
ORIGINAL RESEARCH
published: 28 July 2021

doi: 10.3389/fgene.2021.655638

Frontiers in Genetics | www.frontiersin.org 1 July 2021 | Volume 12 | Article 655638

Edited by:

Steven J. Schrodi,

University of Wisconsin-Madison,

United States

Reviewed by:

Wei-Min Chen,

University of Virginia, United States

Radovan Kasarda,

Slovak University of Agriculture,

Slovakia

*Correspondence:

Mohammad Ali Nilforooshan

mohammad.nilforooshan@lic.co.nz

Specialty section:

This article was submitted to

Statistical Genetics and Methodology,

a section of the journal

Frontiers in Genetics

Received: 19 January 2021

Accepted: 17 June 2021

Published: 28 July 2021

Citation:

Nilforooshan MA, Garrick D and

Harris B (2021) Alternative Ways of

Computing the Numerator

Relationship Matrix.

Front. Genet. 12:655638.

doi: 10.3389/fgene.2021.655638

Alternative Ways of Computing the
Numerator Relationship Matrix
Mohammad Ali Nilforooshan 1*, Dorian Garrick 2 and Bevin Harris 1

1 Livestock Improvement Corporation, Hamilton, New Zealand, 2 AL Rae Centre for Genetics and Breeding, School of

Agriculture, Massey University, Palmerston North, New Zealand

Pedigree relationships between every pair of individuals forms the elements of the additive

genetic relationship matrix (A). Calculation of A−1 does not require forming and inverting

A, and it is faster and easier than the calculation of A. Although A−1 is used in best linear

unbiased prediction of genetic merit, A is used in population studies and post-evaluation

procedures, such as breeding programs and controlling the rate of inbreeding. Three

pedigrees with 20,000 animals (20K) and different (1, 2, 4) litter sizes, and a pedigree

with 180,000 animals (180K) and litter size 2 were simulated. Aiming to reduce the

computation time for calculatingA, newmethods [Array-Tabular method, (T−1)−1 instead

of T in Thompson’s method, iterative updating of D in Thompson’s method, and iteration

by generation] were developed and compared with some existingmethods. Themethods

were coded in the R programming language to demonstrate the algorithms, aiming for

minimizing the computational time. Among 20K, computational time decreased with

increasing litter size for most of the methods. Methods derivingA fromA−1 were relatively

slow. The other methods were either using only pedigree information or both the pedigree

and inbreeding coefficients. Calculating inbreeding coefficients was extremely fast (< 0.2

s for 180K). Parallel computing (15 cores) was adopted for methods that were based on

solving A−1 for columns of A, as those methods allowed implicit parallelism. Optimizing

the code for one of the earliest methods enabled A to be built in 13 s (faster than the

31 s for calculating A−1) for 20K and 17 min 3 s for 180K. Memory is a bottleneck for

large pedigrees but attempts to reduce the memory usage increased the computational

time. To reduce disk space usage, memory usage, and computational time, relationship

coefficients of old animals in the pedigree can be archived and relationship coefficients

for parents of the next generation can be saved in an external file for successive updates

to the pedigree and the A matrix.

Keywords: pedigree, numeric relationship matrix, inverse, Cholesky decomposition, conjugate gradient,

inbreeding coefficient, parallel computing

1. INTRODUCTION

Co-ancestry or kinship is a fundamental characteristic in population and quantitative genetics.
Co-ancestry is reflected by the coefficient of relationship, which is defined as the probability
that two individuals share identical alleles by descent (Falconer and Mackay, 1996). The additive
genetic relationship between two individuals is twice their co-ancestry. Wright (1922) computed
relationships based on path coefficients (sum over all the paths of the products of the coefficients in
a path that connects two individuals through common ancestors). Working with large pedigrees, it

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.655638
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.655638&domain=pdf&date_stamp=2021-07-28
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:mohammad.nilforooshan@lic.co.nz
https://doi.org/10.3389/fgene.2021.655638
https://www.frontiersin.org/articles/10.3389/fgene.2021.655638/full

Nilforooshan et al. Computing Matrix A

is hard to keep track of all the paths and computationally efficient
methods are required. Additive genetic relationships between
individuals in a pedigree form the elements of the additive genetic
relationshipmatrix, also called the numerator relationshipmatrix
(A) and are the basis of the variance–covariance of breeding
values for animals in the pedigree.

Since the development of best linear unbiased prediction
(BLUP) methodology (Henderson et al., 1959) up to recent
advanced methods for genomic evaluation (Fernando et al.,
2016), the A−1 matrix has been a critical element used
in computations for predicting genetic merit of individuals.
It allows algorithms to exploit information on relatives for
predicting genetic merit accounting for the genetic (co)variance
structure among individuals in the population. More details
about BLUP is given by Henderson (1975a), where it is shown
how unbiasedness and minimum prediction error of predictors
are met in populations under selection. Henderson (1976) and
Quaas (1976) presented methods of directly deriving A−1 from
the pedigree without the need to form A. Matrix A−1 has
rows and columns corresponding to animals in the pedigree
and it is very sparse. Many studies have been performed to
improve the computational efficiency in constructing A−1 and
in particular the diagonal elements of A, which are required
for the construction of A−1 (Tier, 1990; Meuwissen and Luo,
1992; Colleau, 2002; Sargolzaei and Iwaisaki, 2005; Sargolzaei
et al., 2005). However, there has been relatively little attention
to the efficient calculation of off-diagonal elements of A. This
is particularly because there is less demand for elements of
A compared to elements of A−1. Also, the calculation of A

is typically computationally more demanding. A−1 is sparser
than A and calculations for each individual only rely on the
individual and its parents. In A, the relationship coefficient
between individuals i and j equals to the average of the
relationship coefficients between the parents of j with i (0
for unknown parents). Although A is not needed for routine
genetic evaluations, there is need for numerical values of some
or all of its elements in population and gene flow studies,
conservation programs, controlling the rate of inbreeding and in
designing breeding programs. The aim of this study is to review
existing methods and introduce new algorithms for calculating
A. Runtime comparisons of the approaches are provided.

2. MATERIALS

Three pedigree structures (PED1, PED2, and PED3) with litter
sizes of 1, 2, or 4 were simulated and tested. The pedigree
simulation was performed using the R package “pedSimulate”
(Nilforooshan, 2021) following the steps below:

1. Starting with 200 base population individuals, representing an
equal number of foundation males and females.

2. Those foundation individuals were randomly mated
(no selection or pre-mating mortality) to produce the
next generation.

3. Pre-mating mortality rate was 3% in subsequent generations.
4. There was no overlap of generations for females, but there was

one generation overlap for males.

5. Note that 80% of mature females and 20% of mature
males were selected as parents of the next generation, then
randomly mated.

6. Data were simulated generation after generation until
reaching a population size of 20,000 individuals.

7. After the pedigree was simulated, 10% of dams and 20% of
sires were randomly set to missing in non-base generations.

Another pedigree structure (PED4) was simulated similar to
PED2, but with a population size of 180,000 individuals. PED4
was specifically created to be tested on the fastest methods based
on the results from the three other pedigrees, and to find out
about computational limitations and hardware requirements for
a larger pedigree. The pedigree files are provided in the data
repository (Data Availability Statement).

R statistical software (R Core Team, 2019) was used
throughout this study. The R package “pedigreemm” (Vazquez
et al., 2010) was used for calculating inbreeding coefficients
and the A−1 matrix, and R packages “doParallel” (Wallig et al.,
2020b) and “foreach” (Wallig et al., 2020a) were used for parallel
processing, when the main task could be split into independent
threads. Libraries LAPACK and SuiteSparse were exploited by
using the R package “Matrix” (Bates and Maechler, 2019) for
operations on sparse matrices. Data, Shell scripts, R code, and R
functions used in this study are available in the data repository
(Data Availability Statement).

Computations and benchmarking were performed on an
Ubuntu server 20.04 LTS Amazon machine image. A few types
of cloud machines from the R5, C5, and T2 families of the
Amazon elastic compute cloud were used for the computations.
Specifications of the cloud machine families are given in the
Appendix, and specifications of each machine (number of virtual
CPUs and read-only memory (RAM) capacity) are given in
section 5.

3. METHODS

3.1. Tabular Method
The history of the tabular method goes back to early works
done by Emik and Terrill (1949) and Cruden (1949). This
method is based on simple rules. First, individuals are ordered
in the pedigree to ensure parents appear before their progeny.
Considering s and d being sire and dam of j, and individual i
appeared in the pedigree before j, Aij = (Asi + Adi)/2. If a parent
(e.g., s) is unknown, Asi = 0. If both parents s and d are known,
Ajj = 1 + Fj = 1 + Asd/2. The original method loops over
rows, and columns within a row, to sequentially calculate matrix
elements. BecauseA is symmetric, n(n+1)/2 of n2 elements need
to be calculated. This method is coded in function buildA of R
package “ggroups” (Nilforooshan and Saavedra-Jiménez, 2020).
Using array programming techniques (vectorized calculations),
we optimized this method (Array-Tabular or method 3.1.2) to
loop only over columns, which is expected to speed up the
calculations. The jth array is calculated from the sth (for known
s) and the dth array (for known d). This method is coded
in R function tabularA (Data Availability Statement), which
requires a pedigree data frame as input.

Frontiers in Genetics | www.frontiersin.org 2 July 2021 | Volume 12 | Article 655638

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Nilforooshan et al. Computing Matrix A

3.2. Thompson’s Method
Applying the LDL factorization, A = TDT′, where T is a lower
triangle matrix, and D is a diagonal matrix. In this method
(Thompson, 1977), T and Dmatrices required to calculate A are
derived indirectly (i.e., no direct factorization or decomposition).
For individual j, off-diagonal elements that were initialized with
0 are changed to Tij = (Tsi + Tdi)/2 if both parents s and d
are known, and to Tij = Tsi/2 if one parent (e.g., s) is known.
The diagonal elements of D that were initiated with 1 change
to Djj = (2 − Fs − Fd)/4 if both parents are known, and to
Djj = (3 − Fs)/4 if one parent (e.g., s) is known. This method
is coded in R function TDTp (Data Availability Statement). This
function requires the pedigree data frame and a corresponding
vector of inbreeding coefficients as input.

Alternatively, (T−1)−1 may be used instead of T (method
3.2.2), where T−1 = I − J and J is the lower triangle parent
incidence matrix, with coefficients 0 and 0.5. R function TDTp2
(Data Availability Statement) calculates TDT′ via T−1.

3.3. Iterative Updating of D in Thompson’s
Method
Using Thompson’s Method, A = TDT′. The initial D (D0)
is calculated ignoring inbreeding coefficients in the population
(Djj = 1 − pj/4, where pj is the number of known parents for
individual j). Using sire and dam design matrices (Js and Jd) with
coefficients 0 and 0.5, matrix D and consequently A are updated
in each iteration until diag(A) remains unchanged.

In iteration i, Ai = TDiT
′, diag(Ai+1) and Di+1 are

calculated. Note that diag(Ai+1) is calculated prior to calculating
off-diagonal elements of Ai+1, where diag(Ai+1) = 1 + 2 ×

diag(JsAiJ
′
d
). For individual j with sire s and dam d that meets the

three conditions of (1) Ajji > diag(Ai+1)j, (2) Assi = diag(Ai+1)s
and (3) Addi = diag(Ai+1)d, Djj(i+1)

is calculated as 1 − (Assi +

Addi)/4. If a parent (e.g., s) is unknown, then Assi = 0. The
iterations continue until there is no individual j left with Ajji >

diag(Ai+1)j + ǫ, where ǫ is a small positive (tolerance) value,
which was set to 1e–5 in this study. This method is coded in R
function AiterD (Data Availability Statement), and it requires
the pedigree data frame and the tolerance value as input.

3.4. Henderson’s Method
Using the concepts of Cholesky decomposition, A can be written
as A = LL′, where L is a lower triangle matrix with non-zero
diagonal elements. Henderson (1975b) introduced a method for
deriving L indirectly to calculate A. If the definition of s and d
change from sire and dam of j to parents of j, where s < d,
calculation of L can be formulated as:

1. L = I

2. If only one parent (e.g., s) is known:

a. Lij|i≤s = Lsi/2

b. Ljj =
(

1−
∑s

i=1 L
2
ij

)
1
2

3. If both parents are known:

a. Lij|i≤s = (Lsi + Ldi)/2
b. Lij|s<i≤d = Ldi/2

c. Ljj =
(

1+ 1
2

∑s
i=1 LsiLdi −

∑s
i=1 L

2
ij

)
1
2

Calculation of L′ is coded in R function getLp (Data Availability
Statement), and it requires a pedigree data frame as input.

3.5. Iteration by Generation
The previous methods iterate over individuals with at least one
known parent. Number of loops can increase the computational
time. Thus, a method that minimizes loops (e.g., generations
rather than individuals) could be beneficial. In this method, the
A matrix is successively enlarged and completed generation by
generation. The base (0) generation, irrespective of the date of
birth, includes individuals with both parents unknown, andA0 =

I. Individuals in generation i (i > 0) have a known parent in
generation i – 1 and the other parent either unknown or in
generation < i. For generation i,

Ai =

[

I

Ji

]

Ai−1

[

I

Ji

]′

+

[

0 0

0 diag(oi)

]

=

[

Ai−1 Ai−1J
′
i

JiAi−1 JiAi−1J
′
i + diag(oi)

]

,

where oi = 1+2×diag(JsiAi−1J
′
di
)−diag(JiAi−1J

′
i), Ji is the parent

incidence matrix with elements of 0.5 and 0, rows corresponding
to individuals in generation i and columns corresponding to
individuals in generations < i. Jsi and Jdi are sire and dam
incidence matrices with elements of 0.5 and 0, and Ji = Jsi + Jdi .
If the definition of s and d change from sire and dam to parents,
where s < d,Ai−1 can be replaced with its upper triangle without
diagonal elements.

For example, consider the following pedigree with columns
corresponding to individual, sire and dam ID:

1 0 0
2 0 0
3 1 0
4 1 2
5 3 4
6 1 4
7 5 6

Individuals 1 and 2 are assigned to the base generation,
individuals 3 and 4 to generation 1, individuals 5 and 6 to
generation 2, and individual 7 to generation 3. The matrices
involved in the calculation of A are presented below:

A0 = I2,

Js1 =

[

0.5 0
0.5 0

]

, Jd1 =

[

0 0
0 0.5

]

,

Js2 =

[

0 0 0.5 0
0.5 0 0 0

]

, Jd2 =

[

0 0 0 0.5
0 0 0 0.5

]

,

Js3 =
[

0 0 0 0 0.5 0
]

, Jd3 =
[

0 0 0 0 0 0.5
]

.

This method is coded in R function iterGen (Data Availability
Statement), and it requires a pedigree data frame as input. This
function is written in a way that there is no need to form Jsi , Jdi
or Ji, nor to do any matrix multiplications.

Frontiers in Genetics | www.frontiersin.org 3 July 2021 | Volume 12 | Article 655638

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Nilforooshan et al. Computing Matrix A

3.6. Direct Solving of A−1

Calculation of A−1 is typically computationally less extensive
than the calculation of A, and there are fast algorithms
for computing inbreeding coefficients (Tier, 1990; Meuwissen
and Luo, 1992; Colleau, 2002; Sargolzaei and Iwaisaki, 2005;
Sargolzaei et al., 2005), which are required for the derivation of
A−1. One way of obtaining A is via solving equations involving
A−1. In this approach, A−1 was directly solved to form A, using
the solve function in R.

3.7. Solving A−1 for Columns of A
Evidently, A−1A = I. This method is based on solving the
equation system A−1x = b, where x is the ith column of A and
b is the vector of 0 with the ith element (corresponding to the
ith column of A) set to 1. This method is coded in R function
solveAi (Data Availability Statement), and it requires matrix
A−1 as input.

3.8. Iterative Solving M−1A−1 for Columns
of A
This method is similar to Solving A−1 for Columns of A,
but the pre-conditioned conjugate gradient (PCG) algorithm is
used to solve the equation system. In PCG, a pre-conditioner
matrix (M−1) is used for conditioning the linear equation system,
and it exploits the symmetric positive definite structure of the
coefficient matrix. The PCG algorithm is coded in R function
pcg. Function pcgAi is a wrapper of function pcg over the
columns of A. Both functions are available in the data repository
(Data Availability Statement). For each column ofA, the equation
system M−1A−1x = M−1b is iteratively solved, where x is
the ith column of A. Vector b (as defined in Solving A−1 for
Columns of A) was used as prior for x. One may use previously
solved columns of A as prior for the current x by copying
the previously solved columns of A to the corresponding rows.
However, it creates dependency between solving each column
of A with its previous columns. In order to take advantage of
parallel processing, we chose not to use this option. The PCG
convergence criterion was set to 1e–5. We assumed that the
resultingAmatrix is symmetric. If not, there would be additional
computational cost for making it symmetric [i.e., A = (A +

A′)/2]. Matrices A−1 and M−1 are input to function pcgAi.
If matrix M−1 is not defined with the argument Minv, or
Minv = NULL, the conjugate gradient method is used instead
of PCG, which makes no use of a pre-conditioner matrix. A few
alternatives were tested asM−1:

3.8.1. M−1
= diag(1/diag(A−1))

3.8.2. M−1
= D

Matrix D is as defined in Thompson’s Method. R function
getD (Data Availability Statement) calculates diag(D) from
the pedigree data frame and the corresponding vector of
inbreeding coefficients.

3.8.3. M−1
= D0

MatrixD0 is as defined in Iterative Updating ofD in Thompson’s
Method. R function getD0 (Data Availability Statement)
calculates diag(D0) from the pedigree data frame.

4. METHOD FEATURES

4.1. Tabular Method
The tabular method is straightforward based on very simple
rules. The cons of this method are as follows: (1) It loops over
rows of A and over columns 1 to i in row i. Loops can be
skipped for animals with both parents unknown. There is an
additional cost of calculating an inbreeding coefficient in every
loop on a row, if both parents of the animal are known. (2)
Due to dependencies (progeny on parents) between calculations,
computations cannot easily be parallelized. (3) Because the
method involves updating A in every loop, the method could
not take advantage of libraries for sparse matrices. Such
libraries reduce memory usage and computational complexity of
matrix operations.

We used R package “Matrix” (Bates and Maechler, 2019)
for sparse matrices. However, iteratively forming or updating
elements of a matrix initially built in a sparse format
slowed down the procedure considerably. We think a possible
reason was that every time the matrix was getting updated
the memory had to be re-allocated. Therefore, we used
R package “Matrix” (equipped with libraries LAPACK and
SuiteSparse) for whole matrix operations rather than for
updating elements of the matrix or appending rows/columns
to it.

The benefit of the Array-Tabular Method over the
Tabular Method was reducing the number of loops with
replacing inner (on columns of A) loops with vectorized
operations. Here, we chose to loop over columns than rows,
because operations on columns are faster than operation
on rows in modern programming languages such as
R and Julia.

4.2. Thompson’s Method
Matrix T and vector d (d = diag(D)) had to be created iteratively
with an iteration over every animal with a known parent.
As a result, the libraries for sparse matrices (LAPACK and
SuiteSparse) were not used at this (updating) stage. The cost
of making T and d was slightly lower than the cost of directly
making A via the Tabular Method. The main benefit of this
method was that after creating T and d, it was possible to
take advantage of libraries for sparse matrices. Matrix T was
converted to a sparse format and vector d was converted to the
diagonal sparsely formatted D. Similar to the Array-Tabular
Method, inner loops were replaced by vectorized operations
for making T. There were additional costs involved with
storing T and D in the memory and matrix multiplications
(TDT′), however those were considerably reduced by
making use of the libraries for sparse matrices (LAPACK
and SuiteSparse).

We tested (T−1)−1 instead of T and the reason was that T−1 is
much sparser than T (which has off-diagonal elements of−0.5 in
each row for each known parent of the individual and a diagonal
element of 1), but it can be built immediately, because there are
no dependencies between rows of T−1. On the other hand, there
is a computational cost involved for inverting the lower triangle
sparse matrix T−1.

Frontiers in Genetics | www.frontiersin.org 4 July 2021 | Volume 12 | Article 655638

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Nilforooshan et al. Computing Matrix A

4.3. Iterative Updating of D in Thompson’s
Method
The aim of this method was to remove the dependency on
inbreeding coefficients that existed in Thompson’s Method. The
one-off computational cost for the calculation of D is replaced
with an iterative procedure for updatingDi in iteration i, starting
with D0 with 3 possible values depending on the number of
known parents of the individual. There are matrix multiplication
costs (TDiT

′) involved in each iteration. The number of
iterations to update and stabilize Di is much lower than the
number of iterations to form D from inbreeding coefficients.
However, given the cost of updating Di, this method might
only be justifiable over Thompson’s Method if the inbreeding
coefficients are not available or the number of iterations to update
Di is very low. Using (T

−1)−1 rather thanT, this method does not
require ordering animals in the pedigree.

4.4. Henderson’s Method
Compared to Thompson’s Method, this method requires less
matrix multiplications (LL′ vs. TDT′). However, calculating L is
computationally more demanding than calculating T. Matrices
L and T have the same sparsity. Matrix L is created iteratively,
and then sparsely formatted to reduce the matrix multiplication
cost using the libraries for sparse matrices, provided by R
package “Matrix.”

4.5. Iteration by Generation
This method is independent from inbreeding coefficients in the
population. Most of the previous methods iterate over rows of
A and even columns 1 to i within row i (e.g., Tabular Method).
This method on the other hand iterates over generations. In each
generation i, a parent incidence matrix (Ji) needs to be created
and there are matrix multiplications and summations involved.
However, in the code, these matrix operations were omitted by
detecting parents of the current generation and looping over
parents within the generation. As a result, the number of loop
iterations are reduced considerably compared to the methods
looping over individuals, especially if there are many progeny per
parent per generation. Calculations for progeny per parent per
generation were done using vectorized operations. Due to matrix
updating, libraries for sparse matrices were not used.

4.6. Direct Solving of A−1

Calculation of A−1 is typically very fast and computationally less
demanding (operations and memory usage) than the calculation
of A. Solving A from A−1 does not involve matrix updating and
A−1 is very sparse. Therefore, there is great opportunity in using
libraries for sparse matrices. Another advantage in using A−1

to derive A is the lack of calculation dependencies. As a result,
the solving procedure can be done at once and in parallel. The
first method of solving A from A−1 is of course direct solving of
A−1. Explicit parallelism was an option. However, in this study
we limited the use of parallel processing to implicit parallelism.

4.7. Solving A−1 for Columns of A
Quantitative fields of science deal with solving systems of linear
equations. Equation systems can be presented in a matrix form,

TABLE 1 | Description of the simulated pedigrees.

Number of PED1 PED2 PED3 PED4

Individuals 20,000 20,000 20,000 180,000

Litter size 1 2 4 2

Generations 15 9 6 12

Sires 3,507 2,084 1,449 21,985

Dams 6,271 5,012 4,176 51,890

Missing sires 4,160 4,160 4,160 36,160

Missing dams 2,180 2,180 2,180 18,180

Missing both parents 582 595 630 3,808

Inbred individuals 3,240 2,025 930 62,449

where the coefficient matrix of predictions (here,A−1) multiplied
by the vector of predictions (here, the ith column of A) equals
to the right-hand-side vector (here, a vector of zeros with the
ith element equal to 1). The vector of predictions is to be
predicted by solving the equation system. Solving for columns
of A was parallelized implicitly. Though, solving each column
of A could be parallelized explicitly, it had no justification over
explicit parallelism of Direct Solving of A−1. For this method, we
took advantage of the libraries for sparse matrices via R package
“Matrix.”

4.8. Iterative Solving M−1A−1 for Columns
of A
The iterative PCG algorithm is commonly used in quantitative
genetics to solve mixed model equations. It is preferable for
solving large and sparse equation systems, where direct solving
of the coefficient matrix is not feasible. Pre-conditioner matrices
diag(1/diag(A−1)), D and D0 were tested. This method took
advantage of implicit parallel processing for independently
solving columns of A and libraries for sparse matrices.

5. RESULTS

5.1. Simulated Pedigrees
Table 1 provides information about the simulated pedigrees.
With a constant pedigree size (PED1, PED2, and PED3), the
number of generations and the total number of parents decreased
with increasing litter size. The number of inbred individuals
decreased with increasing litter size (Table 1) since fewer
generations were represented. However, the average inbreeding
coefficients among inbred individuals increased with litter size
and were 0.008, 0.013, and 0.030 for PED1, PED2, and PED3,
respectively. The maximum inbreeding coefficient was 0.25 for
all the pedigrees.

5.2. Pedigrees With 20,000 Animals
Table 2 shows elapsed time for the calculation of A, using
different methods for PED1, PED2, and PED3. The elapsed
times presented in Table 2 were recorded on an “r5.large” cloud
machine with 2 cores, and 16 Gb of RAM for the methods that
were making no use of parallel processing, and a “c5.4xlarge”
cloud machine with 16 cores and 32 Gb of RAM for the methods

Frontiers in Genetics | www.frontiersin.org 5 July 2021 | Volume 12 | Article 655638

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Nilforooshan et al. Computing Matrix A

TABLE 2 | Elapsed time (MM:SS) for the calculation of A matrix using different

methods for different pedigree.

Method PED1 PED2 PED3

3.1.1: Tabular Method 01:39 01:37 01:36

3.1.2: Array-Tabular Method 00:13 00:13 00:13

3.2.1: Thompson’s Method 00:47 00:41 00:34

3.2.2: (T−1)−1 instead of T in Thompson’s Method 01:03 00:58 00:51

3.3: Iterative Updating of D in Thompson’s Method 04:11 02:05 01:01

3.4: Henderson’s Method 00:42 00:37 00:32

3.5: Iteration by Generation 02:13 01:13 00:45

3.6: Direct Solving of A−1 04:08 02:32 01:43

3.7: Solving A−1 for Columns of Ap 07:31 05:53 05:35

3.8: Iterative Solving M−1A−1 for Columns of Ap

3.8.1: M−1 = diag(1/diag(A−1)) 11:42 12:10 11:48

3.8.2: M−1 = D 15:13 16:42 18:45

3.8.3: M−1 = D0 15:25 17:08 18:53

p, parallel processing using 15 computational cores; PED1, The pedigree of 20,000

individuals and litter size of 1; PED2, The pedigree of 20,000 individuals and litter size

of 2; PED3, The pedigree of 20,000 individuals and litter size of 4; M−1 is the pre-

conditioner matrix for the pre-conditioned conjugate gradient algorithm; D is a diagonal

matrix introduced in Thompson’s Method; D0 is the starting D in Iterative Updating of D

in Thompson’s Method.

that were making use of parallel processing (3.7 and 3.8). The
new methods (3.1.2, 3.2.2, 3.3, and 3.5) were among the 7 (of
12) fastest methods. The five fastest methods were 3.1.2 being the
fastest to 3.4, 3.2.1, 3.2.2, and 3.5. Except for the methods 3.8.1,
3.8.2, and 3.8.3, the runtime decreased from PED1 to PED3, as a
result of a greater litter size, less number of generations and less
number of parents in the same population size.

Compared to Thompson’s Method, Iterative Updating of
D in Thompson’s Method was independent from inbreeding
coefficients being known in the population. However, using
fast algorithms for calculating inbreeding coefficients (Tier,
1990; Meuwissen and Luo, 1992; Colleau, 2002; Sargolzaei and
Iwaisaki, 2005; Sargolzaei et al., 2005), these coefficients can be
computed in a short time for large populations. Calculation of
inbreeding coefficients took less than 0.01 s for PED1, PED2,
and PED3, shorter with less number of generations (larger litter
sizes). Consequently, calculating D based on known inbreeding
coefficients is faster than starting with D0 with no knowledge
on inbreeding coefficients in the population and then iteratively
converging toD.

Calculation of A−1 was fast and efficient. It took 31.4, 31.3,
and 31.2 s for PED1, PED2, and PED3 to calculate A−1. Unlike
A, A−1 is sparse and calculations for each individual involves the
individual and its parents rather than information on all relatives.
Consequently, a possibility for the calculation of A is via A−1.
Off-diagonal elements of A−1 showed 99.98% sparsity for all the
pedigrees. On the other hand, off-diagonal elements of A showed
58.04%, 70.51%, and 85.14% sparsity for PED1, PED2, and PED3,
respectively. The average of non-zero off-diagonal elements of A
was 0.007, 0.011, and 0.023, and the maximum relatedness was
0.750, 0.750, and 0.812 for PED1, PED2, and PED3, respectively.
Direct Solving of A−1 was faster than Solving A−1 for Columns

of A, and Solving A−1 for Columns of A was faster than Iterative
SolvingM−1A−1 for Columns of A.

We made use of the parallel version of LAPACK, ScaLAPACK
library for high-performance linear algebra routines for parallel
distributed memory machines to do Solving A−1 for Columns of
A on 15 cores of an “r5.4xlarge” machine with 16 cores and 128
Gb of RAM. However, the procedure was crushed due to the high
memory usage.

Three diagonal pre-conditioner (M−1) matrices were tested
for Iterative Solving M−1A−1 for Columns of A. We did not
find any notable difference between D and D0 used as M−1

in time to calculate A. On the other hand, diag(1/diag(A−1))
was a better M−1 and it further reduced the elapsed time
considerably (Table 2). The differences between the elapsed
time of the PCG-based methods were mainly due to the
convergence of the PCG algorithm rather than the elapsed
time to form M−1. Forming diag(1/diag(A−1)) and D0 each
took 0.02 s, and it took 1 s to form D for PED1,
PED2, and PED3. Block pre-conditioner matrices TT′ and
TD0T

′ were also tested (results not shown). Besides being
computationally more expensive to build, those matrices
considerably increased the computational time likely due to
increased matrix multiplication costs per PCG iteration per
column of A.

Root of mean squared error (RMSE, excluding the upper
diagonal elements of A) for the methods of Solving A−1 for
Columns of A and Iterative Solving M−1A−1 for Columns
of A are presented in Table 3. Even with the low strict PCG
convergence criterion of 1e–5, RMSE values were very close to
zero for most of the methods. The method of Solving A−1 for
Columns of A produced considerably lower RMSE values than
themethod of Iterative SolvingM−1A−1 for Columns ofA. There
was no difference between the PCG methods using D and D0

as M−1. Using diag(1/diag(A−1)) as M−1 produced the highest
RMSE values.

Wherever possible, libraries for sparsematrices should be used
to reduce the memory usage and computational complexity for
sparse matrices. Table 4 shows the memory usage by matrices A,
A−1, T, T−1, L, and D in sparse format. Those 20,000 × 20,000
matrices occupied more than 32e+8 bytes of memory when not
stored in sparse format.

5.3. Pedigree With 180,000 Animals
The Array-Tabular Method and the non-optimized Tabular
Method (loops over rows and columns within each row) were
tested on a larger pedigree with 180,000 animals (PED4), and
it took them 17 min 3 s and 2 h 20 min 34 s time to calculate
A, respectively. Calculating A for such a pedigree required a
much larger memory than for a pedigree with 20,000 animals.
Therefore, an “r5.8xlarge” cloud machine was used, which has 32
cores and 256Gb of RAM. Inbreeding coefficients were calculated
in 0.13 s. Other methods were not tested for PED4, either because
those performed slow for the pedigrees with 20,000 animals or
they failed due to the shortage of memory. Calculation of T−1,
T′, L′, D, and D0 took 2 min 16 s, 4 min 8 s, 5 min 2 s, 9.4 s, and
0.01 s, respectively. However, there was a shortage of memory for
matrix multiplications to derive A. Also, the calculation of A−1

Frontiers in Genetics | www.frontiersin.org 6 July 2021 | Volume 12 | Article 655638

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Nilforooshan et al. Computing Matrix A

TABLE 3 | Root of mean squared error for the lower triangle elements of A for the

methods of solving A−1 and M−1A−1 for columns of A, where M−1 is the

pre-conditioner matrix for the pre-conditioned conjugate gradient algorithm.

Method PED1 PED2 PED3

3.7: Solving A−1 for Columns of A 4e–17 5e–17 4e–17

3.8: Iterative Solving M−1A−1 for Columns of A

3.8.1: M−1 = diag(1/diag(A−1)) 1.2e–4 1.5e–4 1.7e–4

3.8.2: M−1 = D 7.5e–5 9e–5 1.2e–4

3.8.3: M−1 = D0 7.5e–5 9e–5 1.2e–4

PED1, The pedigree of 20,000 individuals and litter size of 1; PED2, The pedigree of 20,000

individuals and litter size of 2; PED3, The pedigree of 20,000 individuals and litter size of 4;

D is a diagonal matrix introduced in Thompson’s Method; D0 is the starting D in Iterative

Updating of D in Thompson’s Method.

TABLE 4 | Memory usage (bytes) of matrix A and other matrices used to calculate

A, when stored in sparse format, using R package “Matrix.”

Matrix PED1 PED2 PED3

A 1,007,355,312 708,069,624 356,891,384

A−1 3,456,376 3,397,608 3,361,008

T 6,680,136 4,618,272 2,995,416

T−1 725,424 725,424 725,424

L 6,680,136 4,618,272 2,995,416

D 161,240 161,240 161,240

PED1, The pedigree of 20,000 individuals and litter size of 1; PED2, The pedigree of

20,000 individuals and litter size of 2; PED3, The pedigree of 20,000 individuals and litter

size of 4; T is a lower triangle matrix introduced in Thompson’s Method; D is a diagonal

matrix introduced in Thompson’s Method; D0 is the starting D in Iterative Updating of D

in Thompson’s Method.

(using function getInv from R package “pedigreemm”) failed
due to the shortage of memory.

6. DISCUSSION

Calculating matrix A is typically computationally more
demanding than the calculation of A−1, because except
for individuals missing both parents, all the coefficients
are to be calculated. Various methods of calculating A,
from pedigree or from A−1, with/without knowledge on
inbreeding coefficients, and with/without the possibility of
implicit (independent) parallelism were tested and developed.
Availability of information on inbreeding coefficients was not
an issue, as inbreeding coefficients for large populations can
be calculated in a very short period of time. Although the
calculation of A−1 is straightforward and fast, the methods
based on solving A from A−1 were relatively slow. These
methods are widely and commonly used for solving linear
equation systems, such as generalized linear models and linear
mixed models. However, unlike A and A−1, coefficient matrix
(left-hand-side matrix) of those models is complex and does
not have any known properties, except that it is symmetric
and it should be positive definite. Making use of the known
properties of A, it can be calculated directly from pedigree with

no additional information needed (inbreeding coefficients are
required for Thompson’s Method).

Direct Solving of A−1 as a big single task was faster than
Solving A−1 for Columns of A with 20,000 smaller tasks (for
pedigrees with 20,000 individuals), despite those were distributed
over 15 computational cores rather than a single core. Further
increasing the number of computational cores for the methods
using parallel processing reduces their computational time,
but the price per computational unit increases. Presumably,
the sparsity of A−1 justified Direct Solving of A−1 over
Solving A−1 for Columns of A. In the case of this study,
because the treads of split task were independent from each
other, parallelism overhead was minimized. Increased parallelism
overhead minimizes the benefit from increased number of
computational cores. Depending on the size and sparsity of the
matrix, there are situations where direct inversion is preferred
over distributed (e.g., Solving A−1 for Columns of A) and
iterative procedures.

6.1. Other Ways of Solving A From A−1

There are other ways of solving A from A−1, which were
not covered in this study. Examples are the conjugate gradient
algorithm (i.e., PCG with M−1 = I) and inverse from Cholesky
(or QR) decomposition of A−1. Rather than direct inversion, a
symmetric positive-definite matrix likeA−1 can be inverted from
its Cholesky decomposition. MatrixA−1 can be decomposed into
a product of A−1 = U′U, where U is an upper triangle matrix
with non-zero diagonal elements. Then, A is calculated from
U, (A = U−1(U−1)′). Function chol2inv from R package
“Matrix” (Bates and Maechler, 2019) inverts a matrix from its
Cholesky decomposition. Also, R function chol computes the
Cholesky decomposition of a matrix. Computational cost for
direct inversion of a matrix is n3, where n is the size of the
matrix. Computational cost of Cholesky decomposition of a
matrix (calculating U) is approximately (2n3 + 3n2)/6 (van de
Geijn, 2011), and inverting a triangle matrix has a computational
cost of n2. Although the computational cost of multiplying two
n× nmatrices is n3, considering one matrix being lower triangle
and the other being upper triangle, the matrix multiplication
cost can be reduced to

∑n
i=1 i

2. Using sparse matrix libraries
(e.g., SuiteSparse, BLAS, and LAPACK) for sparse matrices, the
computational costs would be less than those mentioned above.

Henderson (1976) presented a simple method for calculating
A−1 by deriving its decomposition indirectly (A−1 =

(T−1)′D−1T−1), where D is as defined in Thompson’s Method,
and T−1 = I − J, where J is a lower triangle parent
incidence matrix with coefficients 0.5 and 0. Unfortunately,U2 =

(T−1)′D− 1
2 cannot serve as an indirect Cholesky decomposition

ofA−1, because withU1 being the direct Cholesky decomposition
of A−1, A−1 = U′

1U1 = U2U
′
2, U1 6= U2, and U1 6= U′

2.
Another method is forward and backward substitution. This

method consists of a backward substitution followed by a forward
substitution, per column of A. In forward substitution, the
equation system Kc = b is solved, where b is a vector of 0 with
the ith element (corresponding to the ith column of A) set to 1,
andK is a lower triangle matrix with non-zero diagonal elements,
from the Cholesky decomposition of A−1 (i.e., A−1 = KK′).

Frontiers in Genetics | www.frontiersin.org 7 July 2021 | Volume 12 | Article 655638

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Nilforooshan et al. Computing Matrix A

Then, in the backward substitution, the equation system K′x = c

is solved, where x is the ith column of A. This method is coded
in R function fbs (Data Availability Statement), and it requires
matrix A−1 as input. We tested this method on PED1, PED2,
and PED3 (results not shown). The results were good in terms
of accuracy (RMSE), but the performance was poor in terms of
computational time.

Another algorithm is based on the decomposition of A−1 to
T′−1D−1T−1 (Colleau, 2002). This algorithm is used to create the
product of A with a vector x, in linear time proportional to the
number of animals. It can also be used to compute products of
partitions of A multiplied by a vector (Misztal et al., 2009). For
example, in genetic evaluations including pedigree and genomic
information, the partition of A for genotyped animals is created
by repeatedly applying the algorithm of Colleau (2002), where
the multiplying vector is a vector of zeros containing a single 1
(Misztal et al., 2009), similar to vector b used in Solving A−1 for
Columns of A.

6.2. Calculating Numerator Relationships
From Inbreeding Coefficients
Van Vleck (2007) introduced amethod for computing numerator
relationships between any pair of animals. This method is based
on the fact that the relationship between two individuals is
twice the inbreeding coefficient of their progeny. As many pairs
of animals do not have progeny (including animals from the
same sex), this method involves introducing dummy progeny to
pedigree for pairs of animals, for which calculating relationship
coefficients is of interest. We did not test the performance of this
method. It is expected to be very efficient for a small subset of
pedigree, but not for a whole large pedigree, mainly due to the
very many dummy progeny to be appended to the pedigree.

6.3. Optimizations for Less Memory Usage
Memory usage and the required disk space for saving matrix A

to an external file can be reduced by calculating A in a tabular-
sparse (non-zero elements and their row and column indices)
rather than a matrix format, which is implemented in function
tabA from R package “ggroups” (Nilforooshan and Saavedra-
Jiménez, 2020). Although this method is memory efficient, it
is recommended when the memory is a bottleneck. It reduces
the memory usage at the cost of increased computational time.
However, nowadays, memory is a relatively cheap component
compared to other hardware components. In a previous study
(Nilforooshan and Saavedra-Jiménez, 2020), calculating A for a
pedigree of 3,000 animals took 13 min 56 s vs. 2 s, time for
tabA vs. buildA (Tabular Method). Where matrix A needs to
be saved in tabular-sparse format (takes less disk space), it can
be built using function buildA or function tabularA (Data
Availability Statement), converted to tabular-sparse format using
function mat2tab fromR package “ggroups” (Nilforooshan and
Saavedra-Jiménez, 2020) and written to an external file. Writing
the file in a binary format can further reduce the disk space usage.

In order to create and store matrix A compactly, but in a
dense format, it can be created and stored in a lower triangle
packed storage format (https://en.wikipedia.org/wiki/Packed_
storage_matrix). That means, the lower triangle of matrix A is

created and stored row-wise in a vector, where element Aij(i > j)
is located at the position (i(i − 1)/2) + j of the vector. This
method is mainly adopted for storing symmetric dense matrices
in an external file. For writing symmetric semi-sparse matrices
like A in an external file, it has to be dense enough (> 1/3 of
the upper/lower triangle elements) to choose this format over
the tabular-sparse format. This method is coded in R function
getAvec (Data Availability Statement). CalculatingA using this
method took less memory. However, the computational time
increased to 24 min 6 s for PED4 on an “r5.4xlarge” machine
with 128 Gb of RAM. Although the memory usage was reduced,
128 GB of RAM was still not enough and the procedure made
use of a swap space of 12 Gb, which was partly responsible for
the increased computational time. This method was tested for
PED1, PED2, and PED3 on a “t2.medium” cloud machine with
2 cores and 4 Gb of RAM, and the calculation of A took 17 s
for each pedigree. Repeating the same process on a “t2.small”
machine with 1 core and 2 Gb of RAM, using a swap space
for compensating the shortage of RAM, increased the elapsed
time to 1 min 30 s, 1 min 5 s, and 1 min 6 s for PED1,
PED2, and PED3, respectively. Therefore, using swap space for
computations should be avoided as it noticeably slows down
the procedure, unless only marginal excess memory above the
provided RAM is required.

There might be situations, where the whole A is not
needed, but a block of it. These situations may bring
opportunities to reduce the computational complexity and
memory demand. Supplementary Table 1 provides examples
for Thompson’s Method and Henderson’s Method to calculate
different blocks of A.

7. CONCLUDING REMARKS

Modifying the way of coding one of the oldest methods of
calculating A (Tabular Method), this matrix was calculated
in a shorter time than the time spent for calculating A−1.
Computational time and memory usage are the main bottlenecks
for calculating A. There is a trade-off between these two. Fast
computation can be achieved by providing sufficient memory,
and memory bottleneck can be lifted if computational time is
not a hard limit. Creating and storing matrix A in a dense
vector (packed storage) or in the tabular-sparse format can
reduce the memory requirement, but the computational time is
compromised.

Opportunities to speed up the calculation A by parallel
processing were limited to a few methods. For most of the
methods, calculations are iterative and not independent from
each other (progeny following parents and generation after
generation). Explicit parallelism (parallelism of a concurrent
computation) does not seem to be an efficient option, because
calculation of A involves many small and simple computations
rather than a few large and complicated computations, where
explicit parallel processing might be helpful (e.g., direct inversion
of A−1). Therefore, parallelism overhead (time required to
coordinate parallel tasks among computational nodes) is
expected to be higher than the gain from parallelism.

Frontiers in Genetics | www.frontiersin.org 8 July 2021 | Volume 12 | Article 655638

https://en.wikipedia.org/wiki/Packed_storage_matrix
https://en.wikipedia.org/wiki/Packed_storage_matrix
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Nilforooshan et al. Computing Matrix A

The choice of programming language influences the
computational time. However, comparing methods, time
rankings, and accuracy matter the most. Programming languages
with slow loops penalize iterative procedures. There are various
optimization techniques available that can be applied to different
conditions and limitations. Some examples are as follows:
(1) Iteratively creating matrices T and L, we could not take
advantage of libraries for sparse matrices. Those libraries were
used to create A after T or L became available. In the shortage
of memory, those matrices can be built in tabular-sparse
format (e.g., three growing vectors of matrix elements and their
row/column indices, then making a sparse matrix at once given
those vectors). (2) We used vectorized operations to calculate
multiple elements in a matrix row simultaneously. In species
with multiple progeny per mating, this can be extended to
multiple rows for full-sib progeny. In the same manner, multiple
elements of vector d can be calculated simultaneously. (3) To
reduce memory demand and computational complexity, small
elements (e.g., < 1e–5) can be set to zero on the fly.

Finally, in the absence of pedigree corrections for animals that

are already in the pedigree, matrix A can be updated for new

animals added to the pedigree. Therefore, calculations are done
only once for each individual. Evidently, for updating A for each
new individual, only coefficients corresponding to its parents (if
known) are to be retrieved. Similarly, for pedigree corrections, A
is corrected from where the pedigree is corrected. If relationship
coefficients are no longer needed for old/culled animals, only
the partition of A for animals chosen to be the parents to the
next generation can be kept and saved in an external file. Other
relationship coefficients can be archived in a separate file. Besides

saving disk space, computational time and memory usage for the
upcoming update of the Amatrix are reduced.

DATA AVAILABILITY STATEMENT

The data, scripts and functions that support the findings of this
study are openly available in the figshare repository https://doi.
org/10.6084/m9.figshare.13497939.

AUTHOR CONTRIBUTIONS

MN initiated the idea of the study, wrote the programs, run the
analyses, drafted the manuscript, and revised it. DG helped MN
with more ideas to test and revising the manuscript. BH was
the project leader and he was involved in the revision of the
manuscript. All authors contributed to the article and approved
the submitted version.

FUNDING

This study received financial support from the NZ Ministry of
Primary Industries, SFF Futures Programme: Resilient Dairy–
Innovative breeding for a sustainable dairy future [Grant
number: PGP06-17006].

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2021.655638/full#supplementary-material

REFERENCES

Bates, D., and Maechler, M. (2019). Matrix: Sparse and Dense Matrix Classes

and Methods. Version 1.2-18. Available online at: https://cran.r-project.org/

package=Matrix (accessed January 18, 2021).

Colleau, J. J. (2002). An indirect approach to the extensive calculation

of relationship coefficients. Genet. Select. Evol. 34, 409–421.

doi: 10.1186/1297-9686-34-4-409

Cruden, D. (1949). The computation of inbreeding

coefficients for closed populations. J. Heredity 40, 248–251.

doi: 10.1093/oxfordjournals.jhered.a106039

Emik, L. O., and Terrill, C. E. (1949). Systematic procedures

for calculating inbreeding coefficients. J. Heredity 40, 51–55.

doi: 10.1093/oxfordjournals.jhered.a105986

Falconer, D. S., and Mackay, T. F. C. (1996). Introduction to Quantitative Genetics,

4th Edn. London: Longman.

Fernando, R. L., Cheng, H., Golden, B. L., and Garrick, D. J. (2016). Computational

strategies for alternative single-step bayesian regression models with large

numbers of genotyped and non-genotyped animals. Genet. Select. Evol. 48:96.

doi: 10.1186/s12711-016-0273-2

Henderson, C. R. (1975a). Best linear unbiased estimation and prediction under a

selection model. Biometrics 31, 423–447. doi: 10.2307/2529430

Henderson, C. R. (1975b). Rapid method for computing the

inverse of a relationship matrix. Biometrics 58, 1727–1730.

doi: 10.3168/jds.S0022-0302(75)84776-X

Henderson, C. R. (1976). A simple method for computing the inverse of a

numerator relationshipmatrix used in prediction of breeding values. Biometrics

32, 69–83. doi: 10.2307/2529339

Henderson, C. R., Kempthorne, O., Searle, S. R., and von Krosigk, C. M. (1959).

The estimation of environmental and genetic trends from records subject to

culling. Biometrics 15, 192–218. doi: 10.2307/2527669

Meuwissen, T. H. E., and Luo, Z. (1992). Computing inbreeding

coefficients in large populations. Genet. Select. Evol. 24, 305–313.

doi: 10.1186/1297-9686-24-4-305

Misztal, I., Legarra, A., and Aguilar, I. (2009). Computing procedures for genetic

evaluation including phenotypic, full pedigree, and genomic information. J.

Dairy Sci. 92, 4648–4655. doi: 10.3168/jds.2009-2064

Nilforooshan, M. A. (2021). pedSimulate: Pedigree, Genetic Merit and Phenotype

Simulation. Version 0.1.1. Available online at: https://cran.r-project.org/

package=pedSimulate (accessed January 18, 2021).

Nilforooshan, M. A., and Saavedra-Jiménez, L. A. (2020). ggroups: an

R package for pedigree and genetic groups data. Hereditas 157:17.

doi: 10.1186/s41065-020-00124-2

Quaas, R. L. (1976). Computing the diagonal elements and inverse of a large

numerator relationship matrix. Biometrics 32, 949–953. doi: 10.2307/2529279

R Core Team (2019). R: A Language and Environment for Statistical Computing.

Version 3.6.2. Vienna: R Foundation for Statistical Computing.

Sargolzaei, M., and Iwaisaki, H. (2005). Comparison of four direct algorithms

for computing inbreeding coefficients. Anim. Sci. J. 76, 401–406.

doi: 10.1111/j.1740-0929.2005.00282.x

Sargolzaei, M., Iwaisaki, H., and Colleau, J. J. (2005). A fast algorithm for

computing inbreeding coefficients in large populations. J. Anim. Breed. Genet.

122, 325–331. doi: 10.1111/j.1439-0388.2005.00538.x

Thompson, R. (1977). The estimation of heritability with unbalanced data.

II. Data available on more than two generations. Biometrics 33, 497–504.

doi: 10.2307/2529364

Frontiers in Genetics | www.frontiersin.org 9 July 2021 | Volume 12 | Article 655638

https://doi.org/10.6084/m9.figshare.13497939
https://doi.org/10.6084/m9.figshare.13497939
https://www.frontiersin.org/articles/10.3389/fgene.2021.655638/full#supplementary-material
https://cran.r-project.org/package=Matrix
https://cran.r-project.org/package=Matrix
https://doi.org/10.1186/1297-9686-34-4-409
https://doi.org/10.1093/oxfordjournals.jhered.a106039
https://doi.org/10.1093/oxfordjournals.jhered.a105986
https://doi.org/10.1186/s12711-016-0273-2
https://doi.org/10.2307/2529430
https://doi.org/10.3168/jds.S0022-0302(75)84776-X
https://doi.org/10.2307/2529339
https://doi.org/10.2307/2527669
https://doi.org/10.1186/1297-9686-24-4-305
https://doi.org/10.3168/jds.2009-2064
https://cran.r-project.org/package=pedSimulate
https://cran.r-project.org/package=pedSimulate
https://doi.org/10.1186/s41065-020-00124-2
https://doi.org/10.2307/2529279
https://doi.org/10.1111/j.1740-0929.2005.00282.x
https://doi.org/10.1111/j.1439-0388.2005.00538.x
https://doi.org/10.2307/2529364
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Nilforooshan et al. Computing Matrix A

Tier, B. (1990). Computing inbreeding coefficients quickly. Genet. Select. Evol. 22,

419–430. doi: 10.1186/1297-9686-22-4-419

van de Geijn, R. A. (2011). Notes on Cholesky Factorization. Available online at:

https://www.cs.utexas.edu/users/flame/Notes/NotesOnCholReal.pdf (accessed

January 18, 2021).

Van Vleck, L. D. (2007). Computing numerator relationships between any pair of

animals. Genet. Mol. Res. 6, 685–690.

Vazquez, A. I., Bates, D. M., Rosa, G. J., Gianola, D., and Weigel, K. A.

(2010). Technical note: an R package for fitting generalized linear mixed

models in animal breeding. J. Anim. Sci. 88, 497–504. doi: 10.2527/jas.20

09-1952

Wallig, M., Microsoft, and Weston, S. (2020a). foreach: Provides

Foreach Looping Construct. Version 1.5.1. Available online

at: https://cran.r-project.org/package=foreach (accessed April

07, 2021).

Wallig, M., Microsoft, Weston, S., and Tenenbaum, D. (2020b). doParallel:

Foreach Parallel Adaptor for the ‘Parallel’ Package. Version 1.0.16. Available

online at: https://cran.r-project.org/package=doParallel (accessed April

07, 2021).

Wright, S. (1922). Coefficients of inbreeding and relationship. Am. Nat. 56,

330–338. doi: 10.1086/279872

Conflict of Interest: MN and BH are employed at the company Livestock

Improvement Corporation, Hamilton, New Zealand.

The remaining author declares that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Nilforooshan, Garrick and Harris. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Genetics | www.frontiersin.org 10 July 2021 | Volume 12 | Article 655638

https://doi.org/10.1186/1297-9686-22-4-419
https://www.cs.utexas.edu/users/flame/Notes/NotesOnCholReal.pdf
https://doi.org/10.2527/jas.2009-1952
https://cran.r-project.org/package=foreach
https://cran.r-project.org/package=doParallel
https://doi.org/10.1086/279872
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Nilforooshan et al. Computing Matrix A

APPENDIX

The R5 family instances of Amazon elastic compute cloud feature
either the first- or second-generation Intel Xeon Platinum 8000
series processor with a sustained all core Turbo CPU clock speed
of up to 3.1 GHz (https://aws.amazon.com/ec2/instance-types/
r5/).

The C5 family instances of Amazon elastic compute cloud
feature custom second-generation Intel Xeon Scalable Processors
with a sustained all-core turbo frequency of 3.6 GHz and
maximum single core turbo frequency of 3.9 GHz (https://aws.
amazon.com/ec2/instance-types/c5/).

The T2 family instances of Amazon elastic compute cloud
are low-cost general-purpose machines backed by Intel Xeon
processors that provide a baseline level of CPU performance with
the ability to burst to full core (3.3 GHz) performance (https://
aws.amazon.com/ec2/instance-types/t2/).

Frontiers in Genetics | www.frontiersin.org 11 July 2021 | Volume 12 | Article 655638

https://aws.amazon.com/ec2/instance-types/r5/
https://aws.amazon.com/ec2/instance-types/r5/
https://aws.amazon.com/ec2/instance-types/c5/
https://aws.amazon.com/ec2/instance-types/c5/
https://aws.amazon.com/ec2/instance-types/t2/
https://aws.amazon.com/ec2/instance-types/t2/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Alternative Ways of Computing the Numerator Relationship Matrix
	1. Introduction
	2. Materials
	3. Methods
	3.1. Tabular Method
	3.2. Thompson's Method
	3.3. Iterative Updating of D in Thompson's Method
	3.4. Henderson's Method
	3.5. Iteration by Generation
	3.6. Direct Solving of A-1
	3.7. Solving A-1 for Columns of A
	3.8. Iterative Solving M-1 A-1 for Columns of A
	3.8.1. M-1 = diag(1/diag(A-1))
	3.8.2. M-1 = D
	3.8.3. M-1 = D0

	4. Method Features
	4.1. Tabular Method
	4.2. Thompson's Method
	4.3. Iterative Updating of D in Thompson's Method
	4.4. Henderson's Method
	4.5. Iteration by Generation
	4.6. Direct Solving of A-1
	4.7. Solving A-1 for Columns of A
	4.8. Iterative Solving M-1 A-1 for Columns of A

	5. Results
	5.1. Simulated Pedigrees
	5.2. Pedigrees With 20,000 Animals
	5.3. Pedigree With 180,000 Animals

	6. Discussion
	6.1. Other Ways of Solving A From A-1
	6.2. Calculating Numerator Relationships From Inbreeding Coefficients
	6.3. Optimizations for Less Memory Usage

	7. Concluding Remarks
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References
	Appendix

