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Abstract —Using time-reversible Markov models is a very common practice in phylogenetic analysis, because although we
expect many of their assumptions to be violated by empirical data, they provide high computational efficiency. However,
these models lack the ability to infer the root placement of the estimated phylogeny. In order to compensate for the inability
of these models to root the tree, many researchers use external information such as using outgroup taxa or additional
assumptions such as molecular clocks. In this study, we investigate the utility of nonreversible models to root empirical
phylogenies and introduce a new bootstrap measure, the rootstrap, which provides information on the statistical support for
any given root position. [Bootstrap; nonreversible models; phylogenetic inference; root estimation. ]

The most widely used method for rooting trees in
phylogenetics is the outgroup method. Although the use
of an outgroup to root an unrooted phylogeny usually
outperforms other rooting methods (Huelsenbeck et
al. 2002), the main challenge with this method is to
find an appropriate outgroup (Watrous and Wheeler
1981; Maddison et al. 1984; Smith 1994; Swofford et
al. 1996; Lyons-Weiler et al. 1998; Milinkovitch and
Lyons-Weiler 1998). Outgroups that are too distantly
related to the ingroup may have substantially different
molecular evolution than the ingroup, which can
compromise accuracy. And outgroups that are too
closely related to the ingroup may not be valid outgroups
at all.

It is possible to infer the root of a tree without an
outgroup using molecular clocks (Huelsenbeck et al.
2002; Drummond et al. 2006). A strict molecular clock
assumes that the substitution rate is constant along all
lineages, a problematic assumption especially when the
ingroup taxa are distantly related such that their rates
of molecular evolution may vary. Relaxed molecular
clocks are more robust to deviations from the clock-like
behavior (Drummond et al. 2006), although previous
studies have shown that they can perform poorly in
estimating the root of a phylogeny when those deviations
are considerable (Tria et al. 2017).

Other rooting methods rely on the distribution of
branch lengths, including Midpoint Rooting (Farris
1972), Minimal Ancestor Deviation (Tria et al. 2017),
and Minimum Variance Rooting (Mai et al. 2017). Such
methods also assume a clock-like behavior; however,
they are less dependent on this assumption as the
unrooted tree is estimated without it. Similar to inferring
a root directly from molecular clock methods, the
accuracy of those rooting methods decreases with higher
deviations from the molecular clock assumption (Mai et
al. 2017).

Other less common rooting methods that can be
used in the absence of outgroup are: rooting by gene
duplication (Dayhoff and Schwartz 1980; Gogarten et
al. 1989; Iwabe et al. 1989), indel-based rooting (Rivera
and Lake 1992; Baldauf and Palmer 1993; Lake et al.
2007), rooting the species tree from the distribution of
unrooted gene trees (Allman et al. 2011; Yu et al. 2011),
and probabilistic coestimation of gene trees and species
tree (Boussau et al. 2013).

All the methods mentioned above, apart from the
molecular clock, infer the root position independently
of the ML tree inference. The only existing approach
to include root placement in the ML inference is
the application of nonreversible models. Using
nonreversible substitution models relaxes the
fundamental assumption of time-reversibility that
exists in the most widely used models in phylogenetic
inference (Jukes and Cantor 1969; Kimura 1980;
Hasegawa et al. 1985; Tavaré 1986; Dayhoff et al. 1978;
Jones et al. 1992; Tamura and Nei 1993; Whelan and
Goldman 2001; Le and Gascuel 2008). This in itself is
a potentially useful improvement in the fit between
models of sequence evolution and empirical data.
In addition, since nonreversible models naturally
incorporate a notion of time, the position of the root on
the tree is a parameter that is estimated as part of the ML
tree inference. Since the incorporation of nonreversible
models in efficient ML tree inference software is
relatively new (Minh et al. 2020), we still understand
relatively little about the ability of nonreversible models
to infer the root of a phylogenetic tree, although a recent
simulation study has shown some encouraging results
(Bettisworth and Stamatakis 2020).

Regardless of the rooting method and the underlying
assumptions, it is crucial that we are able to estimate
the statistical confidence we have in any particular
placement of the root on a phylogeny. A number of
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previous studies have sensibly used ratio likelihood tests
such as the Shimodaira-Hasegawa (SH) test (Shimodaira
and Hasegawa 1999) and the approximately unbiased
(AU) test (Shimodaira 2002) to compare a small set of
potential root placements, rejecting some alternative root
placements in favor of the ML root placement (e.g., Nardi
et al. 2003; Steenkamp et al. 2006; Jansen et al. 2007;
Moore et al. 2007; Williams et al. 2010; Kocot et al. 2011;
Zhou et al. 2011; Whelan et al. 2015; Zhang et al. 2018),
these tests are still somewhat limited in that they do not
provide the level of support the data have for a certain
root position.

There is strong empirical evidence that molecular
evolutionary processes are rarely reversible (Squartini
and Arndt 2008; Naser-Khdour et al. 2019), but few
studies have explored the accuracy of nonreversible
substitution models to root phylogenetic trees
(Huelsenbeck et al. 2002; Yap and Speed 2005; Williams
etal. 2015; Cherlin et al. 2018; Bettisworth and Stamatakis
2020). Most studies that have looked at this question
in the past have focused on either simulated data sets
(Huelsenbeck et al. 2002; Jayaswal et al. 2011; Cherlin
et al. 2018) or relatively small empirical data sets (Yang
and Roberts 1995; Yap and Speed 2005; Jayaswal et al.
2011; Heaps et al. 2014; Williams et al. 2015; Cherlin
et al. 2018). In both cases, the addressed substitution
models were nucleotide models, and to our knowledge,
no study has yet investigated the potential of amino
acid substitution models in inferring the root placement
of phylogenetic trees.

In this article, we focus on evaluating the utility of
nonreversible amino acid and nucleotide substitution
models to root the trees, and we introduce a new
metric, the rootstrap support value, which estimates the
extent to which the data support every possible branch
as the placement of a root in a phylogenetic tree.
Unlike previous studies that used Bayesian methods
with nonreversible substitution models to infer rooted
ML trees (Heaps et al. 2014; Cherlin et al. 2018),
we will conduct our study in a maximum likelihood
(ML) framework using IQ-TREE (Minh et al. 2020). A
clear advantage of ML over the Bayesian analysis is
that there is no need for a prior on the parameter
distributions, which sometimes can affect tree inference
(Huelsenbeck et al. 2002; Cherlin et al. 2018). Even
though estimating the nonreversible model’s parameters
by maximizing the likelihood function seems more
computationally intensive than calculating posterior
probabilities (Huelsenbeck et al. 2002), the IQ-TREE
algorithm is sufficiently fast to allow us to estimate root
placements, with rootstrap support for very large data sets.

Arecent study investigated the ability of nonreversible
nucleotide models to infer the root placement of
phylogenetic trees (Bettisworth and Stamatakis 2020).
This study showed that IQ-TREE performs competitively
with a new rooting tool, RootDigger. In most simulated
data sets, IQ-TREE slightly outperformed RootDigger
in terms of root placements, but no comparisons were
made between RootDigger and IQ-TREE on empirical

data sets. Although RootDigger is significantly faster
than IQ-TREE (Bettisworth and Stamatakis 2020), the
former islimited to nucleotide substitution models. Since
we are interested in both nucleotide and amino acid
nonreversible models, we used IQ-TREE for tree and root
inference in this study.

MATERIALS AND METHODS

The “Rootstrap” Support, and Measurements of Error in
Root Placement

To compute rootstrap supports, we conduct a
bootstrap analysis, that is, resampling alignment sites
with replacement, to obtain a number of bootstrap trees.
We define the rootstrap support for each branch in the
ML tree, as the proportion of bootstrap trees that have the
root on that branch. Since the root can be on any branch in
arooted tree, the rootstrap support values are computed
for all the branches including external branches. The
sum of the rootstrap  support values along the tree
are always smaller than or equal to one. A sum that is
smaller than one can occur when one or more bootstrap
replicates are rooted on a branch that does not occur in
the ML tree (Fig. 1).

By definition, the rootstrap support values for internal
branches are bounded by the bootstrap support values at
those branches. On the other hand, the rootstrap support
values for tips (leaf branches) are bounded by 100%, as
tips always appear in all the bootstrap trees.

If the true position of the root is known (e.g., in
simulation studies) or assumed (e.g., in the empirical
cases we present below), we can calculate additional
measurements of the error of the root placement. We
introduce two such measurements here: root branchlength
error distance (rBED) and root split error distance (rSED).
Since the nonreversible model infers the exact position of
the root on a branch, we define the root branchlength error
distance (rBED) as the range between the minimum and
maximum distance between the inferred root position
and the “true root” branch. If the true root is on the same
branch as the ML tree root, then rBED will be between
0 and the distance between the ML tree root and the
farthest point on that branch (Fig. 2). Since rBED is based
on branch lengths only, it ignores the absolute number
of splits between the ML tree root and the true root; and
therefore, the rBED for the true root being on the same
ML root branch can be bigger than the rBED for the true
root being on a different branch (e.g., Fig. 2). In order
to account for the number of splits (nodes) between the
ML tree root and the true root, we define root split error
distance (rSED) as the number of splits between the ML
root branch and the branch that is believed to contain the
true root (Fig. 2).

The rootstrap, rBED, and rSED assess different aspects
of the root placement. While the rootstrap offers an
indication of the support that the data have for a certain
branch to be the root branch, rBED and rSED provide an
estimation to the accuracy of the method in estimating
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FIGURE 1.

Ilustration of the rootstrap concept. a) The bootstrap replicates trees. b) The ML tree with the rootstrap support values for each

branch. Note that the sum of the rootstrap support values is less than 100% due to 100 bootstrap replicates trees (green box, in the lower-left
corner) that have their root at a branch that does not exist in the ML tree.
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FIGURE 2. An example to illustrate the root error distance. a) the ML rooted tree, b) the root branch-length error distance (rBED) if the true

root is believed to be on the same ML root branch (rSED = 0), c) the rBED if the true root is believed to be on the branch between D and the clade

of C + B (rSED = 3).

the exact root position if the root position is known or
assumed in advance. In other words, the rootstrap value

is a measure for the robustness of the root placement
given the model and the data and can be used on any data
set regardless of whether the true root position is known,

while rBED and rSED are measures of the accuracy of the
nonreversible model to find the root placement given

the data, and require the root position to be known or
assumed in advance.

Empirical Data Sets

Because nonreversible amino acid models require the
estimation of a large number of parameters, and because
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we suspected that the information in any such analysis
on the placement of the root branch of a tree might be
rather limited, we searched for empirical data sets that
met a number of stringent criteria:

1. Existence of both DNA and amino acid multiple
sequences alignments (MSA) for the same loci.

2. Genome-scale MSAs to ensure that the MSAs have
as much information as possible with which to
estimate the nonreversible models’ free parameters
and the root position. Since we do not know
the number of sites required to correctly infer
the rooted ML tree, we define 100,000 sites as
the minimum number of required sites. This also
allows us to subsample the data set to explore the
ability of smaller data sets to infer root positions.

3. Highly curated alignments: since the quality of
the inferred phylogeny is highly dependent on
the quality of the MSA (Philippe et al. 2011), we
focused on data sets that were highly curated for
misalignment, contamination, and paralogy.

4. Existence of several clades for which there
is a very strong consensus regarding their
root placement. Since we are interested in
evaluating the performance of nonreversible
models to infer root placements in an empirical
rather than a simulation context, we need to
identify monophyletic subclades for which we
can be almost certain about their root position.
This enables us to divide the data set into
nonoverlapping subclades for which we are
willing to assume we know the root positions.
Furthermore, we define the minimum number of
taxa in each subdata set as five.

We initially identified a number of genome-
scale data sets that contained large numbers
of nucleotide and amino acid MSAs. In many
cases, it was difficult to determine whether these
alignments had been rigorously curated, and even
more challenging to find data sets for which the
root position of a number of subclades could
be assumed with confidence. The only data set
that met all of our criteria was a data set of
placental mammals with 78 ingroup taxa and
3,050,199 amino acids (Wu et al. 2019). This data
set was originally published as an MSA (Liu et al.
2017) based on very high-quality sequences from
Ensembl, NCBI, and GenBank databases. After
receiving detailed critiques for potential alignment
errors (Gatesy and Springer 2017), the data set
was further processed to remove potential sources
of bias and error, and an updated version of the
data set was recently published (Wu et al. 2018).
The fact that this alignment comes from one of the
most well-studied clades on the planet, has been
independently curated and critiqued by multiple

groups of researchers and includes truly genome-
scale data, makes it ideally suited for our study.
The curated alignments can be found on figshare
(https:/ /figshare.com/s/622e9e0al56e5233944b)
under the name “Wu_2018_aa” and
“Wu_2018_dna” for the amino-acid and nucleotide
alignments, respectively.

Selecting Clades with a Well-Defined Root

Since our main objective in this study is to evaluate the
effectiveness of nonreversible models and the rootstrap
value in estimating and measuring the support for a
given root placement on empirical data sets, we must
identify a collection of subclades of the larger mammal
data set for which it is reasonable to assume a root
position. We acknowledge, of course, that outside a
simulation framework it is not possible to be certain of
the root position of a clade. Nevertheless, it is possible
to identify clades for which the position of the root is
well supported and noncontroversial, thus minimizing
the chances that the assumption of a particular root
position is incorrect. To achieve this, we analyzed the
root position of each order and superorder in the data
set, and defined “well-defined clades” that fulfilled all of
the following criteria:

(1) It contains at least five taxa. This ensures that the
probability of obtaining a random ML rooted tree
to be at most 0.95%. For clades with four taxa, there
are 15 different rooted topologies, and therefore a
6.7% probability to get any particular root position
by chance. On the other hand, for clades with at
least five taxa, there are at least 105 different rooted
topologies and a maximum probability of 0.95% to
randomly get a particular root position by chance.

(2) The bootstrap support for the branch leading
to that clade in the phylogenetic tree calculated
from the whole data set is 100%: since the
bootstrap value indicates the support the
data have for a certain branch, we also
require 100% support for the first direct
descendants in the clade (Supplementary
Appendix Fig. SA.1l available on Dryad at
https:/ /doi.org/10.5061 /dryad.fj6q573rx).  This
requirement ensures that there is strong support in
the data set for the root position of the clade when
the entire data set is rooted with an outgroup.

(3) The site concordance factor (sCF) for the first direct
descendants in the clade is significantly greater
than 33%. The sCF is calculated by comparing
the support of each site in the alignment for the
different arrangements of the quartet around a
certain branch. In other words, an sCF of 33%
means equal support for any of the possible
arrangements. Therefore, we require that the sCF
of the deepest two levels of branches leading
to that clade is significantly greater than 33%.
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Moreover, we require that the gene Concordance
Factor (gCF) for the first direct descendants in
the clade to be significantly greater than 33% of
the sum of the gene concordance factor and the
two Discordance Factors (gDF1 and gDF2). The
gCF of a branch is calculated as the proportion
of gene trees containing that branch, and gDFs
are calculated as the proportion of gene trees
containing one of the two other resolutions of that
branch. Since for each branch in a bifurcating tree,
there are three possible arrangements of clades
around thatbranch, we ignore all gene trees that do
not contain one of these arrangements (e.g., gene
trees that contribute to neither the gCF nor the
gDFs). Although there is no threshold regarding
the required proportion of genes concordant with
a certain branch, for convenience, we define
branches with gCF significantly greater than 33%
of the sum gCF+gDF1+gCF2 as branches that are
concordant with enough genes in the alignment
(Minh et al. 2020). To test whether the sCF and
the gCF are significantly greater than 33%, we use
a simple binomial test with a success probability
of 0.33. The gCF, gDF1, gCF2, and sCF values are
based on the tree estimated from the amino acid
data set.

(4) Atleast95% of the studies thathave been published
in the last decade support this clade: we searched
google scholar for all published papers since 2009
that determine the root of the addressed clade. We
then checked if at least 95% of those papers agree
that the root position of the clade matches that in
the ML tree we estimate from the whole data set
(see Supplementary material available on Dryad).

Estimating Unrooted Phylogenies

For the whole nucleotide and amino-acid data
sets with ingroup and outgroup taxa, we inferred
the unrooted phylogeny using IQ-TREE2 (Minh et
al. 2020) with the best-fit fully partitioned model
(Chernomor et al. 2016) and edge-linked substitution
rates (Duchene et al. 2020). We then determined the best-
fitreversible model for each partition using ModelFinder
(Kalyaanamoorthy et al. 2017). See the algorithm for
finding well-defined clades in Supplementary Appendix
Algorithm SA.1 available on Dryad.

Estimating Rooted Phylogenies

For each well-defined clade, we first removed all other
taxa from the tree and then sought to infer the root
of the well-defined clade using nonreversible models
without outgroups. Using the best partitioning scheme
from the reversible analysis, we inferred the rooted
tree for each well-defined clade with the nonreversible
models for amino acid (NR-AA) and nucleotide (NR-
DNA) sequences (Minh et al. 2020). This approach fits a

12-parameter nonreversible model for DNA sequences,
and a 380-parameter nonreversible model for amino
acids. Details of the command lines used are provided
in the Supplementary material section “Algorithm SA.2”
available on Dryad. Each analysis returns a rooted tree.
We performed 1000 nonparametric bootstraps of every
analysis to measure the rootstrap support.

To assess the performance of the rootstrap and the
ability of nonreversible models to estimate the root of
the trees on smaller data sets, we also repeated every
analysis on subsamples of the complete data set. For
each well-defined clade, we performed analysis on the
complete data set (100%) as well as data sets with 10%,
1%, and 0.1% of randomly selected loci from the original
alignment.

The Confidence Set of Root Branches using the
Approximately Unbiased Test

In addition to the rootstrap support, we calculate the
confidence set of all the branches that may contain the
root of the ML tree using the approximately unbiased
(AU) test (Shimodaira 2002). To do this, we reroot the
ML tree with all possible placements of the root (one
placement for each branch) and calculate the likelihood
of each tree. Using the AU test, we then ask which
root placements can be rejected in favor of the ML
root, using an alpha value of 5%. We define the root
branches confidence set as the set of root branches that
are not rejected in favor of the ML root placement.
An important difference between the AU test and the
rootstrap support is that the AU test is conditioned on a
single ML tree topology, but the rootstrap support is not.
Because of this, they provide quite different information
about the position of the root. The AU test assumes that
the ML tree topology is true, and then seeks to determine
the confidence set of root placements conditioned on
that topology. The confidence set for the AU test will
always therefore contain at least the ML root branch. The
rootstrap does not assume any particular topology and
instead asks how many times a particular root position
appears across a set of bootstrap replicates. Because of
this, it is possible for every branch in the ML topology
to receive 0% rootstrap support. This can occur if none
of the branches in the ML topology appear as the root
branch in any of the bootstrap topologies.

Reducing Systematic Bias by Removing Third Codon
Positions and Loci that Fail the MaxSym Test

As it is common in many phylogenetic analyses
to remove third codon positions from the alignment
(Swofford et al. 1996), we wanted to assess the effect
of removing third codon positions on the root inference
and the rootstrap values in nucleotide data sets. For that
purpose, we remove all the third codon positions from
the nucleotide alignments and reran the analysis using
the NR-DNA model.
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Moreover, although the NR-AA and NR-DNA models
relax the reversibility assumption, they still assume
stationarity and homogeneity. To reduce the systematic
bias produced by violating these assumptions, we used
the MaxSym test (Naser-Khdour et al. 2019) to remove
loci that violate those assumptions in the nucleotide and
amino acid data sets and then reran all analyses as above.

Applying the Methods to Two Clades Whose Root Position is
Uncertain

In addition to the well-defined clades, we used the
methods we propose here to infer the root of two
clades of mammals whose root position is controversial;
Chiroptera and the Cetartiodactyla.

There is a controversy around the root of the
Chiroptera (bats) in literature. The two most
popular hypotheses are: 1) the Microchiroptera-
Megachiroptera hypothesis; where the root is placed
between the Megachiroptera, which contains the family
Pteropodidae, and the Microchiroptera, which contains
all the remaining Chiroptera families. This hypothesis is
well supported in the literature (Agnarsson et al. 2011;
Meredith et al. 2011). However, more recent studies
seem to provide less support for this hypothesis; 2)
the Yinpterochiroptera-Yangochiroptera hypothesis,
in which the Yangochiroptera clade includes most of
Microchiroptera and the Yinpterochiroptera clade
includes the rest of Microchiroptera and all of
Megachiroptera. There is growing support for this
hypothesis in the literature (Meganathan et al. 2012;
Tsagkogeorga et al. 2013; Ren et al. 2018; Reyes-Amaya
and Flores 2019).

Similar to Chiroptera, the root of Cetartiodactyla
remains contentious in the literature. The three main
hypotheses regarding the root of Cetartiodactyla
are: 1) Tylopoda as the sister group for all other
cetartiodactylans; 2) Suina as the sister group for all other
cetartiodactylans; 3) the monophyletic clade containing
Tylopoda and Suina as the sister group for all other
cetartiodactylans.

To ascertain whether certain sites or loci had very
strong effects on the placement of the root we follow the
approach of Shen etal. (2017) and calculate the difference
in site-wise log-likelihood scores (ASLS) and gene-wise
log-likelihood scores (AGLS) between the supported
root positions for each clade. Moreover, we analyzed
subsamples of each data set to test the limits of using
nonreversible models to root trees with smaller data sets.

RESULTS

Inference of the Mammal Tree and Selection of Well-defined
Clades

The trees inferred from the whole data sets with
the nucleotide-reversible model and the amino-acid-
reversible model (Supplementary Appendix Figs. SA.2,
SA.3 and Table SA.2 available on Dryad) are consistent
with the published tree (Liu et al. 2017). Five clades met

all the criteria of well-defined clades, namely, Afrotheria,
Bovidae, Carnivora, Myomorpha, and Primates in both
amino acid and nucleotide data sets (see Supplementary
Appendix Tables SA.1 and SA.2 available on Dryad).
Trees in Newick format can be found on github:
https:/ / github.com/suhanaser/Rootstrap/tree /master
/trees.

High accuracy of the AA Nonreversible Model in Inferring
the Root

Using NR-AA, we inferred the correct root with very
high rootstrap support for all five well-defined clades
when allloci were used (Supplementary Appendix Table
SA.3 available on Dryad). Moreover, for all the five
clades, the true root was the only root placement in the
confidence set of the AU test. The average running time
of the NR-AA model (model estimation + tree search +
bootstrap + root inference) is 929 h on one core 2.6 GHz
CPU. However, using the optimal number of cores for
each data set reduced the average running time to 43.5 h
per data set.

pt Our results show that using only 10% of the sites in
the amino acid alignments (around 300,000 alignment
columns) still gave very high rootstrap support values
(>98%) for four of the five well-defined clades (Fig. 3)
with no correlation between rSED and rBED and the size
of the data set (Supplementary Table SA.3 available on
Dryad). Moreover, in three of five well-defined clades,
1% of the sites (around 30,000 alignment columns) was
enough to give a very high rootstrap support value
for the assumed correct root placement. Using only
0.1% of the sites (around 3000 alignment columns)
decreased the rootstrap support value noticeably in all
data sets (Supplementary Appendix Table SA.3 available
on Dryad). These values are shown for each data set
in Figure 3, where the X-axis is plotted in terms of
parsimony-informative sites to allow for a more direct
comparison between data sets, and to assist those
applying these methods in deciding whether to use them
on their own data. Although the rootstrap support for
the true root improves as the number of parsimony-
informative sites increase, in some data sets (e.g.,
Afrotheria nucleotide data set) this is not the case (Fig. 3).

The nonreversible amino acid models were strongly
preferred to the reversible models on the complete data
sets (BIC values were 93,943 to 235,958 units better for the
nonreversible models), and for the data sets with 10% of
loci subsampled (BIC values were 3577 to 15,082 units
better for the nonreversible models), but the opposite
was true for the data sets 1% and 0.1% of the loci
subsampled (e.g., BIC values were between 2102 and 2712
units worse for the nonreversible models for the 0.1%
subsampled data sets; see Supplementary Table SA.7
available on Dryad for full results).

Poor Performance of the DNA Nonreversible Model in
Inferring the Root

We correctly inferred the root for four out of the
five nucleotide data sets with the NR-DNA model,
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FIGURE 3.  The rootstrap support value for each clade as a function of the number of parsimony-informative sites.
TaBLE1.  Rootstrap support and rSED values in whole nucleotide TABLE 2.  Rootstrap support values in whole data sets and data
data sets and nucleotide data sets without third codon positions sets with loci that passed the MaxSym test only
All loci Without 3rd Amino Acid Nucleotide
Clades rootstrap (%) rSED rootstrap (%) rSED  Clade All loci (%) Passed All loci (%) Passed
Afrotheria 0.0 2 0.0 2 MaxSym (%) MaxSym (%)
Primates 99.7 0 90.1 0 Afrotheria 100.0 100.0 0.0 8.4
Myomorpha 73.2 0 15.8 1 Primates 100.0 100.0 99.7 99.9
Carnivora 100.0 0 100.0 0 Myomorpha 100.0 100.0 73.2 88.3
Bovidae 100.0 0 82.5 0 Carnivora 100.0 100.0 100.0 100.0
Bovidae 100.0 100.0 100.0 100.0

when all loci were used. However, the rootstrap support
was generally lower than in the amino-acid data sets
(Fig. 3, Supplementary Appendix Tables SA.3 and SA.4
available on Dryad). Similar to amino-acid data sets,
there is no correlation between rSED and rBED and the
size of the data set (Supplementary Table SA.4 available
on Dryad). The average running time of the NR-DNA
model (model estimation + tree search + bootstrap +
root inference) is 35.7 h on one core 2.6 GHz CPU and
4 h when the optimal number of cores for each data set
were used.

In contrast to the NR-AA model, there is no
conclusive preference for the NR-DNA model over the
reversible DNA model for the data sets we analyzed
(Supplementary Table SA.8 available on Dryad). In fact,
the BIC values of the NR-DNA models are always worse
than reversible models regardless of the size of the
nucleotide data set except for three clades when all
loci were included (Supplementary Table SA.8 available
on Dryad). In two of the data sets (Myomorpha and
Primates) where the NR-DNA model was better than
the reversible model, the root placement was inferred
correctly with high rootstrap support (>95%). In fact,
the Afrotheria nucleotide data set is the only data set
in which the nonreversible model was better than the

reversible model but the root placement was inferred
incorrectly.

Our results show that removing the third codon
positions does not improve the rootstrap support value.
In contrast, in some data sets removing third codon
positions decreased the rootstrap support value and
increased the rSED (Table 1).

Removing Loci that Violate the Stationarity and
Homogeneity Assumptions Improves the rootstrap Support

As expected, our results show that removing loci that
fail the MaxSym test improves the rootstrap support
values when the rootstrap support value was less than
100% and/ or the root placement was inferred incorrectly,
as the case in some nucleotide data sets (Table 2).

Microchiroptera—Megachiroptera or
Yinpterochiroptera—Yangochiroptera?

Using the whole amino acid data set, our results show
65.5% rootstrap support for the Yinpterochiroptera—
Yangochiroptera hypothesis and 23.2% for the
Microchiroptera-Megachiroptera ~ hypothesis. = The
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remaining11.3% of the rootstrap support goes to
supporting the branch leading to Rhinolophoidea as
root branch of the bats (Fig. 4). Removing amino acid
loci that fail the MaxSym test (110 loci) gives similar
results, with 65.9% rootstrap support for the Yinptero-
Yango hypothesis and 25.6% rootstrap support for the
Micro-Mega hypothesis. In both cases, the AU test could
not reject any of the three root positions that received
nonzero rootstrap support (Supplementary Appendix
Table SA.5 available on Dryad).

Using the NR-DNA model gives 100% rootstrap
support for the Yinptero-Yango hypothesis, and we
can confidently reject the Micro-Mega hypothesis in
favor of the Yinptero-Yango hypothesis using the AU
test (Supplementary Appendix Fig. SA.4 available on
Dryad). Yet, removing nucleotide loci that fail the
MaxSym test (~25% of the loci) decreases the support
for the Yinptero-Yango hypothesis to 90.1%, although we
can still confidently reject the Micro-Mega hypothesis
using the AU test (Supplementary Appendix Table SA.5
available on Dryad).

Interestingly, when we randomly subsample 10%, 1%,
and 0.1% of the loci in the nucleotide data set, we
consistently get the Yinptero-Yango hypothesis as the ML
tree and the solely rooted topology in the AU confidence
set (Supplementary Appendix Table SA.5 available on
Dryad). Moreover, the rootstrap support value for the
Yinptero-Yango hypothesis increases and the rootstrap
support value for the Micro-Mega hypothesis decreases
as more parsimony-informative sites are added to the
alignment, for both nucleotide and amino acid data sets
(Fig. 5, Supplementary Appendix Table SA.5 available
on Dryad). These results are consistent with previous
studies that used smaller data sets (Supplementary
Appendix Fig. SA.10 available on Dryad).

The AGLS and ASLS values (Shen et al. 2017)
reveal that approximately half of the nucleotide and
amino acid loci prefer the Yinptero-Yango hypothesis
while the other half prefers Micro-Mega hypothesis.
Furthermore, slightly less than half of the nucleotide
sites prefer the Yinptero-Yango hypothesis. However,
more than two-thirds of the amino acid sites prefer the
Yinptero-Yango hypothesis (Supplementary Appendix
Fig. SA.5 available on Dryad). The distributions of
AGLS and ASLS (Supplementary Appendix Fig. SA.6
available on Dryad) show that a small proportion of
the amino acid loci (~1%) have very strong support for
the Micro-Mega hypothesis, and removing those loci
from the alignment increased the rootstrap support for
the Yinptero-Yango hypothesis to 76.6%. Nonetheless,
both root placements are still in the confidence set
of the AU test (Supplementary Appendix Table SA.5
available on Dryad) with the amino acid data set. On the
other hand, removing nucleotide loci with the highest
absolute AGLS value still gives the Yinptero-Yango
hypothesis as the ML tree and the sole topology in the
AU confidence set. Although the nucleotide data show
a clear preference to the Yinptero-Yango hypothesis,
in terms of BIC scores, the NR-DNA model performs

worse than reversible models in all data sets except
for the data set where we removed loci that failed the
MaxSym test (Supplementary Table SA.5 available on
Dryad). On the other hand, the NR-AA performs better
than reversible models in big data sets (Supplementary
Table SA.5 available on Dryad). Yet, the amino acid
data do not allow us to distinguish between the two
leading hypotheses for the placement of the root of the
Chiroptera based on rooting with nonreversible models
(Supplementary Table SA.5 available on Dryad).

The Ambiguous Root of Cetartiodactyla

The ML tree inferred with the whole amino acid data
set places the clade containing Tylopoda (represented by
its only extant family; Camelidae) and Suina as the sister
group to all other cetartiodactylans with 71.8% rootstrap
support (Fig. 6). Yet, The AU test did not reject Tylopoda
alone as the sister group to all other cetartiodactylans.
On the other hand, the ML tree inferred with the whole
nucleotide data set places Tylopoda as the only sister
group to all other cetartiodactylans with 71.0% rootstrap
support, and we can confidently reject the Tylopoda
+ Suina hypothesis using the AU test (Supplementary
Appendix Fig. SA.7 available on Dryad).

Removing the amino acid loci that failed the MaxSym
test (~1%) still places Tylopoda + Suina as the sister
group to all other cetartiodactylans, yet, it decreases the
rootstrap support for the Tylopoda + Suina hypothesis
to 63.3% and increases the rootstrap support for
the Tylopoda hypothesis to 28.5%. However, we still
cannot reject either of the hypotheses using the AU
test (Supplementary Appendix Table SA.6 available on
Dryad).

Removing the nucleotide loci that failed the MaxSym
test (~1%) still places Tylopoda as the only sister group to
all other cetartiodactylans and the only rooted topology
in the AU confidence set. However, it decreases the
rootstrap support for the Tylopoda hypothesis to 68.7%
and increases the rootstrap support for the Tylopoda +
Suina hypothesis to 20.1% (Supplementary Appendix
Table SA.6 available on Dryad).

The results from the subsample data sets are mixed
(Fig. 7). Analyses on smaller data sets show no clear
pattern in the placement of the root (Supplementary
Appendix Table SA.6 available on Dryad), leading us to
conclude only that the analyses of the whole data set is
likely to provide the most accurate result, but that it is
plausible that adding more data may lead to different
conclusions in the future.

AGLS analyses reveal that approximately, half
of the amino acid and nucleotide loci favor the
Tylopoda+Suina hypothesis, while the other half of
loci favor the Tylopoda hypothesis (Supplementary
Appendix Figs. SA.8 and SA.9 available on Dryad).
On the other hand, two-thirds of the amino acid sites
and more than 80% of the nucleotide sites favor the
Tylopoda+Suina hypothesis. Removing 1% of the amino
acid loci with the highest absolute AGLS values still
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places Tylopoda + Suina as the sister group to all rootstrap support for the Tylopoda hypothesis remains
other cetartiodactylans. However, the rootstrap support approximately the same (~14.5%), while the rootstrap
of the Tylopoda + Suina decreased to 63.2% and the support for the Suina hypothesis increases from 13.7%



968 SYSTEMATIC BIOLOGY VOL. 71

00151

0.0022 | 0%
| oou41
O‘Vo
0.0130
0%

0% |
0.0062
0%

0.0055
0.0022

0.0084 0%

0% 0.0025
0%

oo/o

0.0021

—d 71.8%
0

0%
O 0058
0.0333
14.5% | 0.0120
0.00119

0% Alpa
rBED =[0.0011,0.0344] | )
rSED = 1 13.7% Plg

- Baijj

00334 0.0049

— [ oy Bactrian camel

Mink whale

Sperm whale

Cetacea

0 0021 |

—o Killer whale

| 0.0042 |

-0+~ Bottlenose dolphin
Yak

Cow

0% Goat Bovidae

0 0059

—o%" Sheep
Tibetan antelope

Artiodactyla
(Even-toed ungulates)

Tylopoda

ca

Suina

FIGURE 6.  The ML rooted tree of as inferred from the whole Cetartiodactyla amino acid data set. Bold branches are branches in the AU
confidence set. Blue values under each branch are the rootstrap support values.

NR-DNA NR-AA —— Tylopoda+Suina
= Tylopoda

0.8 4 ]
£ ] _
o 0.6
o
o
>
v
(=3
© 0.4 4
frar]
(7]
]
o
o
o

0.2 1 ]

0.0 ]

103 104 10° 106 10 104 105

Number of Parsimony-Informative Sites

FIGURE7.  rootstrap support value as a function of the number of

amino acid datasets using the Non-Reversible 803 DNA model (NR-

Number of Parsimony-Informative Sites

parsimony-informative 802 characters in the Cetartiodactyla nucleotide and
DNA) and the Non-Reversible Amino Acid model (NR-AA).

t0 22.4%. Yet, both the Tylopoda + Suina hypothesis and Removing 1% of the nucleotide loci with the highest
the Tylopoda hypothesis are in the confidence set of the absolute AGLS values gives the Tylopoda+Suina as the
AU test, while the Suina hypothesis is rejected by the AU  sister group to all other cetartiodactylans with 39.7%
test (Supplementary Appendix Table SA.6 available on  rootstrap support. However, the sole rooted topology in

Dryad).

the AU confidence set is the topology in which the root is
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placed on the branch leading to Suina (Supplementary
Appendix Table SA.6 available on Dryad). Similar to
Chiroptera and the well-defined clades, the NR-AA
model performs better in terms of the BIC score than
reversible models in big amino-acid data sets, while
the NR-DNA performs worse than reversible models
in all data sets (Supplementary Table SA.6 available on
Dryad). We conclude that neither the nucleotide nor
the amino acid data are adequate to confidently infer
the root placement of Cetartiodactyla with nonreversible
models.

Discussion

In this article, we introduced a new measure of support
for the placement of the root in a phylogenetic tree,
the rootstrap support value, and applied it to empirical
amino acid and nucleotide data sets inferred using
nonreversible models implemented in IQ-TREE (Minh
et al. 2020). The rootstrap is a useful measure because
it can be used to assess the statistical support for the
placement of the root in any rooted tree, regardless of
the rooting method. In a ML setting, interpretation of
the rootstrap support is similar to the interpretation
of the classic nonparametric bootstrap. In a Bayesian
setting, the same procedure could be used to calculate
the posterior probability of the root placement given
a posterior distribution of trees. It is noteworthy that
the rootstrap support value is not a measure of the
accuracy of the root placement and therefore should not
be interpreted as such. However, it provides information
about the robustness of the root inference with regard
to resampling the data. This interpretation is consistent
with the interpretation of the nonparametric bootstrap
(Holmes 2003) but with regard to the root placement
instead of the whole tree topology.

In addition to the rootstrap support value, we
introduced another two metrics; the root branch-length
error distance (rBED), and the  root split error distance
rSED. Similar to the rootstrap metric, these additional
metrics can be used in with any approach that generates
rooted phylogenetic trees. We note that both metrics
require the true position of the root to be known (or
assumed) and that the rBED requires the rooting method
tobe able to accurately place the root in a specific position
of the root branch.

In this study, we used these and other methods
to assess the utility of nonreversible models to root
phylogenetic trees in a ML framework. We focused on
applying these methods to a large and very well curated
phylogenomic data set of mammals, as the mammal
phylogeny provides perhaps the best opportunity to
find clades for which the root position is known with
some confidence. As expected, our results show an
exponential increase in the rootstrap support for the true
root as we add more information to the MSA. Our results
suggest that nonreversible amino-acid models are more
useful for inferring root positions than nonreversible
DNA models. One explanation for this difference

between the NR-DNA and the NR-AA models is the
bigger character-state space of the NR-AA models. These
models have 400 parameters (380 rate parameters and 20
amino acid frequencies) whereas NR-DNA models have
only 16 parameters (12 rate parameters and 4 nucleotide
frequencies). This could allow the NR-AA model to
capture the evolutionary process better than the NR-
DNA model, potentially providing more information
on the root position of the phylogeny. This hypothesis
requires some further exploration though, and we note
that the actual character-space of amino acids is much
smaller than accommodated in NR-DNA models due to
functional constraints on protein structure (Dayhoff et
al. 1978).

Another explanation for the difference in performance
between the NR-AA and NR-DNA models is that
higher compositional heterogeneity in nucleotide data
sets may bias tree inference. The fact that each amino
acid can be specified by more than one codon, and
that synonymous substitutions are more frequent than
nonsynonymous substitutions, makes amino acid data
sets less compositionally heterogeneous than nucleotide
data sets. In principle, this bias can be alleviated
by removing loci that violate the stationarity and
homogeneity assumptions (Naser-Khdour et al. 2019).
Our results suggest that this may be the case for the data
sets we analyzed: we show that removing loci that violate
the stationarity and homogeneity assumptions improves
the accuracy and statistical support for the placement
of the root. This is not surprising since the robustness
of the rootstrap, similar to the bootstrap, relies on
the consistency of the inference method, so removing
systematic bias should improve its performance.

We used the nonreversible approach to rooting trees
along with the rootstrap support to assess the evidence
for different root placements in the Chiroptera and
Cetartiodactyla. Using the amino acid data sets we
found that in both cases, although there tended to be
higher rootstrap support for one hypothesis, neither
of the current hypotheses for either data set could
be rejected. These results emphasize the importance
of the rootstrap support value as a measure of the
robustness of the root estimate given the data. In
both the Chiroptera and Cetartiodactyla data sets the
root placement varied among subsamples of the data
set, and the rootstrap support reflects this uncertainty.
However, checking the stability of root placement
estimate by randomly subsampling from the whole
Chiroptera data set show an obvious trend towards
the Yinpterochiroptera—Yangochiroptera hypothesis as
the data set increases in size. This trend is consistent
with a small number of influential sites or loci having
their signal progressively drowned out in favor of
the Yinpterochiroptera—Yangochiroptera hypothesis as
more data are added to the alignment. In both the
Chiroptera and Cetartiodactyla cases, the amino acid
data is inadequate to distinguish between certain root
placements. On the other hand, in both the Chiroptera
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and Cetartiodactyla, the nucleotide data sets appear to
show stronger support for a single root placement.

Comparing BIC scores of reversible and nonreversible
models show that in most of the nucleotide data sets the
reversible model was a much better fit to the data than
the NR-DNA model. This is likely due to the limitations
of the method we used to infer the NR-DNA model.
Specifically, when inferring the trees with reversible
DNA models, we used a partitioned model such that
each partition was able to have an independent DNA
substitution model. On the other hand, when we inferred
the NR-DNA model we estimated a single model for
the entire alignment. Thus, the NR-DNA model we
inferred was unable to account for heterogeneity in
the evolutionary process among partitions, possibly
leading to its worse fit to the data when assessed using
BIC scores. This suggests that using either mixture
models or partitioned models may improve the fit
of nonreversible DNA models to the data. The DNA
results are consistent with results from previous study
using the NR-DNA model and RootDigger (Bettisworth
and Stamatakis 2020), although that study did not
compare the performance of IQ-TREE and RootDigger
on empirical data sets. Its results indicate that the NR-
DNA model in IQ-TREE could not infer the correct root
placement for any of the three tested data sets.

Our results demonstrate that the amino-acid
nonreversible model can often be surprisingly accurate
for inferring the root placement of phylogenies in the
absence of additional information (such as outgroups)
or assumptions (such as molecular clocks). In all of the
well-defined clades that we examined, the nonreversible
amino-acid model successfully identified the root
that we identified a priori as correct, and with very
high rootstrap support. Importantly, the nonreversible
amino-acid models also tended to fit the data far better
than their reversible counterparts did. Indeed, we
show that root placements appear to be accurate even
with data sets as small as 50 well-curated loci between
fairly closely related taxa such as orders of mammals.
Nevertheless, the application of the nonreversible
amino acid models to two clades where the root position
has previously been contentious failed to shed much
additional light on the true root placement. Thus, while
we show that the use of nonreversible models certainly
has promise, we also show that it is no silver bullet.

Where areliable outgroup taxon can be found, without
the issues that can confound the inference of root
placements using outgroups (Dalevi et al. 2001; Braun
and Kimball 2002; Graham et al. 2002; Brady et al.
2006), we suggest relying on the use of outgroups.
Nevertheless, where no reliable outgroups can be found,
or where there is some reason to question the position of
a root inferred using an outgroup (e.g., Bergsten 2005),
our study suggests that using nonreversible models can
provide a useful additional line of evidence for the
position of the root of a phylogeny. We note also that the
rootstrap value and the AU test could be used to provide

estimates of the uncertainty of root placement using an
outgroup taxon

Our work suggests a practical approach to inferring
the root of a phylogenetic tree using nonreversible
models. First, estimate an unrooted tree topology using
the best reversible models available, excluding outgroup
sequences. Next, fix the tree topology and use the best
nonreversible models available to infer the ML root
position of that tree. Finally, determine to what extent
the ML root position should be trusted. The degree
of trust that researchers should put in an inferred ML
root position should be influenced by three factors
(noting of course that all phylogenetic inferences are
susceptible to be misled by model misspecification).
First, the fit of the nonreversible model to the data
should be better than the fit of the reversible model.
This can be assessed using common criteria like AICc
or BIC scores. A better fit of the nonreversible model
provides some assurance that the data contain sufficient
signal that using a nonreversible model is advisable
in the first place. Our results show that the root
placement was inferred correctly with high rootstrap
support in 12 out of the 13 data sets in which the
nonreversible model was preferable. In the absence of
a better fit for a nonreversible model, we do not think
any inferred ML root position should be trusted. Second,
root positions with higher rootstrap support should
be trusted more, because a higher rootstrap support
indicates less variance among sites in the signal for the
placement of the root. Third, ML root positions should
be trusted more when the number of root placements
included in the confidence set of an AU test is small,
because a smaller confidence set indicates that there is
less uncertainty in the root placement when the analysis
is conditioned on the full alignment and the unrooted
ML tree topology. A conservative approach to inferring
root placements with nonreversible models would be
to consider any root placement that has a substantial
fraction of the rootstrap support and/or is included in
the set of possible root placements identified by the AU
test as a possible root placement given the assumptions
of the model.

We hope that the combination of nonreversible
models, rootstrap support, and AU tests will add another
tool to the phylogeneticist’s arsenal when it comes to
inferring rooted phylogenies.

Availability = and  implementation:  rootstrap
support is implemented in IQ-TREE 2 and
a tutorial is available at the iqtree webpage
http:/ /www.iqtree.org/doc/Rootstrap. In addition,
a python script is available at https://github.com/
suhanaser/Rootstrap.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
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