

Efficacy and safety of erlotinib combined with bevacizumab in the treatment of non-small cell lung cancer

A systematic review and meta-analysis

Kenan Zhou, MS^a, Shishun Zhao, PhD^a, Wenlai Guo, PhD^b, Lei Ding, MD^{c,*}

Abstract

Background: Non-small cell lung cancer (NSCLC) has a poor prognosis despite conventional treatments of surgery, radiotherapy, and chemotherapy. Small-molecule tyrosine kinase inhibitors acting on epidermal growth factor receptor (EGFR) have shown high efficacy and low toxicity for NSCLC. In particular, combining erlotinib with the VEGF antibody bevacizumab has therapeutic value in NSCLC, but the drugs' separate effects as monotherapy and any adverse outcomes of combination therapy remain unclear.

Objectives: To determine the efficacy and safety of erlotinib and bevacizumab for NSCLC, we conducted a meta-analysis and systematic review of randomized controlled trials.

Data sources: PubMed, Embase, Web of Science, and Cochrane databases were searched using keywords and manual review.

Study eligibility criteria, participants, and interventions: We reviewed randomized controlled trials on the use of erlotinib combined with bevacizumab in adult patients with NSCLC, including data on outcome measures of overall survival (OS), progression-free survival (PFS), objective response rate (ORR), and adverse events.

Study appraisal and synthesis methods: After quality assessment, datasets were evaluated for heterogeneity. In the event of significant heterogeneity, a random-effects model was used to assess the overall outcome measures as a result of treatments. Subgroup analysis was conducted to evaluate the source of heterogeneity on PFS.

Results: Compared with erlotinib or bevacizumab alone, the combined treatment did not significantly prolong OS (95% confidence interval [CI]=0.84–1.11; P=.62) or increase the ORR (95% CI=0.91–1.20; P=.52), but significantly improved PFS (95% CI=0.58–0.73; P<.001). This improvement was especially notable in patients with the following characteristics: Eastern Cooperative Oncology Group Performance Status score of 0 or 1, female, no smoking history, adenocarcinoma, and EGFR Exon19 deletion or Exon21 Leu858Arg mutation. Combination therapy significantly increased incidence of grade 1–2 hypertension (20.3% vs 6.3%, 95% CI 1.73–5.88; P<.01) and severe diarrhea (10% vs 3.2%, 95% CI 1.36–6.60; P=.01).

Limitations: The low number of available randomized controlled trials could influence interpretation.

Conclusions: Compared with erlotinib or bevacizumab monotherapy, their combination effectively prolongs PFS but increases incidence of adverse events in NSCLC patients.

Abbreviations: CI = confidence interval, ECOG-PS = Eastern Cooperative Oncology Group Performance Status, EGFR = epidermal growth factor receptor, HR = hazard ratio, NSCLC = non-small cell lung cancer, ORR = overall response rate, OS = overall survival, PFS = progression-free survival, RCT = randomized controlled trial, RR = risk ratio.

Keywords: bevacizumab, erlotinib, metaanalysis, non-small cell lung cancer, systematic review

Editor: Jianxun Ding.

The authors report no conflicts of interest.

^a College of Mathematics, Jilin University, ^b Department of Hand Surgery, The Second Hospital of Jilin University, ^c Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China.

^{*} Correspondence: Lei Ding, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China (e-mail: leiding197@163.com).

Copyright © 2020 the Author(s). Published by Wolters Kluwer Health, Inc. This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial License 4.0 (CCBY-NC), where it is permissible to download, share, remix, transform, and buildup the work provided it is properly cited. The work cannot be used commercially without permission from the journal.

How to cite this article: Zhou K, Zhao S, Guo W, Ding L. Efficacy and safety of erlotinib combined with bevacizumab in the treatment of non-small cell lung cancer: A systematic review and meta-analysis. Medicine 2020;99:3(e18771).

Received: 13 October 2019 / Received in final form: 27 November 2019 / Accepted: 11 December 2019

http://dx.doi.org/10.1097/MD.000000000018771

1. Introduction

With a poor overall prognosis, lung cancer is the leading cause of cancer-related deaths worldwide,^[1,2] and less than 15% of patients survive for 5 years.^[3] Non-small cell lung cancer (NSCLC) accounts for over 85% of all lung cancer cases, and approximately 75% of NSCLCs are diagnosed at a terminal stage (unresectable or metastatic).^[4] Current NSCLC treatments mainly include surgery and chemotherapy,^[5,6] although targeted drugs are preferred if traditional treatment is ineffective.

The targeted drug bevacizumab is reported to significantly extend progression-free survival (PFS) and overall survival (OS) in patients with NSCLC; thus, it has been approved for treating advanced NSCLC without hemoptysis.^[7,8] The drug is an antibody specific to vascular endothelial growth factor (VEGF), a key signaling molecule for promoting angiogenesis, critical to endothelial cell survival and neovascularization. Additionally, the targeted drug erlotinib is a small-molecule inhibitor of

epidermal growth factor receptor (EGFR). Used to treat patients with advanced or metastatic NSCLC who are not responding to chemotherapy regimens,^[9–11] erlotinib is particularly effective in improving survival rate of patients without prior treatment.^[12]

Although current treatment regimens typically involve single targeted drugs as monotherapy, combination therapy may have improved effects on patients with advanced or metastatic disease.^[13] However, 1 study showed that patients with advanced NSCLC had no significant response to combination therapy, leading to controversy on its advantages.^[14] In addition, targeted drugs are associated with a high risk of adverse events such as hypertension, rash, paronychia, diarrhea, neutropenia, and fatigue.^[15] Therefore, substantial attention has been paid to potential increases in incidence of adverse side-effects when applying a combined therapy.

The extensive research on these targeted drugs for NSCLC^[16,17] have not thus far made a distinction between first-line and second-line treatment. Moreover, little research is available on adverse events associated with combining erlotinib and bevacizumab. To resolve these issues, we conducted a metaanalysis and systematic review of randomized control trials (RCTs). We compared the effects of erlotinib+bevacizumab combination therapy with the respective monotherapies, specifically examining OS, PFS, objective response rate (ORR), as well as incidence and severity of adverse events. We also conducted subgroup analyses on the specific clinical and demographic factors affecting PFS and adverse events.

2. Materials and methods

All analyses were based on previous published studies; thus, no ethical approval and patient consent are required.

2.1. Study selection

Two researchers independently conducted a literature screen, assessed the quality of retrieved studies, then extracted and cross-checked data according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines.^[18] Disagreement between the 2 researchers was resolved through consulting a third researcher.

2.2. Search strategy

On June 2, 2019, 2 researchers independently retrieved articles published before June 2019 from the PubMed, Embase, Web of Science, and Cochrane databases for all RCTs on the combined use of erlotinib and bevacizumab to treat NSCLC. Keywords were "Non-Small Cell Lung Cancer" [MeSH], "Carcinoma, Non-Small Cell Lung," "Lung Carcinoma, Non-Small-Cell," "Erlotinib" [MeSH], "Hydrochloride, Erlotinib," "Gefitinib"

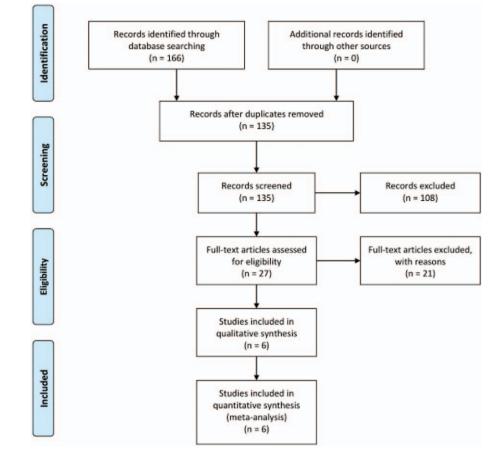


Figure 1. Flowchart of literature retrieval and selection.

[MeSH], and "Iressa." All references in the relevant articles were manually reviewed for appropriate studies.

2.3. Inclusion and exclusion criteria

Inclusion criteria for literature retrieval included:

- 1. patients aged 18 years or older;
- 2. histologically or cytologically confirmed NSCLC;
- 3. assessment of erlotinib vs erlotinib combined with bevacizumab, or bevacizumab vs erlotinib combined with bevacizumab;
- 4. RCTs; (5) data on OS, PFS, or ORR, and incidence of adverse events.

Exclusion criteria included:

- 1. animal or cadaver studies;
- 2. studies without extractable or valid data;
- 3. comments and conference papers without full text;
- 4. systematic reviews, meta-analyses, case reports, and retrospective studies.

2.4. Data extraction

Two researchers independently extracted baseline data from RCTs that met the inclusion criteria, including: study date, number of patients, sex ratio, ethnicity, smoking history, Eastern Cooperative Oncology Group Performance Status (ECOG-PS) score, histology, clinical stage, regional therapy, lines of therapy, and outcome measures. Any discrepancies were resolved through discussions with a third researcher. Researchers requested original data or relevant information from study authors via email if data were unavailable in the paper.

2.5. Quality assessment

Risks of bias among the included studies were assessed using the Cochrane Intervention System Review Manual,^[19] including random sequence generation, allocation concealment, double blinding of researchers and participants, blinding of outcome assessment, incomplete outcome data, and selective reporting. Each study was qualified as high, low, or unclear risk of bias.^[20]

2.6. Outcome measures

Primary outcome variables were

- 1. OS (time from randomization to death, considered as the best therapeutic endpoint in cancer clinical trials),
- 2. PFS (time from randomization to tumor progression or death),
- 3. ORR (proportion of patients whose symptoms were relieved to a predetermined value within the minimum time limit), and
- 4. PFS in patient subgroups.

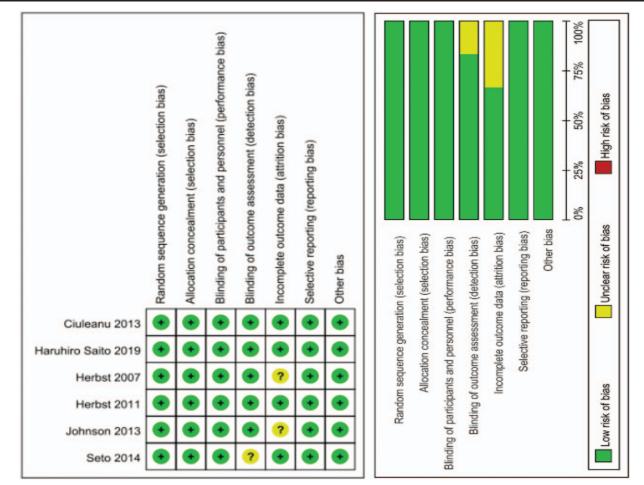


Figure 2. Methodological quality of studies included in meta-analysis.

າລາ	61
1.5.1	

Summary of studies included in the final meta-analysis.

Author	Year	Group	Number	Male/ Female	Race (White/ Asian or Pacific Island/Other)	Smoking history (Never/previous/ current)	ECOGPS (0/1/2)	Histology (large- cell carcinoma/ adeno-carcinoma/ squamous/other)	Clinical stage (IIIB/IV/Other)	Region	Line of treatment
Herbst et al ^[26]	2007	B+E	39	17/22	29/3/7	NR	19/20/0	0/32/0/7	NR	USA	Second
		B+chemo	40	23/17	34/2/4	NR	19/21/0	9/30/0/1	NR		
Herbst et al ^[21]	2011	B+E	319	171/148	264/23/32	34/237/48	129/166/23	23/242/11/43/38	NR	USA	Second
		E+placebo	317	170/147	257/18/42	33/212/72	121/176/20	25/235/14/40	NR		
Ciuleanu et al ^[25]	2013	B+E	63	37/26	NR	21/20/11	28/35/0	NR	NR	Romania	First
		B+gem	61	36/25	NR	23/14/24	20/41/0	NR	NR		
Johnson et al ^[22]	2013	B+E	370	193/177	293/43/34	61/180/129	180/190/0	30/301/11/28	32/317/21	USA	Second
		B+placebo	373	196/177	290/45/38	66/178/129	173/198/1	26/309/6/32	37/310/25		
Seto et al ^[23]	2014	B+E	75	30/45	NR	42/9/24	43/32/0	0/74/1/0	1/60/14	Japan	First
		E	77	26/51	NR	45/6/26	41/36/0	1/76/0/0	0/62/15		
Saito et al ^[24]	2019	B+E	112	41/71	NR	65/6/41	64/48/0	1/110/0/1	8/82/22	Japan	First
		E	112	39/73	NR	64/7/41	68/42/2	0/112/0/0	8/84/20		

B = bevacizumab; chemo = chemotherapy; E = erlotinib; gem = gemcitabine; NR = not reported.

Analyses aimed to determine whether combination therapy increased these variables compared with monotherapy. Specifically, subgroup analyses were performed to determine the effects of age (>65 or \leq 65 years),^[21–24] disease stage (IIIB, IV, and other stages),^[22–24] ethnicity (Caucasian, Asian, or Pacific Islanders),^[21,22] ECOG-PS score (PS0, PS1, or PS2),^[21–24] sex (male or female),^[21–24] smoking history (none, currently smoking, or former smokers),^[21–24] medical history, pathological classification (large cell carcinoma, adenocarcinoma, squamous cell carcinoma, and other diseases),^[21–23] and EGFR mutation (Exon19 deletion, Exon21 Leu858Arg mutation, EGFR FISHpositive, EGFR-FISH negative, and EGFR wild type),^[21,23–25] and adverse events (rash, diarrhea, hypertension, and bleeding) on PFS. Adverse events were rated as levels 1–2 and levels 3–5 (serious) according to the National Cancer Institute's Common Toxicity Criteria for Adverse Events (version 3.0).^[26]

2.7. Statistical analysis

Statistical analysis was performed in Stata Version 11.0 and Review Manager (Revman) Version 5.3 (The Nordic Cochrane Centre, The Cochrane Collaboration, 2014). Heterogeneity was assessed by the Chi-Squared test.^[27] If significant heterogeneity was detected ($I^2 > 50\%$ or P < .1),^[28] a random-effects model was used; otherwise, a fixed-effect model was used. Significance was set at P < .05. Time-event variables, including OS and PFS, were assessed according to the hazard ratio (HR). Dichotomous variables, including ORR and incidence of adverse events, were assessed as risk ratios (RR) with 95% confidence interval (CI) estimates. Hypothetical test results for each variable were listed in a forest map. For outcome indicators with significant heterogeneity, a sensitivity analysis was performed, eliminating the included studies 1 at a time to determine the source of heterogeneity. Subgroup analyses were performed on factors that could influence PFS, i.e., age, ethnicity, sex, ECOG, and smoking history. If outcome measures of >10 primary documents, the funnel figure shall be used for publication bias test. And the publication bias test was performed using Egger test, when outcome measures of >20 primary documents.

3. Results

3.1. Literature retrieval

We retrieved 166 studies from the 4 databases that fit our initial inclusion criteria, then excluded 31 duplicate studies and 108 ineligible studies. Of the remaining 27 articles, reviews, meta-

Table 2

a stinute with different evidenced events for the version station states.	
of datients with different epidermal drowth factor receptor mutation status.	
of patients with different epidermal growth factor receptor mutation status.	

				EGFR mut	tation status		EGFR FI	SH status	EGFR IH	IC status
Study	Year	Grouping	Mutant	Wild type	Exon 19 deletion	Exon21 Leu858Arg mutation	Positive	Negative	Positive	Negative
Herbst et al	2007	B+E	1	8						
		B or E	0	13						
Herbst et al	2011	B+E	12	173			33	69	135	49
		B or E	18	152			43	59	119	42
Ciuleanu et al	2013	B+E	2	19			12	7	15	4
		B or E	0	11			6	5	5	5
Seto et al	2014	B+E			40	35				
		B or E			40	37				
Saito et al	2019	B+E			28	24				
		B or E			32	33				

B=bevacizumab; E=erlotinib; EGFR=epidermal growth factor receptor; FISH=fluorescent in situ hybridization; IHC=immunohistochemistry.

Table 3 Incidence of level 1-2 adverse events in 2 studies.

Year	Seto (201		Saito 20	
Ν	75	77	112	112
Group	B+E	E	B+E	E
Rash	55	61	75	75
Diarrhea	60	59	47	45
Hemorrhage	52	22	27	2
Paronychia	55	47	15	15
Hypertension	12	2	26	10
Fatigue	9	3		

B = bevacizumab: E = erlotinib.

analysis, and topic-independent studies were excluded. The final meta-analysis thus used 6 studies (Fig. 1). Evaluation of the quality of the reports is shown in Figure 2.

3.2. Study characteristics

The 6 included studies^[21-26] involved 1960 participants and were published from October 2007 to April 2019 (Table 1). Four studies^[21,23,24,26] compared erlotinib with combination therapy,

Table 4

and 2 studies^[22,25] compared bevacizumab with combination therapy. Three studies^[23-25] explored the role of erlotinib</sup>+bevacizumab as first-line therapy, while others^[21,22,26] focused on second-line therapy. Three studies^[22-24] provided data on disease stage (IIIB, IV, and other stages). Five studies^[21,23-26] described EGFR status, and 2^[28,29] elaborated on the specific EGFR mutation detected (Exon19 deletion or Exon21 Leu858Arg mutation) (Table 2). Tables 3 to 5 summarizes the different levels of adverse events.

3.3. Outcome measures **3.3.1.** OS. Four studies^[21,22,25,26] reported OS. We selected the fixed-effects model because heterogeneity was low $(I^2 = 0\%)$. Combination therapy as either first-line or second-line treatment did not significantly improve OS (HR=1.24, 95% CI=0.75-2.05, P=.40; HR=0.94, 95% CI=0.81-1.10, P=.44) (Fig. 3A).

3.3.2. PFS. All 6 studies reported PFS. The study by Ciuleanu et al^[22] resulted in significant heterogeneity ($I^2 = 64.1\%$) and was removed after sensitivity analysis. Removal reduced I^2 to 0%, allowing the use of a fixed-effects model. Compared with erlotinib or bevacizumab alone, first-line and second-line combination therapy prolonged PFS (HR = 0.62, 95% CI = 0.46-0.85, P < .01; HR = 0.65, 95% CI = 0.58-0.74, P < .01) (Fig. 3B).

Year	Heri 200			rbst 11	Ciule 20			nson 13	Se 20			nito)19
Ν	39	40	319	317	63	61	370	373	75	77	112	112
Group	B+E	В	B+E	E	B+E	В	B+E	В	B+E	Е	B+E	E
Rash	1	0	19	49	31	6	25	2	19	15	23	24
Hypertension	1	2	4	15	9	7	23	22	45	8	26	1
Diarrhea	3	0			20	12	36	7	1	1	6	2
Hemorrhage			7	8					2	0	2	1
Paronychia					6	1			2	3	2	3
Neutropenia	2	8			0	21						
Fatigue	3	5			5	9			1	0		
Nausea	2	2			10	31						
Vomiting	0	2			5	18						
Dyspnea	2	4			9	6						

B = bevacizumab; E = erlotinib.

Table 5

Incidence of overall adverse events in four studies.

Year	Herbst 200			on et al 13	Seto 20 ⁻			et al 19
No.	39	40	370	373	75	77	112	112
Group	B+E	В	B+E	В	B+E	E	B+E	E
Rash	26	5	231	82	74	76	98	99
Diarrhea	29	17	190	73	61	60	53	47
Hypertension	8	6	88	85	57	10	52	11
Hemorrhage			60	60	54	22	2	0
Paronychia					57	50		
Fatigue	25	26						
Nausea	18	15						
Vomiting	8	10						

B = bevacizumab: F = erlotinib.

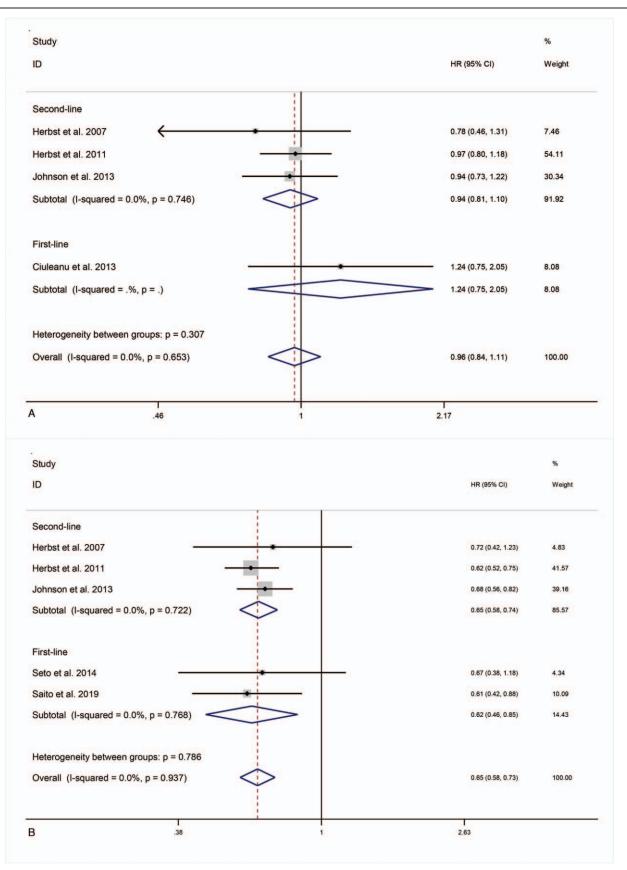
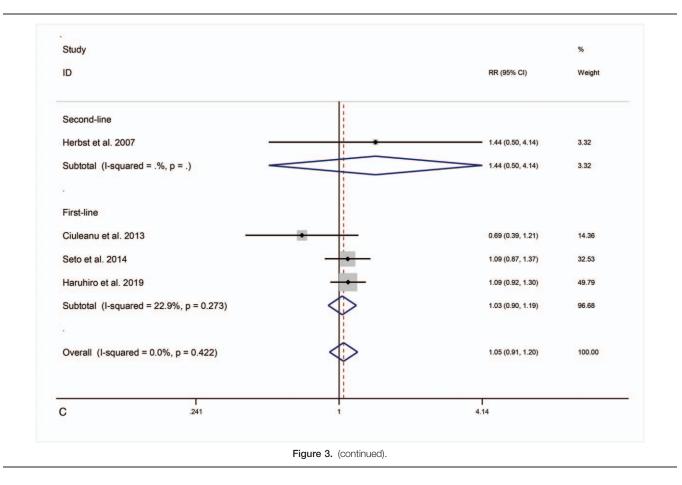



Figure 3. OS, PFS or ORR for combination therapy of bevacizumab plus erlotinib with bevacizumab or erlotinib alone.

3.3.3 ORR. Five studies^[21,23–26] reported ORR. The study by Herbst et al^[21] led to $I^2 = 72\%$ and was removed after sensitivity analysis, reducing I^2 to 0%. The fixed-effects model revealed that compared with erlotinib or bevacizumab alone, first-line and second-line combination therapy did not elevate ORR (RR=1.03, 95% CI=0.90–1.19, P=.65; RR=1.44, 95% CI=0.50–4.14, P=.50) (Fig. 3C).

3.3.4. *PFS in subgroup analyses.* Three studies^[22–24] reported subgroup data for disease staging. Compared with monotherapy, combination therapy significantly prolonged PFS in patients with stage IIIB disease (HR=0.59, 95% CI=0.42–0.84; P < .01), stage IV disease (HR=0.69, 95% CI=0.58–0.81; P < .001), and at other stages (HR=0.47, 95% CI=0.26–0.83; P=.01) (Fig. 4A).

Four studies^[21-24] reported subgroup data for age. Combination therapy extended PFS in patients <65 and \geq 65 years old (HR=0.73, 95% CI=0.62–0.85, *P*<.001; HR=0.79, 95% CI=0.66–0.95, *P*=.01) (Fig. 4B).

Two studies^[21,22] reported subgroup data for ethnicity. Combination therapy did not significantly prolong PFS in Caucasian or Asian and Pacific Islander patients (HR = 0.70, 95% CI=0.25–1.99, P=.51; HR=0.41, 95% CI=0.10–1.63, P=.21) (Fig. 4C).

Four studies^[21–24] reported subgroup data for ECOG-PS. Combination therapy significantly improved PFS in patients with ECOG-PS0 (HR=0.75, 95% CI=0.61–0.91; P < .01) and ECOG-PS1 (HR=0.78, 95% CI=0.67–0.91; P < .01), but had no significant effect on patients with ECOG-PS2 (HR=0.92, 95% CI=0.45–1.87; P=.82) (Fig. 4D).

Four studies^[21–24] reported subgroup data for sex. Combination therapy did not significantly prolong PFS in male patients but did in female patients (HR = 0.76, 95% CI=0.54–1.06, P=.10; HR=0.69, 95% CI=0.49–0.96, P=.03) (Fig. 4E).

Four studies^[21–24] reported subgroup data for smoking. Combination therapy significantly prolonged PFS in patients with no smoking history (HR=0.50, 95% CI=0.38–0.66, P < .001), but not in those currently smoking or former smokers (HR=0.72, 95% CI=0.49–1.06, P=.19; HR=0.87, 95% CI=0.66–1.15, P=.33) (Fig. 4F).

Three studies^[21-23] reported subgroup data for pathological typing. Combination therapy did not significantly prolong PFS in patients with large cell carcinoma (HR=0.70, 95% CI=0.43–1.13; P=.15), squamous cell carcinoma (HR=1.01, 95% CI=0.48–2.12; P=.98), or other diseases (HR=0.88, 95% CI=0.58–1.33; P=.54), but significantly prolonged PFS in patients with adenocarcinoma (HR=0.78, 95% CI=0.67–0.90; P<.01) (Fig. 4G).

Four studies^[21,23–25] reported subgroup data for EGFR mutations. Combination therapy significantly prolonged PFS in patients with EGFR Exon19 deletion and Exon21 Leu858Arg mutation (HR=0.54, 95% CI=0.32–0.89, P=.02; HR=0.62,

Study	HR (95% CI)	% Weight
	RK (95% CI)	weight
IIB		
Johnson et al. 2013	0.58 (0.30, 1.10)	5.02
Seto et al. 2014	0.63 (0.41, 0.96)	11.71
Saito et al. 2019	0.26 (0.05, 1.29)	0.80
Subtotal (I-squared = 0.0%, p = 0.586)	0.59 (0.42, 0.84)	17.53
v		
Johnson et al. 2013	0.69 (0.56, 0.84)	51.55
Seto et al. 2014	0.63 (0.41, 0.96)	11.71
Saito et al. 2019	0.74 (0.49, 1.11)	12.67
Subtotal (I-squared = 0.0%, p = 0.866)	0.69 (0.58, 0.81)	75.93
Others		
lohnson et al. 2013	- 0.75 (0.32, 1.76)	2.92
Seto et al. 2014	0.25 (0.08, 0.73)	1.73
Saito et al. 2019	0.40 (0.14, 1.16)	1.90
Subtotal (I-squared = 19.9%, p = 0.287)	0.47 (0.26, 0.83)	6.54
leterogeneity between groups: p = 0.363		
Overall (I-squared = 0.0%, p = 0.660)	0.65 (0.56, 0.76)	100.00
.05 1	20	
study		%
D	HR (95% CI)	Weight
nder65	0.04/0.74 4.05	10.10
lerbst et al. 2011	0.94 (0.71, 1.25)	18.43
ohnson et al. 2013	0.67 (0.51, 0.87)	20.68
eto et al. 2014	0.60 (0.39, 0.92)	8.01
aito et al. 2019	0.61 (0.41, 0.91)	9.28
subtotal (I-squared = 40.5%, p = 0.169)	0.73 (0.62, 0.85)	56.39
ver65		
lerbst et al. 2011	0.98 (0.76, 1.28)	21.70
ohnson et al. 2013	0.68 (0.52, 0.90)	19.60
eto et al. 2014	0.23 (0.07, 0.81)	0.98
aito et al. 2019	0.54 (0.19, 1.57)	1.32
ubtotal (I-squared = 63.3%, p = 0.043)	0.79 (0.66, 0.95)	43.61
leterogeneity between groups: p = 0.493		
Overall (I-squared = 48.9%, p = 0.057)	0.75 (0.67, 0.85)	100.00

Figure 4. PFS in subgroup analyses.

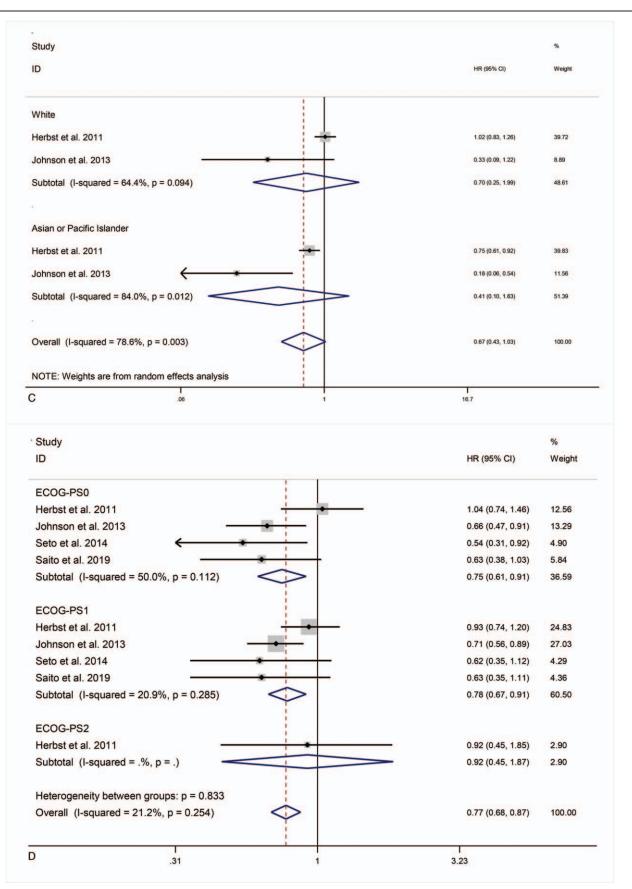
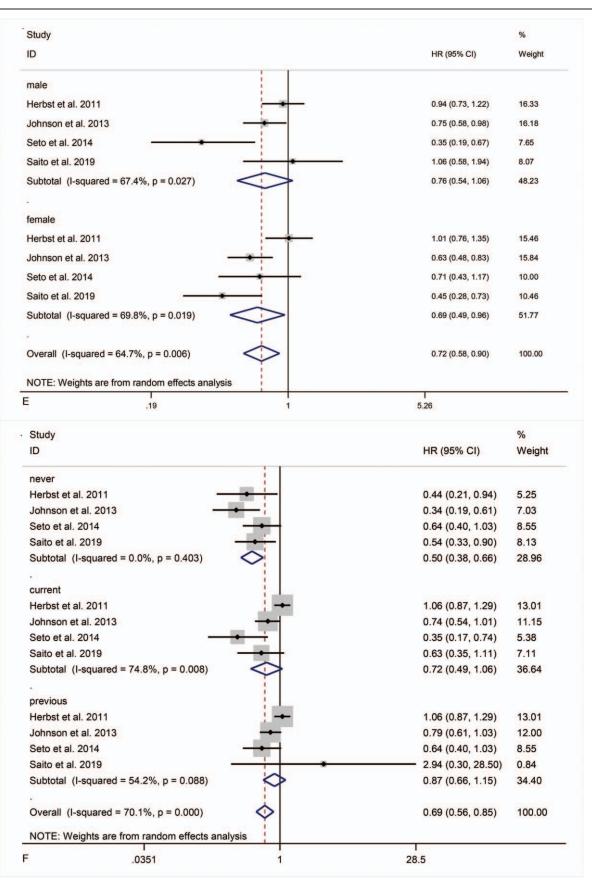



Figure 4. (continued).

Study	1	%
D	HR (95% CI)	Weight
arge-cell carcinoma	10 M	
Contraction of the second seco	0.00 (0.01, 1.11)	0.00
lerbst et al. 2011		3.30
ohnson et al. 2013		3.66
subtotal (I-squared = 0.0%, p = 0.977)	0.70 (0.43, 1.13)	6.96
denocarcinoma		
lerbst et al. 2011	1.07 (0.85, 1.33)	33.31
ohnson et al. 2013		35.98
eto et al. 2014		10.81
subtotal (I-squared = 85.8%, p = 0.001)		80.10
		00.10
quamous-cell carcinoma		
erbst et al. 2011	0.91 (0.36, 2.33)	1.91
ohnson et al. 2013	1.21 (0.36, 4.08)	1.13
ubtotal (I-squared = 0.0%, p = 0.715)	1.01 (0.48, 2.12)	3.05
Other		
lerbst et al. 2011	0.78 (0.46, 1.35)	5.76
ohnson et al. 2013	1.04 (0.55, 1.96)	4.13
ubtotal (I-squared = 0.0%, p = 0.498)	0.88 (0.58, 1.33)	9.89
eterogeneity between groups: p = 0.803 verall (I-squared = 49.1%, p = 0.047)	0.79 (0.69, 0.90)	100.00
T T		
.245 1	4.08	
Study	q	%
D		Neight
Exon19 deletion		
Seto et al. 2014	0.41 (0.24, 0.72) 1	10 72
Saito et al. 2019	0.69 (0.41, 1.16)	
Subtotal (I-squared = 45.0%, p = 0.177)	0.54 (0.32, 0.89) 2	
100101a1 (1-3quared - 40.070, p = 0.177)	0.04 (0.02, 0.03) 2	1.07
Exon21 Leu858Arg mutation		10.000
Seto et al. 2014	0.67 (0.38, 1.18) 1	
Saito et al. 2019	0.57 (0.33, 0.97) 1	
Subtotal (I-squared = 0.0%, p = 0.685)	0.62 (0.42, 0.91) 2	21.34
Succession and a second se		
GFR FISH positive		10.78
	- 1.43 (0.83, 2.47) 1	
lerbst et al. 2011		5.71
lerbst et al. 2011	- 1.43 (0.83, 2.47) 1 1.21 (0.44, 3.33) 5 1.38 (0.85, 2.23) 1	
Herbst et al. 2011 Ciuleanu et al. 2013 Subtotal (I-squared = 0.0%, p = 0.776)	1.21 (0.44, 3.33) 5	
EGFR FISH positive Herbst et al. 2011 Ciuleanu et al. 2013 Subtotal (I-squared = 0.0%, p = 0.776) EGFR FISH negative Herbst et al. 2011	1.21 (0.44, 3.33) 5 1.38 (0.85, 2.23) 1	16.49
Herbst et al. 2011 Ciuleanu et al. 2013 Subtotal (I-squared = 0.0%, p = 0.776) EGFR FISH negative Herbst et al. 2011	1.21 (0.44, 3.33) 5 1.38 (0.85, 2.23) 1 1.14 (0.76, 1.70) 1	16.49 12.91
Herbst et al. 2011 Ciuleanu et al. 2013 Subtotal (I-squared = 0.0%, p = 0.776) EGFR FISH negative Herbst et al. 2011 Ciuleanu et al. 2013	1.21 (0.44, 3.33) 5 1.38 (0.85, 2.23) 1 1.14 (0.76, 1.70) 1 2.62 (0.75, 9.10) 4	16.49 12.91 4.25
Herbst et al. 2011 Ciuleanu et al. 2013 Subtotal (I-squared = 0.0%, p = 0.776) EGFR FISH negative Herbst et al. 2011 Ciuleanu et al. 2013	1.21 (0.44, 3.33) 5 1.38 (0.85, 2.23) 1 1.14 (0.76, 1.70) 1	16.49 12.91 4.25
Herbst et al. 2011 Ciuleanu et al. 2013 Subtotal (I-squared = 0.0%, p = 0.776) EGFR FISH negative Herbst et al. 2011 Ciuleanu et al. 2013 Subtotal (I-squared = 35.4%, p = 0.214) EGFR wild type	1.21 (0.44, 3.33) 5 1.38 (0.85, 2.23) 1 1.14 (0.76, 1.70) 1 2.62 (0.75, 9.10) 4 1.39 (0.69, 2.78) 1	16.49 12.91 4.25 17.16
Herbst et al. 2011 Ciuleanu et al. 2013 Subtotal (I-squared = 0.0%, p = 0.776) EGFR FISH negative Herbst et al. 2011 Ciuleanu et al. 2013 Subtotal (I-squared = 35.4%, p = 0.214)	1.21 (0.44, 3.33) 5 1.38 (0.85, 2.23) 1 1.14 (0.76, 1.70) 1 2.62 (0.75, 9.10) 4 1.39 (0.69, 2.78) 1 1.11 (0.86, 1.44) 1	16.49 12.91 4.25 17.16
Herbst et al. 2011 Ciuleanu et al. 2013 Subtotal (I-squared = 0.0%, p = 0.776) EGFR FISH negative Herbst et al. 2011 Ciuleanu et al. 2013 Subtotal (I-squared = 35.4%, p = 0.214)	1.21 (0.44, 3.33) 5 1.38 (0.85, 2.23) 1 1.14 (0.76, 1.70) 1 2.62 (0.75, 9.10) 4 1.39 (0.69, 2.78) 1 1.11 (0.86, 1.44) 1 2.07 (0.98, 4.40) 8	16.49 12.91 4.25 17.16 15.01 3.13
Herbst et al. 2011 Ciuleanu et al. 2013 Subtotal (I-squared = 0.0%, p = 0.776) EGFR FISH negative Herbst et al. 2011 Ciuleanu et al. 2013 Subtotal (I-squared = 35.4%, p = 0.214)	1.21 (0.44, 3.33) 5 1.38 (0.85, 2.23) 1 1.14 (0.76, 1.70) 1 2.62 (0.75, 9.10) 4 1.39 (0.69, 2.78) 1 1.11 (0.86, 1.44) 1	16.49 12.91 4.25 17.16 15.01 3.13
Aerbst et al. 2011 Ciuleanu et al. 2013 Subtotal (I-squared = 0.0%, p = 0.776) GFR FISH negative Aerbst et al. 2011 Ciuleanu et al. 2013 Subtotal (I-squared = 35.4%, p = 0.214) GFR wild type Aerbst et al. 2011 Ciuleanu et al. 2013	1.21 (0.44, 3.33) 5 1.38 (0.85, 2.23) 1 1.14 (0.76, 1.70) 1 2.62 (0.75, 9.10) 4 1.39 (0.69, 2.78) 1 1.11 (0.86, 1.44) 1 2.07 (0.98, 4.40) 8	16.49 12.91 4.25 17.16 15.01 3.13 23.14
Aerbst et al. 2011 Ciuleanu et al. 2013 Subtotal (I-squared = 0.0%, p = 0.776) GGFR FISH negative Herbst et al. 2011 Ciuleanu et al. 2013 Subtotal (I-squared = 35.4%, p = 0.214) GGFR wild type Herbst et al. 2011 Ciuleanu et al. 2013 Subtotal (I-squared = 57.8%, p = 0.124)	1.21 (0.44, 3.33) 5 1.38 (0.85, 2.23) 1 1.14 (0.76, 1.70) 1 2.62 (0.75, 9.10) 4 1.39 (0.69, 2.78) 1 1.11 (0.86, 1.44) 1 2.07 (0.98, 4.40) 8 1.37 (0.77, 2.43) 2	16.49 12.91 4.25 17.16 15.01 3.13 23.14

Figure 4. (continued).

95% CI=0.42–0.91, *P*=.02), but did not do so in patients with EGFR FISH-positive (HR=1.38, 95% CI=0.85–2.23; *P*=.20), EGFR FISH-negative (HR=1.39, 95% CI=0.69–2.78; *P*=.35), or EGFR wild-type (HR=1.37, 95% CI=0.77–2.43; *P*=.29) tumors (Fig. 4H).

3.3.5. Adverse events. Patients who received monotherapy vs combined bevacizumab+erlotinib did not significantly differ in incidence of rash (72% vs 43.5%, 95% CI=1.51–1.82; P=.21), diarrhea (55.9% vs 32.7%, 95% CI=0.88–2.63; P=.13), hypertension (34.4% vs 18.6%, 95% CI=0.90–6.98; P=.08), or hemorrhage (20.8% vs 14.6%, 95% CI=0.73–4.01; P=.21) (Fig. 5A).

Monotherapy and combined therapy groups did not differ significantly in levels 1–2 adverse events of rash (69.5% vs 72%, 95% CI=0.85–1.09; P=.54), diarrhea (57.2% vs 55%, 95% CI=0.90–1.21, P=.13), hemorrhage (42.2% vs 12.7%, 95% CI=0.81–32.39, P=.08), or paronychia (37.4% vs 32.8%, 95% CI=0.95–1.46, P=.13), but differed significantly in hyperten-

sion incidence (20.3% vs 6.3%, 95% CI=1.73–5.88, P=.001) (Fig. 5B). For severe adverse events, the 2 groups differed significantly in diarrhea incidence (10% vs 3.2%, 95% CI= 1.36–6.60; P=.01), but not in incidence of rash (12.1% vs 9.8%, 95% CI=0.70–4.57; P=.22), hypertension (11% vs 5.6%, 95% CI=0.55–4.94; P=.37), fatigue (5.1% vs 7.9%, 95% CI=0.28– 1.40; P=.25), paronychia (4% vs 1.6%, 95% CI=0.48–9.93; P=.31), or hemorrhage (2.2% vs 1.6%, 95% CI=0.45–3.89; P=.61) (Fig. 5C).

4. Discussion

4.1. Findings and interpretations

Our meta-analysis indicates that compared with monotherapy, erlotinib+bevacizumab combination therapy prolongs PFS of patients with NSCLC, but cannot extend OS or elevate ORR. Prolongation of PFS was not associated with disease stage, age, or ethnicity. However, female patients and those with ECOG-PS0 or

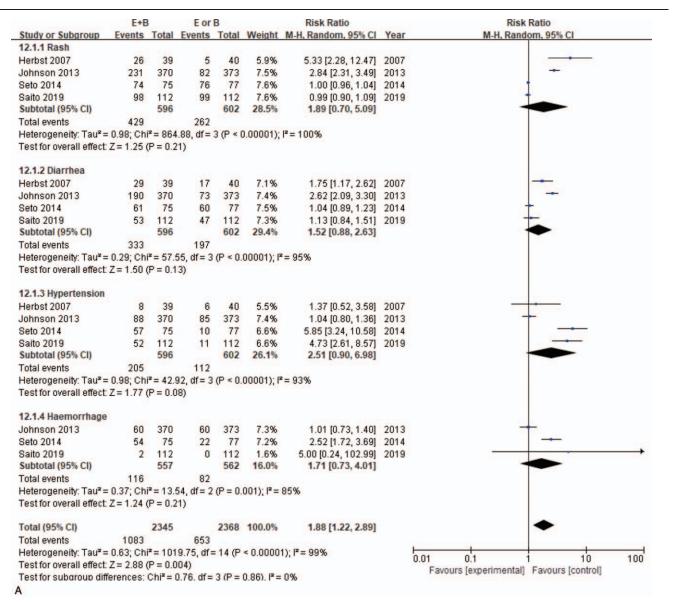


Figure 5. Adverse events for combination therapy of bevacizumab plus erlotinib with bevacizumab or erlotinib alone.

	E+B		Eor	В		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% CI
3.1.1 Rash								
Seto 2014	55	75	61	77	14.2%	0.93 [0.77, 1.11]	2014	+
aito 2019	75	112	75	112	14.1%	1.00 [0.83, 1.20]		
ubtotal (95% CI)		187		189	28.3%	0.96 [0.85, 1.09]		•
otal events	130		136			A A S		
leterogeneity: Tau ² =	0.00; Chi	= 0.3	6, df = 1 (P = 0.5	5); I ² = 09	6		
est for overall effect:	and the second							
3.1.2 Diarrhea								
eto 2014	60	75	59	77	14.3%	1.04 [0.88, 1.23]	2014	+
aito 2019	47	112	45	112	12.4%	1.04 [0.76, 1.43]	2019	+
ubtotal (95% CI)		187		189	26.7%	1.04 [0.90, 1.21]		· •
otal events	107		104					
leterogeneity: Tau ² =	0.00; Chi	² = 0.0	0, df = 1 ((P = 1.0	0); l ² = 09	b		
est for overall effect	Z=0.57 ((P = 0.5	i7)					
3.1.3 Haemorrhage								
Seto 2014	52	75	22	77	11.3%	2.43 [1.65, 3.56]	2014	
Saito 2019	27	112	2	112	2.7%	13.50 [3.29, 55.42]	2019	
Subtotal (95% CI)		187		189	14.0%	5.11 [0.81, 32.39]		
otal events	79		24					
Heterogeneity: Tau² = Test for overall effect:				(P = 0.0	1); I² = 85	%		
3.1.4 Paronychia								
Seto 2014	55	75	47	77	13.6%	1.20 [0.96, 1.50]	2014	-
Saito 2019	15	112	15	112	7.5%	1.00 [0.51, 1.95]	2019	
Subtotal (95% CI)		187		189	21.1%	1.18 [0.95, 1.46]		•
otal events	70		62					
leterogeneity: Tau² = fest for overall effect:	And the second second second second		and the second sec	(P = 0.5	8); I² = 09	b		
3.1.5 Hypertension								
Seto 2014	12	75	2	77	2.5%	6.16 [1.43, 26.60]	2014	
Saito 2019	26	112	10	112	7.3%	2.60 [1.32, 5.14]	2019	
Subtotal (95% CI)		187		189	9.8%	3.13 [1.55, 6.30]		-
otal events	38		12					
leterogeneity: Tau ² =	0.04; Chi	² =1.1	2, df = 1 (P = 0.2	9); I ² = 11	%		
est for overall effect:	Z= 3.19 ((P = 0.0	101)					
otal (95% CI)		935		945	100.0%	1.37 [1.06, 1.76]		◆
otal events	424		338					
Heterogeneity: Tau² = Fest for overall effect: Fest for subgroup diff	Z= 2.40 ((P = 0.0	12)					0.01 0.1 1 10 Favours [experimental] Favours [control]
	erences.	-	13.12. ui	- 4 (1" -	- 0.004).1	- 13.370		

ECOG-PS1, no smoking history, adenocarcinoma, EGFR Exon19 deletion, or Exon21 Leu858Arg mutation all experienced prolonged PFS under combination therapy. Moreover, combination therapy increased incidence of common complications, such as rash, diarrhea, hypertension, hemorrhage, and severe diarrhea in levels 1–2 adverse events.

This study provides new insight to help resolve existing controversies surrounding the combined use of erlotinib and bevacizumab for NSCLC treatment. Although we clearly demonstrated a benefit for PFS, the lack of an effect on OS requires further investigation. Our finding is similar to a previous meta-analysis, where the authors suggested that a low number of studies and small sample size resulted in limited statistical power to detect effects on OS.^[17] However, although we increased sample size and merged data, we still found that combination therapy failed to prolong OS, indicating that sample size is not the issue. Moreover, combination therapy could not improve ORR, consistent with

previous studies.^[29–31] Heterogeneity was high in studies on ORR, largely due to the report by Herbst et al^[21] Therefore, combination therapy might improve ORR with the use of a prespecified fixed sequence test.

We also detected high heterogeneity (stemming from Ciuleanu et al^[25]) among studies evaluating PFS. The randomized followup design of Ciuleanu et al did not allow for effective evaluation in some patients. Previous studies have found that kinase plays an important role in normal and malignant biology,^[32,33] chemotherapy can affect the therapeutic effects of EGFR and tyrosine kinase inhibitors,^[34–37] resulting in a lower response rate.^[38] Therefore, we also compared first- and second-line treatments, but neither influenced the beneficial effect of combination therapy on prolonging PFS.

Our stratification analysis indicated that combination therapy differentially affected certain patient subgroups but not others. Specifically, erlotinib+bevacizumab prolonged PFS regardless of disease stage, age, or ethnicity. Additionally, while combination

Study or Subgroup	E+B		Eor			Risk Ratio	Risk Ratio
	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% CI
14.1.1 Rash							
Ciuleanu 2013	1	39	0	40	1.6%	3.08 [0.13, 73.27]	
Herbst 2007	25	370	2	373	4.0%	12.60 [3.01, 52.82]	
Herbst 2011	31	63	6	61	5.4%	5.00 [2.25, 11.14]	
Johnson 2013	19	75	15	77	5.9%	1.30 [0.72, 2.36]	
Saito 2019	19	319	49	317	6.0%	0.39 [0.23, 0.64]	
Seto 2014	23	112	24	112	6.0%	0.96 [0.58, 1.59]	
Subtotal (95% CI)		978		980	28.9%	1.79 [0.70, 4.57]	-
Total events	118		96				
Heterogeneity: Tau² = Test for overall effect				(P < 0.	00001); P	= 88%	
14.1.2 Hypertension							
Ciuleanu 2013	1	39	2	40	2.4%	0.51 [0.05, 5.43]	
Herbst 2007	23	370	22	373	5.9%	1.05 [0.60, 1.86]	
Herbst 2011	9	63	7	61	5.1%	1.24 [0.49, 3.13]	
Johnson 2013	45	75	8	77	5.7%	5.78 [2.92, 11.42]	
Saito 2019	4	319	15	317	4.7%	0.26 [0.09, 0.79]	
Seto 2014	26	112	1	112	2.9%	26.00 [3.59, 188.32]	
Subtotal (95% CI)		978		980	26.8%	1.66 [0.55, 4.94]	
Total events	108		55				
Heterogeneity: Tau ² =				(P < 0.	00001); P	= 86%	
Test for overall effect	: Z = 0.90 (P = 0.3	17)				
14.1.3 Diarrhea							
Ciuleanu 2013	3	39	0	40	1.8%	7.17 [0.38, 134.50]	
Herbst 2007	20	63	12	61	5.8%	1.61 [0.87, 3.01]	
Johnson 2013	1	75	1	77	1.9%	1.03 [0.07, 16.12]	
Saito 2019	36	370	7	373	5.4%	5.18 [2.34, 11.50]	· · · · · · · · · · · · · · · · · · ·
Seto 2014	6	112	1	112	2.7%	6.00 [0.73, 49.03]	
Subtotal (95% CI)		659		663	17.7%	2.99 [1.36, 6.60]	-
Total events	66		21				
Test for overall effect	. 2 - 2.01	- 0.0	07)				
14.1.4 Paronychia							
14.1.4 Paronychia Ciuleanu 2013	6	63	1	61	2.8%	5.81 [0.72, 46.85]	
	6 2	63 75	1 3	61 77	2.8% 3.3%	5.81 [0.72, 46.85] 0.68 [0.12, 3.98]	
Ciuleanu 2013						and the second state is a provide the	
Ciuleanu 2013 Saito 2019	2	75	3	77	3.3%	0.68 [0.12, 3.98]	
Ciuleanu 2013 Saito 2019 Seto 2014 Subtotal (95% CI) Total events	2 2 10	75 112 250	3 0 4	77 112 250	3.3% 1.7% 7.8%	0.68 [0.12, 3.98] 5.00 [0.24, 102.99] 2.19 [0.48, 9.93]	
Ciuleanu 2013 Saito 2019 Seto 2014 Subtotal (95% CI)	2 2 10 = 0.54; Chi	75 112 250 ² = 2.8	3 0 4 4, df = 2 (77 112 250	3.3% 1.7% 7.8%	0.68 [0.12, 3.98] 5.00 [0.24, 102.99] 2.19 [0.48, 9.93]	
Ciuleanu 2013 Saito 2019 Seto 2014 Subtotal (95% CI) Total events Heterogeneity: Tau ² =	2 2 10 = 0.54; Chi : Z = 1.02 (75 112 250 ² = 2.8	3 0 4 4, df = 2 (77 112 250	3.3% 1.7% 7.8%	0.68 [0.12, 3.98] 5.00 [0.24, 102.99] 2.19 [0.48, 9.93]	
Ciuleanu 2013 Saito 2019 Seto 2014 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect	2 2 10 = 0.54; Chi : Z = 1.02 (75 112 250 ² = 2.8	3 0 4 4, df = 2 (77 112 250	3.3% 1.7% 7.8%	0.68 [0.12, 3.98] 5.00 [0.24, 102.99] 2.19 [0.48, 9.93] % 5.13 [0.25, 105.14]	
Ciuleanu 2013 Saito 2019 Seto 2014 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect 14.1.5 Haemorrhage Herbst 2011 Saito 2019	2 2 = 0.54; Chi : Z = 1.02 (2 7	75 112 250 ² = 2.8 P = 0.3 75 319	3 0 4, df = 2 (11) 0 8	77 112 250 P = 0.2 77 317	3.3% 1.7% 7.8% 4); I² = 30 1.7% 5.0%	0.68 [0.12, 3.98] 5.00 [0.24, 102.99] 2.19 [0.48, 9.93] % 5.13 [0.25, 105.14] 0.87 [0.32, 2.37]	
Ciuleanu 2013 Saito 2019 Seto 2014 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect 14.1.5 Haemorrhage Herbst 2011 Saito 2019 Seto 2014	2 2 10 = 0.54; Chi : Z = 1.02 (75 112 250 °= 2.8 P = 0.3 75 319 112	3 0 4, df= 2 (11) 0	77 112 250 P = 0.2 77 317 112	3.3% 1.7% 7.8% 4); I² = 30 1.7% 5.0% 1.7%	0.68 [0.12, 3.98] 5.00 [0.24, 102.99] 2.19 [0.48, 9.93] % 5.13 [0.25, 105.14] 0.87 [0.32, 2.37] 5.00 [0.24, 102.99]	
Ciuleanu 2013 Saito 2019 Seto 2014 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect 14.1.5 Haemorrhage Herbst 2011 Saito 2019 Seto 2014 Subtotal (95% CI)	2 2 = 0.54; Chi : Z = 1.02 (2 7 2	75 112 250 ² = 2.8 P = 0.3 75 319	3 0 4, df = 2 (11) 0 8 0	77 112 250 P = 0.2 77 317	3.3% 1.7% 7.8% 4); I² = 30 1.7% 5.0%	0.68 [0.12, 3.98] 5.00 [0.24, 102.99] 2.19 [0.48, 9.93] % 5.13 [0.25, 105.14] 0.87 [0.32, 2.37]	
Ciuleanu 2013 Saito 2019 Seto 2014 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect 14.1.5 Haemorrhage Herbst 2011 Saito 2019 Seto 2014 Subtotal (95% CI) Total events	2 2 = 0.54; Chi : Z = 1.02 (2 7 2 11	75 112 250 ² = 2.8 P = 0.3 75 319 112 506	3 0 4, df= 2 (11) 0 8 0 8	77 112 250 P = 0.2 77 317 112 506	3.3% 1.7% 7.8% 4); I ² = 30 1.7% 5.0% 1.7% 8.3%	0.68 [0.12, 3.98] 5.00 [0.24, 102.99] 2.19 [0.48, 9.93] % 5.13 [0.25, 105.14] 0.87 [0.32, 2.37] 5.00 [0.24, 102.99] 1.33 [0.45, 3.89]	
Ciuleanu 2013 Saito 2019 Seto 2014 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect 14.1.5 Haemorrhage Herbst 2011 Saito 2019 Seto 2014 Subtotal (95% CI)	2 2 = 0.54; Chi : Z = 1.02 (2 7 2 11 = 0.13; Chi	75 112 250 ² = 2.8 P = 0.3 75 319 112 506 ² = 2.2	3 0 4, df= 2 (11) 0 8 0 0, df= 2 (77 112 250 P = 0.2 77 317 112 506	3.3% 1.7% 7.8% 4); I ² = 30 1.7% 5.0% 1.7% 8.3%	0.68 [0.12, 3.98] 5.00 [0.24, 102.99] 2.19 [0.48, 9.93] % 5.13 [0.25, 105.14] 0.87 [0.32, 2.37] 5.00 [0.24, 102.99] 1.33 [0.45, 3.89]	
Ciuleanu 2013 Saito 2019 Seto 2014 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect 14.1.5 Haemorrhage Herbst 2011 Saito 2019 Seto 2014 Subtotal (95% CI) Total events Heterogeneity: Tau ² =	2 2 = 0.54; Chi : Z = 1.02 (2 7 2 11 = 0.13; Chi	75 112 250 ² = 2.8 P = 0.3 75 319 112 506 ² = 2.2	3 0 4, df= 2 (11) 0 8 0 0, df= 2 (77 112 250 P = 0.2 77 317 112 506	3.3% 1.7% 7.8% 4); I ² = 30 1.7% 5.0% 1.7% 8.3%	0.68 [0.12, 3.98] 5.00 [0.24, 102.99] 2.19 [0.48, 9.93] % 5.13 [0.25, 105.14] 0.87 [0.32, 2.37] 5.00 [0.24, 102.99] 1.33 [0.45, 3.89]	
Ciuleanu 2013 Saito 2019 Seto 2014 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect 14.1.5 Haemorrhage Herbst 2011 Saito 2019 Seto 2014 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect	2 2 = 0.54; Chi : Z = 1.02 (2 7 2 11 = 0.13; Chi	75 112 250 ² = 2.8 P = 0.3 75 319 112 506 ² = 2.2	3 0 4, df= 2 (11) 0 8 0 0, df= 2 (77 112 250 P = 0.2 77 317 112 506	3.3% 1.7% 7.8% 4); I ² = 30 1.7% 5.0% 1.7% 8.3%	0.68 [0.12, 3.98] 5.00 [0.24, 102.99] 2.19 [0.48, 9.93] % 5.13 [0.25, 105.14] 0.87 [0.32, 2.37] 5.00 [0.24, 102.99] 1.33 [0.45, 3.89]	
Ciuleanu 2013 Saito 2019 Seto 2014 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = Test for overall effect 14.1.5 Haemorrhage Herbst 2011 Saito 2019 Seto 2014 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = Test for overall effect 14.1.6 Fatigue	2 2 = 0.54; Chi : Z = 1.02 (2 7 2 2 11 = 0.13; Chi : Z = 0.52 (75 112 250 P = 0.3 75 319 112 506 * = 2.20 P = 0.6	3 0 4, df = 2 (11) 0 8 0 0, df = 2 (11)	77 112 250 P = 0.2 77 317 112 506 P = 0.3	3.3% 1.7% 7.8% 4); I ² = 30 1.7% 5.0% 1.7% 8.3% 3); I ² = 99	0.68 [0.12, 3.98] 5.00 [0.24, 102.99] 2.19 [0.48, 9.93] % 5.13 [0.25, 105.14] 0.87 [0.32, 2.37] 5.00 [0.24, 102.99] 1.33 [0.45, 3.89] 6 0.62 [0.16, 2.40] 0.54 [0.19, 1.51]	
Ciuleanu 2013 Saito 2019 Seto 2014 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = Test for overall effect 14.1.5 Haemorrhage Herbst 2011 Saito 2019 Seto 2014 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = Test for overall effect 14.1.6 Fatigue Ciuleanu 2013	2 2 10 = 0.54; Chi : Z = 1.02 (2 7 2 7 2 11 = 0.13; Chi : Z = 0.52 (3	75 112 250 P = 0.3 75 319 112 506 P = 0.6 39	3 0 4, df = 2 (11) 0 8 0, df = 2 (11) 5	77 112 250 P = 0.2 77 317 112 506 P = 0.3	3.3% 1.7% 7.8% 4); ² = 30 1.7% 5.0% 1.7% 8.3% 3); ² = 99 4.1%	0.68 [0.12, 3.98] 5.00 [0.24, 102.99] 2.19 [0.48, 9.93] % 5.13 [0.25, 105.14] 0.87 [0.32, 2.37] 5.00 [0.24, 102.99] 1.33 [0.45, 3.89] 6 0.62 [0.16, 2.40] 0.54 [0.19, 1.51]	
Ciuleanu 2013 Saito 2019 Seto 2014 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = Test for overall effect 14.1.5 Haemorrhage Herbst 2011 Saito 2019 Seto 2014 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = Test for overall effect 14.1.6 Fatigue Ciuleanu 2013 Herbst 2007	2 2 10 = 0.54; Chi : Z = 1.02 (2 7 2 7 2 11 = 0.13; Chi : Z = 0.52 (3 5	75 112 250 *= 2.8 P = 0.3 75 319 112 506 *= 2.2 P = 0.6 39 63	3 0 4, df = 2 (11) 0 8 0, df = 2 (11) 5 9	77 112 250 P = 0.2 77 317 112 506 P = 0.3 40 61	3.3% 1.7% 7.8% 4); ² = 30 1.7% 5.0% 1.7% 8.3% 3); ² = 99 4.1% 4.9%	0.68 [0.12, 3.98] 5.00 [0.24, 102.99] 2.19 [0.48, 9.93] % 5.13 [0.25, 105.14] 0.87 [0.32, 2.37] 5.00 [0.24, 102.99] 1.33 [0.45, 3.89] 6 0.62 [0.16, 2.40]	
Ciuleanu 2013 Saito 2019 Seto 2014 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect 14.1.5 Haemorrhage Herbst 2011 Saito 2019 Seto 2014 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect 14.1.6 Fatigue Ciuleanu 2013 Herbst 2007 Seto 2014	2 2 10 = 0.54; Chi : Z = 1.02 (2 7 2 7 2 11 = 0.13; Chi : Z = 0.52 (3 5	75 112 250 *= 2.8 75 319 112 506 *= 2.2 P = 0.6 39 63 75	3 0 4, df = 2 (11) 0 8 0, df = 2 (11) 5 9	77 112 250 P = 0.2 77 317 112 506 P = 0.3 40 61 77	3.3% 1.7% 7.8% 4); P = 30 1.7% 5.0% 1.7% 8.3% 3); P = 99 4.1% 4.9% 1.6%	0.68 [0.12, 3.98] 5.00 [0.24, 102.99] 2.19 [0.48, 9.93] % 5.13 [0.25, 105.14] 0.87 [0.32, 2.37] 5.00 [0.24, 102.99] 1.33 [0.45, 3.89] 6 0.62 [0.16, 2.40] 0.54 [0.19, 1.51] 3.08 [0.13, 74.41]	
Ciuleanu 2013 Saito 2019 Seto 2014 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect 14.1.5 Haemorrhage Herbst 2011 Saito 2019 Seto 2014 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect 14.1.6 Fatigue Ciuleanu 2013 Herbst 2007 Seto 2014 Subtotal (95% CI)	2 2 10 = 0.54; Chi : Z = 1.02 (2 7 2 11 = 0.13; Chi : Z = 0.52 (3 5 1 9 = 0.00; Chi	75 112 250 *= 2.8 P = 0.3 75 319 112 506 *= 2.22 P = 0.6 39 63 75 177 *= 1.0	3 0 4, df= 2 (1) 0 8 0, df= 2 (1) 5 9 0 14 5, df= 2 (77 112 250 P = 0.2 77 317 112 506 P = 0.3 40 61 77 178	3.3% 1.7% 7.8% 4); F= 30 1.7% 5.0% 1.7% 8.3% 3); F= 99 4.1% 4.9% 1.6% 10.6%	0.68 [0.12, 3.98] 5.00 [0.24, 102.99] 2.19 [0.48, 9.93] % 5.13 [0.25, 105.14] 0.87 [0.32, 2.37] 5.00 [0.24, 102.99] 1.33 [0.45, 3.89] 6 0.62 [0.16, 2.40] 0.54 [0.19, 1.51] 3.08 [0.13, 74.41] 0.63 [0.28, 1.40]	
Ciuleanu 2013 Saito 2019 Seto 2014 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect 14.1.5 Haemorrhage Herbst 2011 Saito 2019 Seto 2014 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect 14.1.6 Fatigue Ciuleanu 2013 Herbst 2007 Seto 2014 Subtotal (95% CI) Total events Heterogeneity: Tau ² =	2 2 10 = 0.54; Chi : Z = 1.02 (2 7 2 11 = 0.13; Chi : Z = 0.52 (3 5 1 9 = 0.00; Chi	75 112 250 *= 2.8 P = 0.3 75 319 112 506 *= 2.22 P = 0.6 39 63 75 177 *= 1.0	3 0 4, df= 2 (1) 0 8 0, df= 2 (1) 5 9 0 14 5, df= 2 (77 112 250 P = 0.2 77 317 112 506 P = 0.3 40 61 77 178 P = 0.5	3.3% 1.7% 7.8% 4); F= 30 1.7% 5.0% 1.7% 8.3% 3); F= 99 4.1% 4.9% 1.6% 10.6%	0.68 [0.12, 3.98] 5.00 [0.24, 102.99] 2.19 [0.48, 9.93] % 5.13 [0.25, 105.14] 0.87 [0.32, 2.37] 5.00 [0.24, 102.99] 1.33 [0.45, 3.89] 6 0.62 [0.16, 2.40] 0.54 [0.19, 1.51] 3.08 [0.13, 74.41] 0.63 [0.28, 1.40]	
Ciuleanu 2013 Saito 2019 Seto 2014 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = Test for overall effect 14.1.5 Haemorrhage Herbst 2011 Saito 2019 Seto 2014 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = Test for overall effect 14.1.6 Fatigue Ciuleanu 2013 Herbst 2007 Seto 2014 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = Test for overall effect	2 2 10 = 0.54; Chi : Z = 1.02 (2 7 2 11 = 0.13; Chi : Z = 0.52 (3 5 1 9 = 0.00; Chi	75 112 250 *= 2.88 P = 0.3 319 112 506 *= 2.21 P = 0.6 39 63 75 177 *= 1.00 P = 0.2	3 0 4, df= 2 (1) 0 8 0, df= 2 (1) 5 9 0 14 5, df= 2 (77 112 250 P = 0.2 77 317 112 506 P = 0.3 40 61 77 178 P = 0.5	3.3% 1.7% 7.8% 4); ² = 30 1.7% 5.0% 1.7% 8.3% 3); ² = 99 4.1% 4.9% 1.6% 10.6% 9); ² = 09	0.68 [0.12, 3.98] 5.00 [0.24, 102.99] 2.19 [0.48, 9.93] % 5.13 [0.25, 105.14] 0.87 [0.32, 2.37] 5.00 [0.24, 102.99] 1.33 [0.45, 3.89] 6 0.62 [0.16, 2.40] 0.54 [0.19, 1.51] 3.08 [0.13, 74.41] 0.63 [0.28, 1.40] 6	

Figure 5. (continued).

therapy extended PFS in patients with ECOG-PS0 and ECOG-PS1, patients with ECOG-PS2 did not see such benefits. However, this result requires further verification because only one study reported patients with ECOG-PS2.^[21] Combination therapy also improved PFS in female patients but not in male patients. Furthermore, patients who currently or formerly smoked did not see the same benefits from combination therapy as non-smokers. Patients would thus benefit from quitting smoking to increase the likelihood of a positive response to treatment. Combination therapy also appears to be appropriate for patients experiencing pathological NSCLC, as the outcomes were either beneficial or neutral; individuals with adenocarcinoma had significantly longer PFS under combination therapy than patients with other pathological NSCLC types. Previous studies^[39-41] found that erlotinib was more effective in patients with the Exon19 deletion than in those with the Exon21 Leu858Arg mutation, similar to our results here. Combination therapy extended PFS in patients with EGFR gene mutations, but was not effective for patients with other mutations. Therefore, pre-therapy genetic testing is necessary to avoid unnecessary treatment while targeting those most likely to receive benefits.

Previous studies have suggested unsatisfactory outcomes after combination therapy, pointing to increased incidence of adverse events such as rash, diarrhea, hypertension, hemorrhage, paronychia, and fatigue.^[15] In this study, combination therapy increased incidence of rash, diarrhea, hypertension, and bleeding. When we examined subgroups based on severity of adverse events, we found that combination therapy did not significantly increase level 1-2 rash, diarrhea, hemorrhage, and paronychia incidence, but significantly increased level 1-2 hypertension. Additionally, severe hypertension, rash, and paronychia were not significantly elevated, while severe diarrhea was. These outcomes suggest that combination therapy only increases minor adverse events that can be treated with proper control of patient blood pressure and administration of antidiarrheal drugs. However, we note the importance of considering differences in individual responses to combined drugs. We should also consider the costs of combination therapy vs monotherapy when assessing treatment appropriateness, with the aim of minimizing medical waste.

4.2. Strengths and limitations

The main strengths of this study are that we performed a comprehensive database and literature search, including recent studies that had not been considered in previous meta-analyses. Moreover, we performed a detailed stratification analysis of subgroups and adverse events, allowing a detailed examination of factors contributing to variation in patient responses under combination therapy for NSCLC.

Nevertheless, our study has one major limitation: is a low number of available RCTs, resulting in an insufficient sample to evaluate different outcome measures. Therefore, high-quality RCTs with large sample sizes are necessary to verify our conclusions and to further explore the efficacy and adverse events of erlotinib+bevacizumab combination therapy.

5. Conclusions

Combining erlotinib and bevacizumab did not improve OS and ORR of patients with NSCLC but did prolong PFS. Subgroup analysis confirmed that combination therapy prolonged PFS without causing severe incurable complications in female patients, as well as those with ECOG-PS0 or ECOG-PS1, no smoking history, adenocarcinoma, and an EGFR Exon19 deletion or Exon21 Leu858Arg mutation. Therefore, we particularly recommend combination therapy for these patients. Our findings can help resolve existing controversies surrounding the benefits of erlotinib+bevacizumab therapy, thus further improving and personalizing patient selection for this treatment.

Author contributions

KZ searched the literatures, drew charts and wrote the article. SZ searched the literatures and drew charts. WG searched the literatures and revised the article. LD designed the experiment and provided guidance.

References

- Jemal A, Siegel R, Xu J, et al. Cancer statistics, 2010. CA Cancer J Clin 2010;60:277–300.
- [2] Gelatti A, Drilon A, Santini F. Optimizing the sequencing of tyrosine kinase inhibitors in epidermal growth factor receptor mutation-positive non-small cell lung cancer. Lung Cancer 2019;137:113–22.
- [3] National Cancer Institute: Surveillance, Epide-miology, and End Results (SEER) Program: SEER Stat Database, National Cancer Institute, Surveillance Research Program, Cancer Statistics Branch. http://www. seer.cancer.gov/.
- [4] Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin 2011;61:69–90.
- [5] Tavares e Castro A, Clemente J, Carvalho L, et al. Small-cell lung cancer in never-smokers: a case series. Lung Cancer 2016;93:82–7.
- [6] Jin Y, Xu H, Zhang C, et al. Combined effects of cigarette smoking, gene polymorphisms and methylations of tumor suppressor genes on non small cell lung cancer: a hospital-based case-control study in China. BMC Cancer 2010;10:422.
- [7] Sandler A, Gray R, Perry MC, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 2006; 355:2542–50.
- [8] Reck M, von Pawel J, Zatloukal P, et al. Overall survival with cisplatingencitabine and bevacizumab or placebo as first-line therapy for nonsquamous non-small-cell lung cancer: Results from a randomised phase III trial (AVAiL). Ann Oncol 2010;21:1804–9.
- [9] Herbst RS, Ansari R, Bustin F, et al. Efficacy of bevacizumab plus erlotinib versus erlotinib alone in advanced non-small-cell lung cancer after failure of standard first-line chemotherapy (BeTa): a double-blind, placebocontrolled, phase 3 trial. Lancet 2011;377: 1846–54.
- [10] Bonomi P. Erlotinib: a new therapeutic approach for non-small cell lung cancer. Expert Opin Investig Drugs 2003;12:1395–401.
- [11] Shepherd FA, Rodrigues Pereira J, Ciuleanu T, et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 2005; 353:123–32.
- [12] Spigel DR, Ervin TJ, Ramlau RA, et al. Randomized phase II trial of Onartuzumab in combination with erlotinib in patients with advanced non-small-cell lung cancer. J Clin Oncol 2013;31:4105–14.
- [13] Spigel DR, Burris HA3rd, Greco FA, et al. Randomized, double-blind, placebo-controlled, phase II trial of sorafenib and erlotinib or erlotinib alone in previously treated advanced non-small-cell lung cancer. J Clin Oncol 2011;29:2582–9.
- [14] Ohgami M, Kaburagi T, Kurosawa A, et al. Drug interaction between erlotinib and phenytoin for brain metastases in a patient with nonsmall cell lung cancer. Lung Cancer 2016;101:9–10.
- [15] Takeshita J. Erlotinib plus bevacizumab is effective in EGFR-mutant NSCLC. Cancer Discov 2014;11:OF18.
- [16] Dingemans AM, de Langen AJ, van den Boogaart V, et al. First-line erlotinib and bevacizumab in patients with locally advanced and/or metastatic non-small-cell lung cancer: a phase II study including molecular imaging, Ann. Oncol 2011;22:559–66.
- [17] Zhang S, Mao X-dong, Wang H-tao, et al. Efficacy and safety of bevacizumab plus erlotinib versus bevacizumab or erlotinib alone in the treatment of non-small-cell lung cancer: a systematic review and metaanalysis. BMJ Open 2016;6:e011714.

- [18] David M, Alessandro L, Jennifer T, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Revista Española De Nutrición Humana Y Dietética 2009;18:e123.
- [19] Jüni P, Altman DG, Egger M. Assessing the Quality of Randomised Controlled Trials. 2001;BMJ Publishing Group, 87–108.
- [20] Higgins JP, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ 2011;343:d5928.
- [21] Herbst RS, Ansari R, Bustin F, et al. Efficacy of bevacizumab plus erlotinib versus erlotinib alone in advanced non-small-cell lung cancer after failure of standard first-line chemotherapy (BeTa): a double-blind, placebo-controlled, phase 3 trial. Lancet 2011;377:1846–54.
- [22] Johnson BE, Kabbinavar F, Fehrenbacher L, et al. ATLAS: Randomized, double-blind, placebo-controlled, phase IIIB trial comparing bevacizumab therapy with or without erlotinib, after completion of chemotherapy, with bevacizumab for first-line treatment of advanced non-small-cell lung cancer. J Clin Oncol 2013;31:3926–34.
- [23] Seto T, Kato T, Nishio M, et al. Erlotinib alone or with bevacizumab as first-line therapy in patients with advanced non-squamous non-small-cell lung cancer harbouring EGFR mutations (JO25567): an open-label, randomised, multicentre, phase 2 study. Lancet Oncol 2014;15: 1236–44.
- [24] Saito H, Fukuhara T, Furuya N, et al. Erlotinib plus bevacizumab versus erlotinib alone in patients with EGFR-positive advanced nonsquamous non-small-cell lung cancer (NEJ026): interim analysis of an open-label, randomised, multicentre, phase 3 trial. Lancet Oncol 2019;20:625–35.
- [25] Ciuleanu T, Tsai CM, Tsao CJ, et al. A phase II study of erlotinib in combination with bevacizumab versus chemotherapy plus bevacizumab in the first-line treatment of advanced non-squamous non-small cell lung cancer. Lung Cancer 2013;82:276–81.
- [26] Herbst RS, O'Neill VJ, Fehrenbacher L, et al. Phase II study of efficacy and safety of bevacizumab in combination with chemotherapy or erlotinib compared with chemotherapy alone for treatment of recurrent or refractory non small-cell lung cancer. J Clin Oncol 2007;25:4743–50.
- [27] Cochran WG. The combination of estimates from different experiments. Biometrics 1954;10:101–29.
- [28] Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ 2003;327:557–60.
- [29] Seto T, Kato T, Nishio M, et al. Erlotinib alone or with bevacizumab as first-line therapy in patients with advanced non-squamous non-small-cell lung cancer harbouring EGFR mutations (JO25567):an open-label, randomised, multicentre, phase 2 study. Lancet Oncol 2014;15: 1236–44.
- [30] Herbst RS, O'Neill VJ, Fehrenbacher L, et al. Phase II study of efficacy and safety of bevacizumab in combination with chemotherapy or

erlotinib compared with chemotherapy alone for treatment of recurrent or refractory non small-cell lung cancer. J Clin Oncol 2007;25:4743–50.

- [31] Johnson BE, Kabbinavar F, Fehrenbacher L, et al. ATLAS: randomized, double-blind, placebo-controlled, phase IIIB trial comparing bevacizumab therapy with or without erlotinib, after completion of chemotherapy, with bevacizumab for first-line treatment of advanced non-small-cell lung cancer. J Clin Oncol 2013;31:3926–34.
- [32] Pankaj D, Muench DE, Michael W, et al. Time resolved quantitative phospho-tyrosine analysis reveals Bruton's Tyrosine kinase mediated signaling downstream of the mutated granulocyte-colony stimulating factor receptors. Leukemia 2019;33:75–87.
- [33] Dwivedi P, Muench DE, Wagner M, et al. Phospho serine and threonine analysis of normal and mutated granulocyte colony stimulating factor receptors. Scientific Data 2019;6:21.
- [34] Gridelli C, Ciardiello F, Gallo C, et al. First-line erlotinib followed by second-line cisplatin-gemcitabine chemotherapy in advanced nonsmall-cell lung cancer: the TORCH randomized trial. J Clin Oncol 2012;30:3002–11.
- [35] Sandler A, Gray R, Perry MC, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 2006;355:2542–50.
- [36] Reck M, von Pawel J, Zatloukal P, et al. Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAiL. J Clin Oncol 2009;27:1227–34.
- [37] Niho S, Kunitoh H, Nokihara H, et al. For the JO19907 Study Group. Randomized phase II study of first-line carboplatin–paclitaxel with or without bevacizumab in Japanese patients with advanced non-squamous non-small-cell lung cancer. Lung Cancer 2012;76:362–7.
- [38] Chin TM, Quinlan MP, Singh A, et al. Reduced Erlotinib sensitivity of epidermal growth factor receptor-mutant non-small cell lung cancer following cisplatin exposure: a cell culture model of second-line erlotinib treatment. Clin Cancer Res 2008;14:6867–76.
- [39] Zhou C, Wu YL, Chen G, et al. Erlotinib versus chemotherapy as firstline treatment for patients with advanced EGFR mutation–positive nonsmall-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, openlabel, randomised, phase 3 study. Lancet Oncol 2011;12:735–42.
- [40] Rosell R, Carcereny E, Gervais R, et al. Spanish Lung Cancer Group in collaboration with Groupe Français de Pneumo-Cancérologie and Associazione Italiana Oncologia Toracica: Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EUR-TAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 2012;13:239–46.
- [41] Rosell R, Moran T, Queralt C, et al. Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med 2009;361:958–67.