vertical wavy arrows denote concurrent changes in dissipation such energy in
the form of heat and light. The vertical bow arrows mean the exchange of indis-
tinguishable entities without changes in energy. The system evolves, step-by-step, via
absorptive or emissive jk-transformations that are mediated or catalyzed by entities in the
population themselves, such as healthcare procedures and cultural habits, toward a more
probable partition of populations. The system eventually arrives at a stationary-state
balance where the levels are populated so that the average energy kBT equals that in the
system's surroundings. A sufficiently statistical system will evolve gradually because a
single step of absorption or emission is a small perturbation of the average energy. Hence
at each step of evolution, the outlined skewed quasi-stationary partition does not change
much. This maximum-entropy distribution accumulates along a sigmoid curve (dotted)
which is on a log-log scale (insert) a straight line of entropy S vs. [chemical] potential
energy μ.
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individuals would not be the same, i.e., Pj=0. Then we would be
considering the probability Pj’ of a somewhat different population.
Thus, the general notation allows us to consider all conceivable popu-
lations involved in the epidemic.

It is worth emphasizing that the scale-free formalism does not limit
its account on the infected and healthy populations but its j- and k-
indices enumerate likewise cell populations, molecular populations
related to antibodies as well as genetic determinates. Accordingly, the
formalism extends higher up in hierarchy by grouping the populations
of individuals to nations and thereby providing the probability for the
epidemic to strike the country.

Indeed, epidemics tend to be all-embracing events. Therefore, it is
not only about the infected populations, but numerous other uninfected
populations are affected too [9,15]. Obviously next of kin are greatly
affected. Thermodynamics engulfs all this too and the mathematical
notation contains all of it. For example, the raging epidemic will often
restrict the number of basic consumables. Since the probability for any
population can be expressed likewise, the total probability for all po-
pulations is given by the product of Pj
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To compare various scenarios, the logarithm of P as an additive
measure is convenient to quantify the energetics of epidemics. For in-
stance, a state of the epidemic can be compared with another state by
comparing the sums ΣlnPj. Therefore, entropy defined as the logarithm
of P
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when multiplied with Boltzmann's constant kB, for historical reasons, is
the additive measure for the state of any system. In Eq. (3) Stirling's
approximation lnNj! ≈ NjlnNj – Nj has been used.

To obtain insight into entropy, Eq. (3) is multiplied by temperature,
T. Then two terms are recognized. The first term denotes energy ΣjNjkBT
that is bound in the j-populations and the second term denotes energy
ΣjNj(Σkμk – μj+ iΔQjk) that still is available between the system and its
surroundings. The first term ΣjNjkB is the familiar entropy obtained
from statistical mechanics for a closed system. Obviously when all en-
ergy is bound in the various population, the state of the epidemic is
stationary and definable. At this maximum entropy state, there is no net
flow of carriers of energy between the system and its surroundings.
Such a steady state is often transient in the epidemic. On the other
hand, when an epidemic is recurrent, the situation is stationary over a
long period of time. Conversely, the second term ΣjNj(Σkμk –
μj+ iΔQjk)/T means that the epidemics are open for evolution by con-
suming energy differences relative to its surroundings, i.e., forces that
motive further spreading. This flux of energy carriers from the system to
its surroundings or vice versa leads to the increase in entropy until all
energy differences have leveled off. In practice, the free energy terms
mean that there are forces, most notably susceptible populations, that
drive epidemic further.

The epidemic will evolve according to the differential equation of
motion for entropy (Eq. (3))
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where the first sum shows the chain rule. The two-term product reveals
that when the force Aj= Σkμk – μj+ iΔQjk>0, the population Nj, will
increase i.e., dtNj>0. Conversely, when the force Aj= Σkμk – μj+ iΔQjk

〈 0 the population will lose members, i.e., dtNj<0. Thus, the measure
of the epidemic will always increase, i.e., dS 〉 0. In other words, the
epidemic will progress if there are motive forces. Conversely, the epi-
demic will fade away when its motive forces have been consumed.
Along both scenarios entropy will increase consistently with the 2nd
law of thermodynamics. In other words, the growth of an epidemic just
as its decline are both probable processes. Only the conditions have
changed during the epidemic.

In practice the changes in various populations

∑= − +
=

dN
dt k T

σ μ μ Q1 ( Δ )j

B k
jk k j jk

1 (5)

are easier to monitor than the overall change in entropy of the system
(Eq. (4)). The population change, specifically the number of infected, is
proportional to the driving forces, i.e., forms of free energy, by various
mechanisms σjk that facilitate or impede the infection. For example, the
tradition to touch the deceased expedited EVD in Western Africa.
Conversely, imposing quarantine and travel bans were apparently ef-
fective mechanisms to curtail the outbreak [11,15]. Likewise, at the
molecular level, some viruses are equipped with very effective me-
chanisms, while others are not particularly virulent [40,41]. Insight-
fully it has been proposed that the virus-host interaction could be
treated as a dynamical system instead of a clear case of pathogenicity
[42].

Finally, when the epidemic has consumed all forms of free energy, it
has attained thermodynamic balance, i.e., dS=0. The free energy
minimum state is Lyapunov stable so that any perturbation δNj away
from a steady-state population Nj

ss will cause a decrease in S(δNj) 〈 0
and concurrently increase in dtS(δNj) 〉 0. In other words, the further
away Nj would be from Nj

ss, the larger will be the restoring force Aj.
This moment balance, however, during many an epidemic is only
fleeting. The most dreadful and contagious epidemics tend to consume
their sources of free energy so effectively that it takes many years, even
decades before the potential for a new outbreak has accumulated [29].
Curiously, in specific cases, the epidemic could lead to the so-called
evolutionary suicide that leads to the eradication of the pathogenic
strain altogether [43]. Similarly, pioneering species are lost during
ecological succession [44,45].

4. On the models of epidemics

The above thermodynamic account on epidemics can be regarded as
the benchmark, i.e., a reality check for various mathematical models of
infectious diseases. Most models outline the epidemic course using
systems of ordinary differential equations (ODE). For example, the
change

= − = − − +
dN
dt

βN N βN N N( 1)j
j k j j (6)

in the population of susceptible Nj is proportional to the infected po-
pulation Nk via the rate of infection β. According to the logistic model,
the healthy but susceptible population Nj will initially decrease ex-
ponentially with the increasing number of infected. This is in many
cases a fitting model of Eq. (5). Initially, the epidemic has lots of free
energy contained in the susceptible population to consume in com-
parison with energy that is the bound in the small infected population.
Also, the rate of infection can be approximated by a constant if no
actions have been taken to limit the outbreak.

Obviously, the early approximation will become increasingly more
inaccurate during an epidemic when the total population changes, e.g.,
due to deaths, and when actions were taken by the society begin to
affect the infection rate. The mathematical model (Eq. (6)) patches the
early exponential outbreak to the quadratic decay of the epidemic. The
form of tailing is a good approximation of Eq. (5) when free energy Aj

approaches zero. In other words, when the epidemic reaches a massive
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size compared to the host population, it becomes increasingly unlikely
to find enough susceptible hosts to uphold the epidemic, and the
growth slows down. In this way Eq. (6) models the course of Eq. (5),
which is sigmoid when Aj< kBT. However, Eq. (5) explains the epi-
demic by relating free energy to its causes and changes in motions to its
effects. Moreover, Eq. (5) describes also oscillatory and chaotic epi-
demic trajectories that manifest themselves as recurrent outbreaks, ef-
fects of active eradication programs and evolutionary suicides [13].

The simple epidemic model is closely related to ecological models,
most notably to prey-predator dynamics. The similarity is natural since,
from the thermodynamic viewpoint, natural processes of any kind
consume free energy in the least time. This revelation of modeling
common thermodynamic traits places the epidemics in a general con-
text.

Of course, we acknowledge that the equation Eq. (6)) is only a
simple epidemic model, but our comparison of the true course (Eqs. (4)
and ((5)) with the elementary models, is intended to highlight the
conceptual shortcomings of modeling, not to discard modeling. Namely,
the non-natural deterministic characteristics will prevail even when
there is enough data to support more detailed models. The details could
be anything from the properties of the virus to the societal acceptance
of sick leave.

A simple differential system is obviously not capable to fully de-
scribe a living system. Therefore, the mathematical models have
evolved from the basic deterministic three compartment SIR model
(susceptible-infected-recovered/removed) towards more complex or
specialized ones to tackle the details of real systems [19,20]. For ex-
ample, a stochastic model with six compartments has been used to si-
mulate the effects of control interventions on EVD outbreaks [46].
Some models then again stress that not all contacts within the popu-
lations are effective from the epidemic's viewpoint [47]. The risk of
EVD spreading to other continents, utilizing immense amounts of travel
data combined with specific information about the disease, has been
assessed using the Global Epidemic and Mobility Model including
Monte Carlo likelihood analysis [8,48]. Considering that these and
other details are all indexed by j and k in Eqs. (2)–(5), the mathematical
model can be understood in terms of the thermodynamic tenet, as an
attempt to extract the most relevant terms.

Likewise, other models emphasize other thermodynamic terms. The
dispersal of infectious agents is modeled by equations where the fre-
quency of contacts is explicit. It, in turn, depends on various factors.
These include the population density in general, effects of hotspots, for
example, hospitals and schools, or sexual transmission [19,20]. By the
same token, some systems can be sketched better with the density
parameter, e.g., the spreading of the severe acute respiratory syndrome
(SARS) in urban settings [49]. The transmission parameter, in turn, is a
fitting factor, e.g. for HIV in Kenya [50].

Obviously, in many cases, there is no clear division between various
mechanisms of spreading. To this end, the introduction of contact
networks has been a natural development of mathematical epide-
miology [19,20]. These networks can be either agent- or activity-driven
and implemented with different triggering mechanisms [32,51]. This
mechanistic diversity in spreading is consistent with the thermo-
dynamic tenet. The ultimate imperative is the least-time free energy
consumption irrespective of the mechanism. Accordingly, the whole
society can be described by the thermodynamic tenet as a free energy
transduction network [52].

When considering EVD as an example again, a rural setting in West
Africa would favor the population density-based interpretation. But
apparently, the cultural mechanisms changed the paradigm. The tra-
ditional burial ceremonies brought connected people together even
from a distance. This caused a self-reinforcing chain of events.
Increasing victims attracted ever more of the susceptible to come to-
gether. This mode of behavior changed the model from the density-
parametrized to a frequency-based one, excluding control measures
that were introduced later. Thus, it is not obvious from the outset which

is the appropriate model to cope with an infectious disease. While the
general thermodynamic formalism contains all modes of infection and
spreading, it does not, as such, specify, without further information,
which terms of free energy are the largest. These are the most important
factors to be recognized in each case at a given phase.

Increasingly more complex models will, in turn, call for even more
detailed data and so on, ultimately beyond any means and resources
[18,32]. Unquestionably, amplified computational efforts will yield
improved precision in trends as well as increased coverage of scenarios,
but in the end, the determinate, as well as stochastic models, will in-
variably fail in predicting the outbreaks. This is apparent from the in-
itial projections of the EVD in West Africa [3]. The underlying fact of
non-determinism is that any calculation is precise only when the energy
of the system is constant. In contrast, the outbreak, as an open evolving
system, is always accompanied by some novelty, i.e., free energy in
some form. It could be the virus itself, the environment, or the dy-
namics of the host population [3,33,34] as was the case in West Africa
[4,6,12].

5. Discussion

Complexity and intricacy of the EVD epidemic in West Africa are
blatant in a Liberian story published by Associated Press on August 17,
2014. Angry residents of West Point, Monrovia were seemingly una-
ware of the nature of the EVD, as they raided an Ebola quarantine
center. Many of the patients escaped temporarily to the surrounding
slums, and the angry mob also looted visibly contaminated wares and
medical equipment from the center. The area had, at least until that
time, been without reported EVD cases.

This incident highlights how everything depends on everything else.
In other words, the renowned principle of science, ceteris paribus, does
not hold. The EVD epidemic, like epidemics in general, is not only about
the infectious agent but also about social unrest and ignorance that
contributed to the unprecedented scale of the outbreak [7,9]. One could
say that the epidemic was able to use the political, cultural and biolo-
gical mechanisms of the surrounding society to flourish, i.e., in ther-
modynamic terms to consume free energy. It behaved similarly to any
spreading entity, say a slogan. Despite seemingly abstract notions, the
evolutionary process is invariably a physical expression of the second
law of thermodynamics [53].

The holistic tenet puts these diverse mechanisms of epidemics to
spread, survive and flourish on the same footing of energetics. Some
aspects of an epidemic are defined by virulence and contagiousness of
the virus. Some others can be described by the virus’ ability to benefit
from the social and cultural aspects of the host population, e.g. burial
rituals, social patterns, and infrastructure. All these factors are ac-
cording to the thermodynamic tenet merely epidemic's mechanisms to
consume free energy in the least time. These mechanisms have emerged
and evolved just as any other mechanism to increase consumption.
Differences are only quantitative. For instance, in small viral genomes,
there is less room to create a balance between adaptability and adap-
tation than in many other systems [54]. We reason that also the spec-
trum of infections from contagious to latent is a mere manifestation of
the overall least-time free energy consumption by various viruses. Thus,
it is not an analogy, but an identity, to regard epidemic outbreaks on
the one hand as due to social unrest or to economic upheaval and on the
other hand to chemical oscillations and bifurcations. They all are nat-
ural processes manifesting the least-time free energy consumption.

Our revelation that the epidemic is not a singular phenomenon, but
a natural process as any other, is insightful and valuable. On the one
hand, it provides us with an understanding of life in general and on the
other hand, it gives us the rationale to benefit society and its welfare.
When kept in mind, the complexity of natural processes encourages us
to remain open-minded about improbable events. In clinical work, this
means that we must accept also the possibility of facing rare and
emerging diseases, and hence be prepared for them.
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The inherent unpredictability of a natural process, following from
the unsolvable equation of motion, obviously limits the scope of
mathematical models, but by no means renders them useless. On the
contrary, they are very useful in coping with many an epidemic. The
mathematical epidemiology will be even more appreciated when our
point that functional forms of models and parameters do not relate
directly to the causes, i.e., forces that drive epidemics, but mimic tra-
jectories for flows of energy, is acknowledged. Likewise, it is worth
recognizing that nature is neither deterministic nor stochastic, but non-
deterministic because everything depends on everything else.
Therefore, problems in making predictions do not ultimately follow
from complexity or chaotic character of a system or from insufficient
data. All in all, we speak for understanding the epidemic as a natural
process to cope better with the capricious character of nature.
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