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A multi-camera and multimodal 
dataset for posture and gait 
analysis
Manuel Palermo   1,2, João M. Lopes1,2, João André1,2, Ana C. Matias3, João Cerqueira   3,4 & 
Cristina P. Santos   1,2,3 ✉

Monitoring gait and posture while using assisting robotic devices is relevant to attain effective 
assistance and assess the user’s progression throughout time. This work presents a multi-camera, 
multimodal, and detailed dataset involving 14 healthy participants walking with a wheeled robotic 
walker equipped with a pair of affordable cameras. Depth data were acquired at 30 fps and synchronized 
with inertial data from Xsens MTw Awinda sensors and kinematic data from the segments of the Xsens 
biomechanical model, acquired at 60 Hz. Participants walked with the robotic walker at 3 different 
gait speeds, across 3 different walking scenarios/paths at 3 different locations. In total, this dataset 
provides approximately 92 minutes of total recording time, which corresponds to nearly 166.000 
samples of synchronized data. This dataset may contribute to the scientific research by allowing the 
development and evaluation of: (i) vision-based pose estimation algorithms, exploring classic or deep 
learning approaches; (ii) human detection and tracking algorithms; (iii) movement forecasting; and (iv) 
biomechanical analysis of gait/posture when using a rehabilitation device.

Background & Summary
According to the World Health Organization, nearly 15% of the World’s population suffers from some form of 
disability, arising to 1 billion1, being dysfunctional gait a common disability, especially in Europe, where was 
estimated that 5 million persons depend on a wheelchair2. This results from an aging population, but also due to 
the global incidence of cardiovascular and/or neurological disorders, such as cerebellar ataxia following a stroke, 
cerebral palsy, or, among others, Parkinson’s disease3–5. These disorders may result in cognitive impairments, as 
well as lack of stability, affected motor coordination, and muscle weakness, leading to an increased risk of falls 
and fall-related injuries2. Consequently, quality of life is highly jeopardized, causing social-economic conse-
quences due to the increased institutionalization and dependence on others6,7.

Robotics-based rehabilitation is an evolving area that aims to improve the quality of life of motor-impaired 
persons by providing residual motor skills recovery based on repetitive and intensity-adapted training along 
with assistive devices2. In rehabilitation, human motion analysis (namely gait and posture) is relevant as it allows 
the assessment of joint kinematics, enabling the evaluation of spatial and temporal parameters8, that may enable 
the design of more user-centred approaches considering the person’s disability level and enables to assess the 
patient’s evolution throughout therapy9,10. Furthermore, human motion analysis, and particularly gait analysis, 
can also be an important tool in surgery since it allows to choose the most judicious surgical treatment to apply 
according to the gait pattern8.

Current solutions for human motion analysis are normally based on optical motion capture (MoCap) 
systems with retro-reflective markers, such as Vicon (Vicon Motion Systems, UK) or Qualisys (Qualisys AB, 
Göteborg, Sweden). Although accurate and considered a gold standard, these systems require complex setups 
along with specific environments and workspaces11. Other optical solution, less expensive and without the need 
of markers, e.g. Kinect (Microsoft Corporation, USA), has been presented in literature12,13. However, this solu-
tion is susceptible to errors when compared to marker-based optical MoCap systems, presenting poor validity 
regarding gait kinematic variables13, especially on the feet and ankle joints14. Still, it was considered valid for 
some spatiotemporal parameters of gait13. Inertial-based MoCap systems were also presented in literature to 
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measure joint kinematics, being also a less expensive solution than marker-based optical MoCap systems and, 
considering that are based on Inertial Measurement Units (IMU), these systems are wearable and can be used 
outside laboratory contexts, more specifically in clinical ambulatory settings11. These were found to be suitable 
for human motion analysis, although presenting challenges inherent to drift associated to numerical integration 
of angular rate measurements and ferromagnetic disturbances when using magnetometers11,15.

Recent studies involving vision-based machine learning techniques are showing great potential for human 
motion analysis, aiming accurate 3D pose estimation. Besides being a less expensive solution, evidence shows 
reasonable precision on estimating the person’s pose without the need of wearable markers/sensors nor complex 
setups16. Nevertheless, this approach requires a considerable amount of quality data to train the models and 
achieve the precision and accuracy required to be an effective human motion analysis tool. Furthermore, these 
algorithms need to be validated in real world scenarios considering the final application.

Available datasets in literature present footage of general activities, including daily life activities, sports 
movements, and general locomotion. Examples include Human3.6 M17, TotalCapture18, MoVI19, MPI-INF-
3DHP20, and Panoptic21. These datasets present 3D kinematics, obtained with retro-reflective markers17–19, 
IMU18,19, and markerless MoCap systems20,21. However, none of these dataset present camera-related data and 
3D kinematics along with robotic assistive devices, namely robotic walkers, which are relevant to assess the 
biomechanics of gait and posture when using such devices, and to correlate data with that acquired with the 
device to develop pose estimation algorithms, for instance. Additionally, data are normally acquired within 
dedicated workspaces17–19,21, within controlled conditions, and with non-moving cameras, which do not capture 
real-world scenarios.

To attain these challenges, we present in this study a multi-camera vision dataset involving 14 healthy par-
ticipants walking with WALKit Smart Walker, a personalized and user-oriented robotic walker for ataxic gait 
and posture rehabilitation7. Vision data were acquired with the smart walker embedded cameras together with 
inertial-based data acquired with the commercially available Xsens MTw Awinda MoCap system22. This system 
was used as the ground truth of kinematic data and to bring data collection closer to a clinical setting, allowing 
data to be acquired outside a laboratory environment. The dataset includes inertial data from MTw sensors, 
kinematic data of the segments, and depth frames of both upper and lower body, captured with the smart walker 
moving cameras. Data were collected considering different environment-contexts and slow gait speeds (0.3, 0.5, 
and 0.7 m/s), typical of persons with motor disabilities23. This dataset distinguishes itself from others by provid-
ing multimodal data, with motion capture pose information, on dynamic environments with people walking by, 
approaching the real environment of clinical facilities, and with a robotic walker that integrates non-overlapping 
cameras in movement. To the best knowledge of the authors, this is the first vision-based dataset involving the 
capture of upper and lower body depth frames for pose estimation with a robotic smart walker.

The proposed dataset may contribute to further assessment, monitoring, and rehabilitation of persons with 
motor disabilities, allowing the development and evaluation of (i) classic and deep learning vision-based pose 
estimation algorithms; (ii) applications in human detection and joint tracking, (iii) applications in movement 
forecasting, and (iv) methods for the biomechanical analysis of gait/posture when using a rehabilitation device.

Methods
Participants.  Healthy participants from the academic community of the University of Minho were contacted 
to participate in the study. They were provided with the study details, namely the inclusion criteria, protocol, and 
duration. The participants were recruited and selected based on a set of inclusion criteria, as follows: (i) present 
healthy locomotion without any clinical history of abnormalities; (ii) present total postural control; (iii) present 
body height between 150 and 190 cm, and (iv) have 18 or more years old.

Considering these statements, 14 healthy participants (10 males and 4 females; body mass: 69.7 ± 11.4 kg; 
body height: 172 ± 10.2 cm; age: 25.4 ± 2.31 years old) were recruited and accepted to participate, voluntarily, 
in the data collection (Table 1). All participants provided their written and informed consent to participate in 
the study, according to the ethical conduct defined by the University of Minho Ethics Committee (CEICVS 
147/2021) that follows the standard set by the declaration of Helsinki and the Oviedo Convention. Participants’ 
rights were preserved and, as such, personal information that could identify them remained confidential and it 
is not provided in this dataset.

Participants instrumentation.  Each participant wore the full-body inertial motion tracking system MTw 
Awinda (Xsens Technologies, B.V., The Netherlands, validated in15), as illustrated on Fig. 1, placing seventeen 
IMUs on head, both shoulder, sternum, upper arms, forearms, wrist, pelvis, upper leg, lower leg, and feet. Since 
this device measures orientation, and not position, the precision of the sensors’ position is not very relevant, 
although these were placed as much as possible as the recommendation24. Moreover, when performing the cali-
bration, the orientation of each sensor will align with the orientation of each segment of the Xsens biomechanical 
model24, removing the operator bias. Nevertheless, the sensors’ placement was performed by the same research-
ers, ensuring repeatability in the instrumentation procedure.

WALKit smart walker.  Each participant used WALKit Smart Walker, as illustrated in Fig. 2. This robotic 
device is a four wheeled walker with two motors on the rear wheels and two caster-wheels at the front25. It 
integrates multiple sensors, namely two Orbbec Astra RGB-D cameras (Orbbec 3D Technology International 
Inc., USA), a laser range finder sensor (URG-04LX, Hokuyo Automatic Co., Ltd, Japan), 9 ultrasonic sensors 
(LV-MaxSonar-EZ, MaxBotix Inc., USA), an infrared sensor (GP2Y0A21YK0F, Sharp Corporation, Japan), two 
load cells (CZL635, Phidgets Inc., Canada), and an external IMU (MPU-6050, InvenSense, USA) to be used by 
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the user. The cameras present complementary fields of view: the upper camera records the user’s trunk, and the 
lower camera records both legs and feet. All data provided by these sensors, as well as the functionalities related 
to them, can be accessed by both patient and clinician, using a dedicated LCD touch screen. This device presents a 
hierarchical control divided into low- and high-level. The low-level runs a real-time operating system (RTOS) on 
an STM32F4 Discovery and it is responsible to acquire data from all sensors, with exception of both cameras and 
the laser range finder, and send this information to the high-level. Additionally, this control level is responsible to 
read the user’s motion commands, expressed with an intuitive handlebar that moves to the front or sides, and con-
vert this into reference velocity commands of a Proportional-Integral-Derivative (PID) controller. By the other 
side, the high-level control runs a Robot Operating System (ROS) on a minicomputer. This level is responsible 
to process all the sensors’ information sent by the low-level and to implement different functionalities with this. 
Additionally, the high-level control is also responsible to interpret motion commands sent by an external person 
while using a remote controller, which may be relevant in early stages of therapy in which patients do not have 
sufficient coordination to control the device.

Participant_ID Gender (M/F) Age (years) Body mass (kg) Body height (cm)

00 M 23 63 180

01 F 24 51 151

02 M 22 89 185

03 F 28 70 159

04 F 27 53 157

05 M 30 68 172

06 M 28 75 185

07 M 24 86 170

08 M 24 73 170

09 M 26 84 175

10 M 23 64 172

11 M 26 64 175

12 M 26 74 182

13 F 24 63 171

Average (±std) 4 females, 10 males 25.4 (±2.31) 69.7 (±11.4) 172 (±10.2)

Table 1.  Participants’ main anthropometric data. More anthropometric information can be found on the 
dataset’s metadata file.

Fig. 1  Inertial sensors placement: (a) participant’s anterior view, and (b) participant’s posterior view. Note that 
each sensor was placed in the inner of the strap to better secure the sensors. Additionally, the sternum, head, and 
foot sensors were placed inside the frontal pocket of the Xsens suit, on the pocket of the headband and inside 
each shoe, respectively.

https://doi.org/10.1038/s41597-022-01722-7


4Scientific Data |           (2022) 9:603  | https://doi.org/10.1038/s41597-022-01722-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

Data collection.  Data collection was performed in the School of Engineering of University of Minho. Data 
collection included: (i) inertial data from the MTw sensors, namely 3D free acceleration (i.e., without the grav-
itational component), orientation and magnetic field, which were measured at 60 Hz; (ii) kinematic data of the 
segments, namely 3D segment acceleration, angular velocity, angular acceleration, global position, and velocity, 
which were calculated by the MVN Analyze; iv) kinematic data of the body’s joints, namely the joint’s angles, 
also calculated by the MVN Analyze; and v) depth images from the walker’s embedded cameras captured at 30 
frames-per-second (fps) with a resolution of 640 × 480 pixels. Note that, although the cameras allow the collection 
of RGB-D data, this dataset only provides depth images, following considerations related to patients’ privacy. All 
data were timely synchronized using a software trigger. More details regarding data synchronization can be found 
in the Technical Validation Section.

Experimental protocol.  After the placement of the MTw Awinda sensors, the required participants’ anthro-
pometric data were measured according to the Xsens guidelines26. These dimensions were introduced on the 
MVN Analyze software to adjust the biomechanical model to the participant. Segment calibration followed the 
manufacturer’s guidelines, which is a required step to align the motion trackers with the participants’ segments. 
Each participant assumed the N-pose, which refers to a neutral position of segments as illustrated in Fig. 1a,b. The 
participants held this position for four seconds, and then walked forward, turned, and walked backwards in a nor-
mal fashion. Once the participants reached the initial position, they assumed the N-pose position again. During 
this step, each participant held a stick with an additional IMU (PROP sensor) to set up this sensor, as indicated by 
Xsens. After the calibration, this additional IMU was placed on the walker’s upper camera in order to provide its 
orientation regarding the MVN global axis.

Subsequently, each participant experienced a one-day protocol in which they performed 3 trials, one per 
each slow gait speed (0.3, 0.5, and 0.7 m/s), which were considered since these are often observed in persons with 
motor disabilities23, and considering 3 different sequences: (i) walking forward in a corridor for about 10 meters, 
(ii) turning right in a corner, and (iii) turning left in a corner. Each trial was repeated 3 times for better statis-
tical significance during movement evaluation, but in different locations, to accommodate different scenarios 
and environment conditions, approaching the real environment of clinical facilities. Note that each participant 
performed the same three conditions.

Each trial was segmented into three steps, as follows: step 1 - the walker was placed on the starting line of 
each location (these were measured and drawn on the floor prior to data collection); step 2 - the participants 
were placed in front of the walker, and were asked to assume the N-Pose to reset the IMUs internal referential; 

Fig. 2  Robotic walker used to collect this dataset, considering (a) the frontal view and (b) the rear view. Both 
upper and lower cameras are highlighted in (a) with a white box.
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and step 3 - the participants were asked to grab the two handles of the walker. After these first three steps, data 
collection started using a remote controller, which was used by the researcher to guide the walker and to send 
a digital pulse to start recording synchronously both cameras and the MVN software. The participants walked 
normally until they reached the end line of the trial. Finally, the recording was stopped using the remote control-
ler and the walker was moved to the next trial’s starting location, repeating the process. Prior to data collection, 
the participants performed a familiarization trial with the robotic walker and the selected gait speeds.

Dataset elaboration.  Raw data.  For each individual trial, data obtained from the MTw Awinda was repro-
cessed by the MVN Analyze software, and then exported to “.csv” and “.c3d” formats. These were selected since: 
(i) the “.csv” contains a complete set of information, from raw IMU sensor data during acquisition to segment 
positions in 3D space and joints’ angles; and (ii) the “.c3d” files contain a more complete point set in 3D space and 
is a common standard in biomechanics and gait analysis. The joints/points contained on the files exported from 
the MVN Analyze can be found on the MVN user manual27.

The depth frames were saved as individual “.png”, with pixel values corresponding to the distance regarding 
the camera’s sensor, in millimeters. This file was saved with 16-bit precision, to avoid loss in the depth informa-
tion, which also prevented encoding the frames to video format.

The above mentioned data is referred to as “raw data”, as it only received the processing necessary to actually 
be used outside the respective acquisition software/hardware.

Calibration data.  A set of data was required to obtain the relationship between the cameras’ position and ori-
entation (i.e., the transformation matrix). These data is referred to as “calibration data”.

A referential transformation between the walker’s cameras was obtained by using a checkerboard visible 
from both cameras and performing stereo calibration, which allows to determine the relative geometry between 
cameras, namely rotation and translation28. Since both cameras only overlap about 3 meters away from the 
walker and on a narrow strip of the image, available stereo calibration methods, presented in OpenCV, per-
formed poorly. For this reason, an alternative method was used. Firstly, the 2D coordinates of the checkerboard 
corners were detected in the camera’s RGB frames by using the OpenCV library29. Secondly, these points were 
projected to 3D coordinates considering the depth information. Lastly, the affine transformation between the 3D 
coordinates with the lowest re-projection error was found, using the RANSAC algorithm29,30.

A translation between the upper camera and the tip of each handle of the walker was also found to later relate 
the skeleton 3D coordinates with the cameras’ information. This was obtained by using a stick with an ArUco 
marker (which is a fiducial marker31 that can be used as a point of reference in an image), whose tip was placed 
on the desired handle position, rotated over multiple frames, creating a virtual sphere. The tip position relative 
to the upper camera was found by solving a system of equations for the center of the created sphere.

Processed data.  Data from the inertial motion tracking and the walker’s depth images are synchronized tem-
porally using timestamps which were recorded during acquisition with the walker’s embedded software. The 
corresponding temporal indexes for each data modality were saved in a “.csv” file which can be used to easily 
select data when needed, while also keeping all raw samples obtained.

The 3D joint data obtained from the MVN Analyze uses the global axis referential where the MVN character 
moves around as the person moves and rotates with the walker. As an optional processed data, the skeleton posi-
tion was normalized to the origin of the global axis, considering the center-of-mass position, and the heading 
was removed. In this way, the biomechanical model is always facing forward, which may be relevant for applica-
tions in which the user’s orientation regarding the global axis is not relevant. This processed data is referred to 
as “normalized_skeleton_3D”.

A more complex method to relate the joints’ positions with the walker’s cameras was also performed. It is 
summarized in Fig. 3. This method transforms the 3D data of the biomechanical data from the MVN global axis 
to the cameras’ referential. First, the skeleton root joint was centered in the referential origin. Then, a rotation 

Fig. 3  Transformations to spatially align the Xsens skeleton data from a world referential (left) to the walker’s 
posture camera referential (right). Transformations are shown in 3D space along with the 3D point cloud for 
reference. Once the skeleton is aligned in 3D space, it is possible to project it to the cameras’ referential.
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was applied that transforms the referential of the skeleton to the referential of the upper camera. This rotation is 
obtained from the additional MTw Awinda PROP sensor placed over the upper camera during data acquisition, 
as previously stated. Lastly, a translation was applied to place the skeleton’s wrists in the same position as the 
corresponding walker’s handles. This offset was obtained in the extrinsic calibration step, as explained in the 
“Calibration data” subsection and whose validity is detailed in the “Technical Validation” section. This method 
is valid as long as the participant is always grabbing the walker’s handles, which was ensured during acquisition.

This transformation could be computed for only one of the hands, as both should give the same result. 
However, the average value of both transformations was used to reduce symmetrical errors coming from the 
Xsens calibration procedure. This processing steps allowed having labeled 3D joints which are spatially related 
to the information obtained from the cameras’ data. These data is referred to as “aligned_skeleton_3D”.

Once the skeleton 3D coordinates were relative to the referential of the upper camera, it was possible to pro-
ject the joint positions to 2D space, using the camera intrinsic parameters, which were used to label the joints in 
the depth frames. This projection was direct in the frames of the upper camera, but for lower camera it was first 
necessary to apply an extrinsic transformation which converted the points from the upper camera to the lower. 
These data is referred to as “aligned_skeleton_2D”.

Since the dataset contains the depth information, it is straightforward to obtain a fused colored point cloud 
with data from both cameras. This involves projecting the depth frames to 3D space using the camera intrinsic 
parameters for each of the cameras, then applying a referential transformation to transform the gait data point 
cloud into the upper camera referential. These data are not being saved as part of the “processed_data” since it 
occupies a significant amount of space and can be obtained later if needed through the scripts that accompany 
this database.

Additionally, the feet joints from the skeleton contained in the “Segment Position.csv” file (“foot”, “toe”) were, 
in all methods, replaced with the ones from the “.c3d” file (“heel”, “toe”). This moves the foot keypoints from the 
ankle to the heel, which is more relevant for the analysis of gait metrics7.

Data Records
All data files are available online on a PhysioNet database32. This dataset is structured hierarchically, providing 
an intuitive and easy way to select the data. It is organized in 5 levels, as illustrated in Fig. 4, as follows: (i) level 0: 
Root, includes participant’s metadata, general dataset information, raw data folders, and processed data folders; 
(ii) level 1: Participant, includes a folder for each of the fourteen participants of this data collection; (iii) level 2: 
Sequence, contains a folder for each performed sequence (walking straight or turning and its speed), along with 
both intrinsic and extrinsic calibration files; (iv) level 3: Location, includes a folder with the repetition’s location 
ID (corner1/2/3 and corridor1/2/3); and (v) level 4: Data, presents the data files for each of the aforementioned 
modalities.

Raw data.  Raw data are provided not only to replicate results, but also to allow users to parse it in alternative 
ways, enabling further extraction of relevant information. These data are organized hierarchically inside the “raw_
data” folder (see Fig. 4, level 0), following the previously detailed structure. Raw data includes: (i) calibration data, 
with both intrinsic and extrinsic files; (ii) the skeleton joint data obtained with the MVN Analyze software; (iii) 
the cameras’ depth frame data; and (iv) a synchronization file (“.stamp”). The synchronization file corresponds to 
the instant the trigger signal was sent to the MTw Awinda base station to start recording. This was necessary since 
the walker’s high-level software, which is based on ROS, caused some delay (~0.65 sec) when acquiring the depth 

Fig. 4  Hierarchical folder structure of the database.
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frames. Nevertheless, this delay is not considered relevant since the user was instructed to start the protocol after 
both devices are recording, and this synchronization file allowed the data to be aligned offline.

Calibration data.  Inside each of the participants’ directories (Fig. 4, level 2), two calibration files are presented: 
one for the cameras’ intrinsic parameters, and another for the extrinsic referential transformations that allows both 
stereo calibration between the two cameras and the positioning of the biomechanical model regarding the walker’s 
upper camera. These files were respectively named “intrinsic_calibration.json” and “extrinsic_calibration.json”.

Skeleton joint data.  Two groups of files obtained from the MVN software are presented in level 4 for each indi-
vidual trial. These include: (i) exported “.csv” files from the MVN Analyse software, and (ii) exported “.c3d” files 
also processed by the MVN software, containing a more complete set of body keypoints extrapolated from the 
biomechanical model. This format is also commonly used in biomechanical analysis33.

Regarding the “.csv” files, these include 16 different files, containing: (i) a full set of inertial data for the 
sensors in x-, y-, and z-axis, including free acceleration (“Sensor Free Acceleration”, expressed in [m/s2], with-
out the gravitational component), orientation both in Euler and quaternion (“Sensor Orientation - Euler”, 
expressed in [deg], and “Sensor Orientation - Quat”, respectively), and magnetic field (“Sensor Magnetic Field”, 
in [a.u.]); (ii) the segments’ kinematic data in in x-, y-, and z-axis expressed in the global frame, including accel-
eration (“Segment Acceleration”, expressed in [m/s2]), angular velocity (“Segment Angular Velocity”, expressed 
in [rad/s]), angular acceleration (“Segment Angular Acceleration”, expressed in [rad/s2]), orientation - euler/
quaternion (“Segment Orientation - Euler” and “Segment Orientation - Quat”, respectively), position (“Segment 
Position”, expressed in [m]), and velocity (“Segment Velocity”, expressed in [m/s]); (iii) the joint angles consid-
ering sequence XZY and ZXY (“Joint Angles XZY” and “Joint Angles ZXY”, respectively) expressed in [deg]; (iv) 
the center-of-mass position (“Center of Mass”), expressed in [m]; and (v) the ergonomic joint angles, which are 
a list of specific joints used in ergonomic analysis, considering sequence XZY and ZXY (“Ergonomic Joint Angles 
XZY” and “Ergonomic Joint Angles ZXY”, respectively) expressed in [deg]. For each file, each joint/segment has 
its own column, with the samples listed in the rows. More details regarding the anatomical model can be found 
in the Xsens MVN manual27.

Cameras’ frame data.  Depth frames from each of the cameras were saved into the respective folders (“gait_
depth_registered” and “posture_depth_registered”). These data can not be converted into video format, as no codec 
that correctly supports the 16-bit precision was found. A timestamp was also saved for each of the depth frames, 
and was written in the name of each file.

Processed data.  All the processed data is stored inside the “processed_data” folder (see Fig. 4, level 0) and 
follows the same hierarchical structure as the “raw_data” folder. The files for each trial are organized in level 4. 
These data allows reading and using the dataset more easily and with minimal dependencies from the previous 
pre-processing steps. It is composed of 5 files saved in “.csv” format. Four of them contain the joint data obtained 
through the methods described on the “Methods - Process data” Section, and were saved on the corresponding 
folders, namely: the normalized joint data in 3D space (“norm_skeleton_3d.csv”, expressed in [m]), the aligned 
joint data in 3D space (“aligned_skeleton_3d.csv”, expressed in [m]), and the aligned 2D joint data for the lower 
(“aligned_skeleton_2d_gait.csv”) and upper (“aligned_skeleton_2d_posture.csv”) cameras, expressed in pixels. The 
first column of each file corresponds to the number of samples, and the following correspond to a joint, namely 
pelvis, 5th lumbar spine (L5), 3rd lumbar spine (L3), 8th and 12th thoracic spine (T8 and T12, respectively), neck, 
head, right/left shoulders, right/left upper arms, right/left forearms, right/left hands, right/left upper leg, right/left 
lower leg, right/left foot, and right/left toe. Each line corresponds to a sample. It should be noted that in the case 
of the 2D data, some of the points are projected outside the image frame as they are not seen by the camera sensor, 
however their position in the 2D camera plane is still valid.

An additional file was added (“synchronized_data_idx.csv”), containing indexes of corresponding data sam-
ples for each modality, in order to synchronize the processed data samples with the video and depth files which 
are stored raw, as obtained from the walker. In this file, the first column corresponds to the number of temporally 
aligned samples, and the following correspond to the aligned frame of both upper (“depth_posture_idx”) and 
lower (“depth_gait_idx”) cameras, and the corresponding Xsens sample (“xsens_idx”).

Metadata.  Metadata were collected from all participants. These include (i) age, (ii) gender, (iii) body mass, 
(iv) body height, and (v) body dimensions, namely: hip height, shoe length, shoulder height, shoulder width, 
elbow span, wrist span, arm span, hip width, knee height, and ankle height. This information is stored on “sub-
jects_metadata.csv” file which was placed on the root folder location (Fig. 4, level 0). Additionally, information 
regarding the organization and data contained in the “raw_data” and “processed_data” folders is also presented in 
two data description files (“raw_data_description.txt” and “processed_data_description.txt”, Fig. 4, level 0).

Data limitations.  During the dataset organization, we observed some data irregularities that should be con-
sidered when using this dataset. A few trials were discarded due to sensor displacement during a sequence or file 
corruption on some of the modalities when processing. These trials amount to 15 of the initial 378 (≈4%) and are 
enumerated on Table 2.

Each trial was initiated with the walker stopped, and thus will contain a variable initial number of frames 
which do not correspond to normal walking dynamics, usually in the first second of each trial. Additionally, 
in some trials, the depth data from the walkers’ cameras was partially affected from infrared exposure from 

https://doi.org/10.1038/s41597-022-01722-7


8Scientific Data |           (2022) 9:603  | https://doi.org/10.1038/s41597-022-01722-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

sunlight. In both cases, these data were considered representative of real environment variability, found in real 
sessions.

Additionally, we identified some limitations of the proposed dataset. It contains limited variability in terms 
of walking patterns, since we focused on level-ground walking with healthy participants. Therefore, no data con-
taining abnormal walking patterns are presented in this dataset. Moreover, the MVN joint locations are highly 
dependent on the biomechanical model and body dimensions taken from the participant, and may present some 
deviations regarding the physical position on the human body. This was mostly visible on the hip joints.

Another limitation concerns to the aligned_skeleton data. Although providing reasonable estimates of the 
human joint locations, these data are affected by compounding transformation errors which add to the MVN 
Awinda intrinsic error. This might produce lower quality alignments between the visual data and the joint data. 
This was minimized as much as possible in the protocol. Nevertheless, if camera-relative positional data is not 
necessary, then the normalized skeleton may be used, as it is not affected by these errors.

Technical Validation
Data acquisition.  In order to ensure the quality of the data produced, the participants were asked to follow 
the established protocol, while being supervised and guided by the main researcher. Before starting the trial 
acquisition, the Xsens MTw Awinda MoCap system was calibrated following the MVN Analyze instructions. This 
was performed for each participant. Then a real-time visualisation of the MVN character was performed to check 
if it reacted according to the participant’s movement, which was confirmed. During the trials, the participants 
were asked to interact with the device, while maintaining their normal gait pattern for the gait speed imposed by 
the device, to reduce bias in the movements produced.

Data synchronization.  For data synchronization, we used the Xsens MTw Awinda base station in con-
figuration to receive a trigger to start recording. This trigger was sent by the robotic walker, using the low-level 
control. Due to ROS latency, the timestamp in which the start trigger was sent was recorded, which is provided 
in the “.stamp” file of raw data level, and each timestamp of each depth frame acquired with the two Orbbec Astra 
cameras were also recorded. The temporal synchronization was ensured by matching offline each timestamp of 
the depth frame, acquired at 30 fps, with the corresponding sample of the Xsens MTw Awinda through the func-
tion “align_data_by_timestamp” from utils.py, which is provided in this dataset. Although we have followed this 
protocol to ensure data synchronization, this is not error-free, thus we suggest users to check it before using data.

Data projection to 2D and 3D space.  The projection error was verified considering the transformation 
error between both cameras and the translation from the walker handles to the upper camera. These were vali-
dated using the OptiTrack V120:Trio (NaturalPoint, Inc., Oregon, USA). For the first case, a translation error of 
2.53 cm was obtained, whereas an error of 1.99 cm was verified for the second case.

Additionally, a visual inspection between the data from both cameras and the Xsens model was performed 
using the aligned skeleton data over a sequence of depth frames. This is illustrated in Fig. 5, which presents 
random samples of the dataset for one participant. Figure 5b illustrates the 2D projection of the skeleton coordi-
nates overlaid with the depth frame, and Fig. 5c illustrates the same projection but in 3D representation (point 
cloud). Although the errors observed for the extrinsic calibration procedure, the aligned skeleton match the 
human joints of the depth frame. For instance, in Fig. 5b, it is possible to observe in the depth frame that the 
participant’s left foot is starting the swing phase of the gait cycle, which can also be verified with the segments 
of the aligned skeleton. Figure 5d,e illustrate the same participant performing a left turn, being the former a 2D 

Trial Observation

participant05_left_0.3_corner1 Loose Xsens sensor

participant05_right_0.5_corner2 Incorrect Xsens data

participant05_straight_0.5_corridor1 Incorrect c3d data

participant05_straight_0.5_corridor2 Incorrect c3d data

participant05_straight_0.5_corridor3 Incorrect c3d data

participant05_straight_0.7_corridor1 Incorrect c3d data

participant05_straight_0.7_corridor2 Incorrect c3d data

participant05_straight_0.7_corridor3 Incorrect c3d data

participant08_left_0.3_corner3 Loose Xsens sensor

participant08_left_0.5_corner3 Loose Xsens sensor

participant08_straight_0.3_corridor1 Invalid depth data

participant09_right_0.3_corner3 Loose Xsens sensor

participant09_straight_0.3_corridor3 Loose Xsens sensor

participant09_straight_0.5_corridor3 Loose Xsens sensor

participant09_straight_0.7_corridor3 Loose Xsens sensor

Table 2.  List of discarded trials.
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projection and the latter a 3D one. Once more, the aligned skeleton matches the human body depicted in the 
depth frames. Nevertheless, we should point out that this projection is not without error, so it will be advan-
tageous to use the normalised coordinates, depending on the application and if it is not strictly necessary to 
correlate the joint coordinates with the depth images.

Code availability
This database is accompanied by a folder with all the scripts used to process, handle, visualize, and evaluate 
the data described (available in PhysioNet32 and GitHub34). All scripts are based on the Python programming 
language and, thus, open source. The code contains a permissive MIT license for unrestricted usage.

The dataset has also been used on a related publication, to develop and evaluate deep learning based algorithms 
for patient pose estimation using the robotic walker35. The authors hope it can further contribute to the devel-
opment and evaluation of classic or data-driven vision-based pose estimation algorithms, applications in human 
detection, joint tracking, and movement forecasting, and gait/posture metrics analysis targeting solutions for 
motor rehabilitation.
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