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Abstract

Profiling or evaluation of health care providers, including hospitals or dialysis facilities, involves 

the application of hierarchical regression models to compare each provider’s performance with 

respect to a patient outcome, such as unplanned 30-day hospital readmission. This is achieved 

by comparing a specific provider’s estimate of unplanned readmission rate, adjusted for patient 

case-mix, to a normative standard, typically defined as an “average” national readmission rate 

across all providers. Profiling is of national importance in the United States because the Centers 

for Medicare and Medicaid Services (CMS) policy for payment to providers is dependent on 

providers’ performance, which is part of a national strategy to improve delivery and quality of 

patient care. Novel high dimensional fixed effects (FE) models have been proposed for profiling 

dialysis facilities and are more focused towards inference on the tail of the distribution of 

provider outcomes, which is well-suited for the objective of identifying sub-standard (“extreme”) 

performance. However, the extent to which estimation and inference procedures for FE profiling 

models are effective when the outcome is sparse and/or when there are relatively few patients 

within a provider, referred to as the “low information” context, have not been examined. This 

scenario is common in practice when the patient outcome of interest is cause-specific 30-day 

readmissions, such as 30-day readmission due to infections in patients on dialysis, which is only 

about ~ 8% compared to the > 30% for all-cause 30-day readmission. Thus, we examine the 

feasibility and effectiveness of profiling models under the low information context in simulation 

studies and propose a novel correction method to FE profiling models to better handle sparse 

outcome data.

This is an open access article licensed under the terms of the Creative Commons Attribution License (http://creativecommons.org/
licenses/by/4.0/) which permits unrestricted use, distribution and reproduction in any medium, provided the work is properly cited.
*Address correspondence to this author at the Department of Medicine, University of California Irvine, 333 City Blvd. West, City 
Tower, Suite 400, Orange, CA 92868, USA; danhvn1@hs.uci.edu. 

Online Supplementary Materials: Analysis Example and R Codes
Example dataset, R codes, and tutorial for fitting the uncorrected and corrected models are publicly available at https://
sites.google.com/view/usrds-modeling/software.

HHS Public Access
Author manuscript
Int J Stat Med Res. Author manuscript; available in PMC 2022 April 22.

Published in final edited form as:
Int J Stat Med Res. 2021 ; 10: 118–131. doi:10.6000/1929-6029.2021.10.11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://sites.google.com/view/usrds-modeling/software
https://sites.google.com/view/usrds-modeling/software


Keywords

End-stage renal disease; fixed effects; high-dimensional parameters; logistic regression; infrequent 
events; Firth’s correction

1. INTRODUCTION

Unplanned readmissions following a hospital discharge are a major source of morbidity and 

mortality risk for patients on dialysis. The burden of hospitalization is particularly high for 

patients on dialysis, where the latest U.S. national data shows that the frequency of 30-day 

readmissions is 31.1%, which is more than double the frequency of readmissions seen 

in older Medicare beneficiaries without kidney disease (United States Renal Data System/

USRDS [1]).

Profiling or evaluation of health care providers, such as hospitals, dialysis facilities, and 

nursing homes among others, serves multiple purposes, including (1) identifying providers 

with performance below standard by government agencies for regulatory or payment 

purposes and (2) conveying information and feedback to stakeholders (e.g., the public, 

patients, providers) regarding the quality of care among providers. The main focus of our 

work is objective (1), specifically with respect to the goal of identifying providers whose 

performances (e.g., 30-day readmission) are exceptionally worse (W) and not different (ND) 

relative to a reference, such as a national “average” standard. Also related to the inferential 

process of identifying/flagging providers with 30-day readmission rates W and ND from the 

national rate, it is of interest to obtain accurate estimates of provider-specific effects and 

associated quality metrics.

When the outcome, such as 30-day readmission, is not frequent and/or when there are 

relatively few patients within a provider, referred to as the “low information” context [2], 

estimation and inference for profiling models are understandably more challenging. This is 

the situation when the patient outcome of interest is cause-specific 30-day readmissions, 

such as 30-day readmission due to infections in patients on dialysis, which is only about 

~8% compared to greater than 30% for all-cause 30-day readmission. Infection-related 

hospitalizations are serious adverse events that are oftentimes preventable. Hence, it is an 

important performance indicator that is carefully monitored in dialysis facilities.

Respecting the data structure that patients are nested within providers, current profiling 

models for 30-day unplanned hospital readmission are hierarchical logistic regressions of 

the form outcome ~ provider effects + patient case-mix effects. Thus, patient outcomes vary 

across providers due to variation in providers’ quality of care (provider-specific effects) and 

variation in patient-level case-mix effects, which include demographics, comorbidities, and 

the type of index admission. Because of the nested data structure and the need to stabilize 

estimation, modeling provider effects as random effects (RE) has been used [2-7].

A justification for the use of RE models is that they provide stable provider effect estimates 

through shrinkage, although several inherent disadvantages have been noted. In particular, 

RE estimates are biased toward the overall provider average and biased in the presence 
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of confounding between patient risk factors and provider effects [8]. Also, although the 

overall average error in estimation of provider effects is smaller because mean square error 

is minimized over the full set of provider effects in the RE approach, fixed effects (FE) 

estimates have smaller error for outlier ‘providers whose effects are exceptionally large or 

small’ [8], which are the providers we wish to identify. Our previous works also have shown 

that the benefit of stabilization comes at a severe cost in substantially biased provider effects 

estimation and, perhaps more important, at a substantial reduction in the power to identify 

W providers [9, 10]. Our works and others have used high-dimensional FE models to 

identify sub-standard (“extreme”) performance, especially for profiling 30-day readmission 

for dialysis facilities where the outcome is not sparse [3, 8-15]. However, the extent to which 

FE models are useful in the low information context has not been studied, which is the focus 

of this work. Thus, we assess the relative performance of the FE model proposed by He et al. 
[15], including the stability of provider-specific estimates and the ability to identify extreme 

providers in simulation studies. Briefly, the FE model of He et al. [15] is a high-dimensional 

parameter model with a unique fixed intercept for each provider and is used in assessing 

the performance of dialysis facilities [3, 8, 15]; see also Chen et al. [14] and Estes et al. 
[11, 12] for recent dialysis facility profiling applications. Furthermore, in this work, we also 

propose and examine the performance of a novel corrected FE model estimation approach 

geared towards estimation under low information context, where the (uncorrected) FE model 

estimates of some provider-specific effects may be unreliable.

2. METHODS: HIGH-DIMENSIONAL FE PROFILING MODELS

We introduce the FE profiling model using the context of hospital readmission as an 

illustrative example. Let the binary outcome Yij equal 1 if patient index discharge j in 

provider i results in a readmission within 30 days, for patient discharge j = 1,2,…,Ni in 

provider (dialysis facility) i = 1,2,…,F. The FE profiling model (He et al. [15]) is

g(μij) = γi + βTZij, i = 1, …, F, (1)

where γ = (γ1,…,γF) are the provider-specific fixed effects, μij ≡ E(Yij ∣ Zij) = Pr(Yij = 

1 ∣ β,γi,Zij) = pij is the expected readmission for patient index discharge j = 1,2,…,Ni in 

provider i = 1,2,…,F, and g(pij) = log{pij/(1 − pij)} is the logit function. In profiling model 

(1), the r patient risk adjustment factors for discharge j in provider i are denoted by the 

covariate vector Zij = (Zij1,…,Zijr)T corresponding to parameters βT =(β1,…,βr). In practice, 

the process of risk adjustment is complex and depends, in part, on policy objectives and the 

specific patient population (e.g., general population, dialysis population). However, we point 

out that it is critical to adequately risk-adjust for patient-level factors and avoid inclusion 

of variables (e.g., provider-level or patient-level variables) that are/may be related to the 

process of care (e.g., see [2, 3, 13]).

To avoid confusion, we emphasize that the model shown in (1) is not a collection of 

individual models (i.e., not a separate model for each provider), but rather a single model 

with high-dimensional parameters and requires simultaneous estimation for thousands of 

provider-specific effects/parameters ({γi}i = 1
F  and β). For example, for profiling dialysis 

facilities the dimension of γ = (γ1,…,γF)T is > 6,000 dialysis facilities across the U.S., and 
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the dimension of β is ~ 40. Standard estimation (e.g., maximum likelihood) and software 

fails; thus, He et al. (2013) proposed a feasible estimation method based on an alternating 

one-step Newton-Raphson that iterates between estimation of β and γi.

The summary performance index for each provider which incorporates patient-level risk 

factors (Z’s) used in practice is the standardized readmission ratio (SRR). For FE model 

(1), given the provider and the patient case-mix effect estimates, denoted by γ i and β , 

respectively, the estimated SRR for provider i is

SRRi =
∑j = 1

Ni pij

∑j = 1
Ni pM, ij

, (2)

where pij = g−1(γ i + βTZij) is the estimated probability of readmission for patient j in 

provider i and pM, ij = g−1(γM + βTZij). The aggregate parameter γM in the denominator is 

taken to be the median of the {γ i}i = 1
F . Thus, the numerator of SRRi is the expected total 

number of readmissions for provider i and the denominator is the expected total number of 

readmissions for an “average” facility (taken over the population of all providers), adjusted 

for the particular case-mix of the same patients in provider i. Note that SRRi estimates the 

true quantity SRR i = ∑j = 1
Ni pij ∕ ∑j = 1

Ni pM, ij, where pM, ij = g−1(γM + βTZij).

3. ESTIMATION AND INFERENCE PROCEDURES

In addition to the challenge of high-dimensional parameters, compounding difficulties are 

encountered in the low information context where the outcome is sparse, resulting in 

providers with few readmissions or even no readmission. For very small providers with few 

patients, there is very low information to assess performance. In extreme cases of providers 

with no or very low readmission, the FE estimation method [15] leads to unstable estimates 

for those providers. Thus, in the low information context, we propose a correction to the FE 

estimates for provider-specific effects.

3.1. FE Model Estimation

To describe our proposed FE corrected estimation for provider-specific effects, we first 

set the notation for the likelihood of the FE model (1) and briefly summarize the 

alternating Newton-Raphson algorithm proposed by He et al. [15]. For the FE model (1), 

Pr(Y ij = 1 ∣ Zij) = pij
yij(1 − pij)1 − yij, and the likelihood function is given by

L(γ, β) = ∏
i = 1

F
∏
j = 1

Ni exp{(γi + βTZij)yij}
1 + exp(γi + βTZij)

. (3)

Because direct maximization of (3) is not feasible with standard methods when F is large 

(e.g., F ~ 6,000), He et al. (2013) proposed an effective iterative algorithm that alternates 

between estimation of γi given β and estimation of β given γi using one-step Newton-
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Raphson updates. More precisely, estimation of the high-dimensional parameters (γ,β) are 

feasible since the likelihood (3) can be written as L(γ, β) = ∏iLi(γi, β) where Li(γi, β) 

= ∏j exp{(γi, + βTZij)yij}/x{1 + exp(γi + βTZij)} for provider i. Thus, given β , γi can 

be estimated via a Newton-Raphson procedure that depends only on one variable in the 

maximization of Li(γi,β). Briefly, the estimation procedure proposed by He et al. (2013) is 

as follows.

i. Set the initial values β(0) and γi
(0) of β and γi, respectively.

ii. The (m + 1) th maximization step for β , given γi
(m), is

β(m + 1) = β(m) + Iβ
(m)−1

Uβ
(m) ,

where Iβ
(m) = − ∂2

∂β ∂βT log L(γ(m), β) ∣β = β(m) and Uβ
(m) = ∂

∂β log L(γ(m), β) ∣β = β(m).

iii. The (m + 1) th maximization step for γi, given β(m), is

γi
(m + 1) = γi

(m) + Ii
(m)−1

Ui
(m)

where Ii
(m) = − ∂2

∂γi2
log L(γi, β(m + 1)) ∣γi = γi

(m) and 

Ui
(m) = ∂

∂γi
log L(γi, β(m + 1)) ∣γi = γi

(m)

iv. The above steps are repeated until convergence, defined by 

max
i, j

∣ pij
(m + 1) − pij

(m) ∣ < ε, where pij
(m) = g−1(γi

(m) + β(m)TZij) and ε is some 

prespecified tolerance level. Denote these final uncorrected provider-specific 

estimates as γU = (γ i
U, …, γF

U).

Expressions for Iβ
(m), Uβ

(m), Ii
(m), and Ui

(m) are given in He et al. (2013) 

and they are provided here for convenience: Iβ
(m) = ∑i = 1

F ∑j = 1
Ni pij

(m)(1 − pij
(m))ZijZij

T , 

Uβ
(m) = ∑i = 1

F ∑j = 1
Ni (yij − pij

(m))Zij, Ii
(m) = ∑j = 1

Ni pij
(m)(1 − pij

(m)), and Ui
(m) = ∑j = 1

Ni (yij − pij
(m)). 

Programs in R, sample data, and tutorial are provided in the online Supplementary 

Materials. In our implementation, we choose β(0) = 0 and γi
(0) = log{pi

∗ ∕ (1 − pi
∗)} where 

pi
∗ = (Ni + 1)−1{0.5 + ∑j = 1

Ni yij}, the Jeffreys’ prior estimated proportion for facility i (i.e., 

posterior mean of a Beta distribution, Beta(0.5 + ∑j = 1
Ni yij, 0.5 . + Ni − ∑j = 1

Ni yij)).

3.2. Corrected Estimation of Provider Effects

As described earlier, estimation of provider effects, γi for the FE model can be unstable for 

some providers in the low information context. Thus, we consider an approach to “correct” 
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or stabilize FE estimates. We adapt the Firth correction in (standard) logistic regression [16, 

17] to the high-dimensional FE model (1). Recall that for the standard (non-hierarchical 

data) logistic regression model with N independent units, j = 1,…,N , Pr(Yj = 1∣,Zj,θ) 

= {1 + exp( − ∑r = 1
p Zjrθr)}−1 ≡ πj, where θ = (θ1,…,θp) are regression coefficients for 

covariates Zj = (Zj1,…,Zjp). Firth’s modified score equations [16] for estimation to reduce 

small sample bias is U*(θr)≡U(θr) + 0.5trace[I(θ)−1{∂I(θ)/∂θr}] = 0 , for r = 1,…, p, where 

U(θr) = ∂log L/∂θr, I(θ) is the information matrix, and L = L(θ) denotes the likelihood. This 

is equivalent to using a penalized likelihood L*(θ) = L(θ)∣ I(θ)∣−1/2 [17], where the penalty 

term ∣I(θ)−1/2 is equivalent to Jeffreys’ prior [18]. Applying this to logistic regression 

yields the modified estimation equations U(θr)
∗ = ∑j = 1

N {yj − πj + ℎj(0.5 − πj)}Zjr = 0 for r 

= 1,…,p, with hj as the j th diagonal element of the “hat” matrix H = W1/2Z(ZTWZ)−1 

ZTW1/2 , with W =diag{π1(1 − π1),…,πN(1 − πN)} and Z denotes the N × p data matrix. 

For binary outcome with small sample size, Firth’s logistic regression has become a standard 

approach to reduce bias in the estimated regression coefficients.

We adapt this penalized estimation to the high-dimensional FE model (1) to correct for 

unstable estimation of γi for providers with low information. We first note that β can be 

precisely estimated because it is based on data from all providers; therefore, penalization on 

patient-level risk factors is unnecessary. Direct application of the Firth’s modified score to 

penalize γ = (γ1,…,γF) is not feasible for FE profiling model (1) due to the challenge of 

calculating the score penalties. These are obtained via the diagonals of the N × N hat matrix, 

which in dialysis population applications are in the order of N ~ 500,000 or larger. The size 

of N is many orders of magnitude larger for profiling applications in the general population. 

However, estimating β with Firth’s correction, for a fixed β, is equivalent to sequentially 

estimating γi individually, for a fixed β, using Firth’s correction. This is seen as follows. 

For a fixed β, the hat matrix used in the estimation of β with Firth’s correction is H = 

W1/2X(XTWX)−1XTW1/2, where W = W1 ⊕…⊕WF, X = X1 ⊕…⊕XF, Wi =diag{pi1 (1 − 

pi1),…, piNi(1 − piNi)} are provider-specific weight matrices, Xi are Ni × 1 provider-specific 

design matrices of ones, and ⊕ denotes the matrix direct sum operator, e.g., A ⊕ B is 

the block diagonal matrix [A, 0;0, B]. As shown in the Supplementary Appendix section, 

H = W 1 ∕ 2X(XTW X)−1XTW 1 ∕ 2 = W 1
1 ∕ 2X1(X1

TW 1X1)−1X1
TW 1

1 ∕ 2 ⊕ ⋯ ⊕ W F
1 ∕ 2XF

(XF
TW FXF)−1XF

TW F
1 ∕ 2

. 

Thus, the diagonal of H may be obtained sequentially via the diagonals of 

W i
1 ∕ 2Xi(Xi

TW iXi)−1Xi
TW i

1 ∕ 2 for each provider i.

The i th provider hat matrix 

reduces to Hi = W i
1 ∕ 2Xi(Xi

TW iXi)−1Xi
TW i

1 ∕ 2 = W i
1 ∕ 2Xi{(W i

1 ∕ 2Xi)T

(W i
1 ∕ 2Xi)}−1(W i

1 ∕ 2Xi)T = (wi1
1 ∕ 2, …, wiNi

1 ∕ 2)T{(wi1
1 ∕ 2, …, wiNi

1 ∕ 2)

(wi1
1 ∕ 2, …, wiNi

1 ∕ 2)T}−1(wi1
1 ∕ 2, …, wiNi

1 ∕ 2) where wij = pij(1 − pij). 

Thus, diag(Hi) = (∑j = 1
Ni wij)−1diag{(wi1

1 ∕ 2, …, wiNi
1 ∕ 2)T

(wi1
1 ∕ 2, …, wiNi

1 ∕ 2)} = (wi1 ∕ ∑j = 1
Ni wij , … , wiNi ∕ ∑j = 1

Ni wij) and for a fixed β, the 
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estimation of β using Firth’s correction can be reduced to a sequence of 

estimations of a single parameter γi by penalizing the score Ui, using the weights 

ℎij = wij ∕ ∑j = 1
Ni wij. More specifically, the provider-specific penalized score equations are 

Ui
∗ = ∑j = 1

Ni {yij − pij + ℎij(0.5 − pij)} = 0, for i = 1,…,F.

We propose a simple correction to adjust the estimates from Section 3.1 of provider-specific 

effects, γi’s, using the modified score UI
∗. More precisely, first, β is fixed at the estimate 

resulting from Section 3.1, namely βU. The provider effects γi’s are then reestimated using 

the estimation procedure outlined in 3.1 with the following modifications. In Step (i), β(0) is 

fixed at βU and γi
(0) is set to log {pi ∕ (1 − pi)} − Ni

−1∑j = 1
Ni βU

T Zij. Note that when β(0) is set 

to the zero vector, the initial value of γ(0) reduces to value previously noted in Step (i) in 

Section 3.1. In Step (ii), β(m+1) is set equal to β(m). In other words, β is no longer estimated. 

Finally, the score in Step (iii) is modified by replacing Ui with Ui
∗.

3.3. Inference: Identifying Extreme Providers

In profiling, one of the main interests is to identify/flag providers that significantly deviate 

from the national norm (e.g., national average). The current public policy in the U.S. 

penalizes providers that perform significantly W than the national standard (SRR >1). Thus, 

in practice, the goal is to flag/identify providers as W or ND from the national standard 

(SRR not different than 1). Better (B) providers (SRR <1) are not penalized nor incentivized.

First, note that for a provider with an adjusted event rate that does not differ from the 

national norm, γi = γM , which implies SRRi =1. When SRRi > 1 or SRRi < 1, the event rate 

for provider i is greater than or less than the national norm, respectively. Thus, testing the 

null hypothesis H0 : γi = γM is of interest and a test statistic is Ti = ∑j = 1
Ni pij where pij is an 

estimate of pij.

Simultaneously testing the null hypothesis for thousands of providers is computationally 

expensive. However, one can take advantage of the fact that β and γM can be estimated 

based on the large data from all providers. Hence, these parameters are estimated and 

fixed throughout the proposed algorithm below which is based on resampling responses 

under the null hypothesis. Since the global parameters β and γM are fixed, model fitting 

to the resampled data only requires estimation of provider-level effects γi . This reduces 

the computational burden substantially since each γi is estimated using only data from each 

provider separately. The steps of the procedure for each provider i are as follows.

1. Draw B samples {Y ij
b : j = 1, …, Ni}b = 1

B , where each sample and observation 

is drawn independently from a Bernoulli distribution under the null: 

Y ij
b ∼ Bern(g−1{γM + Zij

Tβ}), for b = 1,…,B. (We used B = 500 .)

2. Calculate the test statistics for datasets generated/simulated under the null: 

Ti
b = ∑j = 1

Ni pij
b  where, pij

b = g−1(γ i
b + Zij

Tβ) and estimation of γ i
b only involves 
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steps (iii)-(iv) in Section 3.1 for the uncorrected FE model since β is fixed. For 

the correction method, the estimation proceeds as described earlier in Section 

3.2; that is, the corrected estimation algorithm is applied to the b th dataset to 

obtain pij
b .

3. A nominal two-sided p-value for the ith provider, Pi, is calculated as

Pi = 2 ⋅ min

B−1 ∑
b = 1

B
{0.5I(Tib = TiO) + I(Tib > TiO)},

B−1 ∑
b = 1

B
{0.5I(Tib = TiO) + I(Tib < TiO)}

,

where Ti
O is calculated based on the original/observed data and I(A) denotes the 

indicator function for event A.

4. SIMULATION STUDY DESIGN

We designed simulation studies to assess the performance of the uncorrected and corrected 

FE model estimation methods, mainly with respect to (A) estimation of provider-specific 

effects, γi’s and SRRi’s; and (B) identification of extreme providers relative to a reference. 

Data were generated from the model

g(μij) = γ0 + γi + β1Zij1 + ⋯β15Zij15 (4)

with i = 1,…,F = 5,000 providers and β = (.25, .25, −.25, −.25, .5, .25, .25, .25, 

.25, −.25, −.25, −.25,.5,.5,.5)T. For the patient case-mix vector, Zij, the dependence/

correlation structure among variables were based on the observed correlations among 

patient-level variables in real USRDS data. More specifically, Z* is generated from a 

multivariate normal distribution with means zero and covariance Cov(Z*) = V1/2RV1/2, 

where V 1 ∕ 2 = diag{ V ar(Z1
∗), …, V ar(Z15

∗ )} and R is the correlation matrix. The first 5 

covariates were taken to be continuous: Z1 ≡ Z1
∗, …, Z5 ≡ Z5

∗. The remaining 10 covariates, 

Z6,…,Z15 are binary variables, generated by thresholding corresponding Zr
∗ so that Pr(Zr 

=1)=E(Zr)’s are equally spaced between 0.2 and 0.8 (for r = 6,…,15). The correlation matrix 

and standard deviations of the 15 variables are provided in the Supplementary Appendix.

For the provider effects, {γi}i = 1
F , 2.5% were under-performers (W: “worse”) and 2.5% 

were over-performers (B: “better”) whose effects, γi’s, were equally spaced in the intervals 

[0.4,1.0] and [−1.0, −0.4], respectively. The remaining 95% of providers, with effects not 

different (ND) from the reference, were generated from a N(0,σ2) distribution with σ2 

= 0.22. Note that a constant γ0 has been added to simulation model (4) to conveniently 

control the baseline rate of readmission (outcome data sparsity), where baseline rates of 

readmission considered were 20%, 10%, 5%, and 3% corresponding to γ0 = log(1/13.5), 

log(1/33), log(1/73), and log(1/126), respectively. This setup conveniently regulates the level 

of outcome data sparsity. For each baseline readmission rate setting, 200 datasets were 
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generated and the estimation (Section 3) and inference procedure (Section 3.3) was applied 

to each simulated dataset.

The provider volume of each generated dataset range from a minimum of 48 to a 

maximum of 195 patients on average, similar to real USRDS data in applications (e.g., 

see [14]). More specifically, the number of patients were generated from a truncated 

Poisson distribution following He et al. (2013), where the number of patients was taken 

to be Ni = ∑ℎ = 1
1000 miℎ1{miℎ ≤ 7} with miℎ ∼ Poisson(15). This process mimics the sparse data 

structure of dialysis facility (provider) i in practice.

5. RESULTS

5.1. Estimation of Provider-Specific Effects and SRRs

The results for provider-specific estimates of γi’s for the 125 (2.5%) under-performers (γi 

> 0) and 125 over-performers (γi <0) for the case of 3% overall event rate (most sparse) 

are provided in Figure 1A where averages of γi estimates over 200 simulated data sets 

are plotted. As expected, under this extremely low information context, provider effect 

estimates are unstable for the uncorrected FE method. However, note that these providers are 

mainly the over-performers (γi < 0) with low or zero events (∑jyij’s are small) leading to 

“explosion” of the estimates (Figure 1A). It is important to note that these unstable estimates 

are in the direction of the true effect (negative direction for negative γi’s, where γ i − ∞). 

Also as expected, estimates for under-performers (γi > 0) are less unstable and more on 

target for the uncorrected FE method. The corrected estimation approach, which adapts 

the Firth’s modified score equation for the FE model, largely eliminates the instability and 

estimates are on more target for the true γi’s (Figure 1B).

Figure 2 (left column) shows estimates of γi’s for increasing percentage of overall events, 

from 3% to 20% for the uncorrected FE method. Clearly, the frequency of unstable estimates 

for γi < 0 decreased with increasing overall events, although unstable estimates are apparent 

even at a 10% event rate. However, the magnitude of the unstable estimates declined quickly 

(γ i < 0) as the overall event rate increased (e.g., at 20%).

Next, we summarize results for estimation of the provider-specific SRRs. As describe in 

Section 2, SRR is the summary performance index for each provider used in practice which 

incorporates patient-level risk factors Zij and their estimated effects, β . More specifically, 

given the provider and the patient case-mix effect estimates for each approach, denoted by 

γ i
∗ and β , respectively, the estimated SRR for provider i is

SRRi
∗ =

∑j = 1
Ni pij

∗

∑j = 1
Ni pM, ij

∗ , (5)

where pij
∗ = g−1(γ i

∗ + βTZij), pM, ij
∗ = g−1(γM

∗ + βTZij), * and denotes the uncorrected and 

corrected approach, namely U and C. Figure 3 (left column) summarizes the uncorrected 
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FE model estimates of SRR for 3% to 20% overall outcome event. We note that even 

though specific γi < 0 were unstable for highly sparse data (e.g., at 3% - 10%; Figure 

2), corresponding estimates of SRR’s are stable overall and targets the true SRR, because 

SRR incorporates patients characteristics, their effects, as well as provider-specific effects as 

shown in (5); see Figure 3 (left column). Average SRR estimates for the corrected estimation 

performed well and are summarized in Figure 3 (right column). However, we note that for 

extremely sparse data (e.g., at 3%), the uncorrected approach slightly overestimate SRRs 

while the corrected approach slightly underestimate SRR for truly worse providers (true 

SRR >1; Figure 4 - top). For truly better providers (true SRR < 1), both methods slightly 

over estimate the true SRRs, although more so with the corrected method. Differences 

in SRR estimates between the two methods are neglible as the overall percent of events 

increases (e.g., at 20%; Figure 4 - bottom).

5.2. Flagging Extreme Providers/Facilities

The overall performance of the uncorrected and corrected FE methods to identify extreme 

providers are assessed in terms of sensitivity (SEN) to correctly identify providers 

that under-perform (W: “worse”), over-perform (B: “better”) relative to the reference 

standard (e.g., national reference), and specificity. Specificity (SPEC) refers to the correct 

identification/flagging of providers whose performances are not different from the reference 

standard (ND: “not different”). We note that provider assessment policies in practice focus 

on identifying under-performing providers (W providers) as those are tied to payment policy 

or regulatory goals. Figure 5 summarizes the distribution of SEN-W, SEN-B, and SPEC 

for varying levels of outcome sparsity, ranging from 3% to 20% overall outcome rate. For 

extremely sparse data of 3% and 5%, the uncorrected method has highest sensitivity to 

detect under-performing providers (higher SEN-W; left column). This is expected since 

the for truly worse providers, there are more outcome events (∑jyij); see Figure 5 (left 

column). SEN-W rates were similar between uncorrected and corrected methods at 20% 

overall overall outcome rate.

Because the event counts are zero or low for truly better providers in the context of sparse 

outcome data, the unstable/poor estimation of provider effects from the uncorrected method 

results in lower sensitivity to detect over-performing providers (lower SEN-B) compared to 

the corrected method (Figure 5 - middle column). However, note that the nominal SEN-B 

rates are low overall, as expected, compared to nominal SEN-W rates. This is expected in 

the low information context since B providers would have fewer readmissions, making it 

difficult to correctly identify B providers when the outcome is sparse. SPEC rates were high 

and similar between uncorrected and corrected methods (Figure 5 - right column).

As mentioned earlier, the main current objective of flagging “extreme” providers in profiling 

analysis focuses on identifying W providers and ND providers. Providers that over-perform 

(B providers) are not relevant to current payment policy or regulatory objectives. Therefore, 

under this regime, it is of interest to ensure that there are no (or low rate of) false negatives 

that misclassify/flag B provider as W provider (FNB→W). Indeed, there are none, i.e., 

FNB→W = 0 across all levels of data sparsity (Figure 6), which is not surprising since W 

and B providers are on the opposite tails of the distribution of providers. This is true with 
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the uncorrected FE model (as well as the corrected estimation method) since the direction 

of unstable estimates of γi’s are in the same (negative) direction of true γi (as pointed 

out earlier), despite the unstable provider-specific estimates. However, it is not uncommon 

for false negative classification of a B provider as a ND provider (FNB→ND). Although 

FNB→ND deceases with increasing percentage of overall outcome events as expected, 

FNB→ND is common for the extremely low information context (e.g., 3%, 5% overall event 

rate; Figure 6). We emphasize that high FNB→ND does not affect current public policy 

because over-performers are not incentivized and are consider “ND” providers anyway. 

Therefore, the FE profiling model, even uncorrected, is still useful in the low information 

context with respect to the current public policy goal of identifying W and ND providers. 

However, if the public policy goal evolves to also incentivize for better performance, then 

novel methods able to correctly identify B providers with high sensitivity are needed.

6. DISCUSSION

Seminal works by Kalbfleisch and Wolfe [8] and He et al. [15] show that FE model 

estimates have smaller error for outlier providers whose effects are exceptionally large or 

small, and these extreme providers are precisely the ones we wish to identify in profiling 

analysis. The high-dimensional FE models were then used to assess the performance of 

dialysis facilities (providers) with respect to all-cause hospital readmissions which are 

frequent outcomes in dialysis patients. Subsequently, our own works have elucidated several 

operating characteristics [9, 10] of the FE profiling models and have been applied to 

assess the performance of dialysis facilities with respect to all-cause 30-day readmissions 

[11, 12, 14]. However, to date there is no work that examines the performance of FE 

models in the low information context where the outcome is sparse. The current study 

starts to fill this gap in knowledge. Several findings from this study have important 

practical impact in the low information context. First, even though the provider-specific 

estimates with true γi < 0 (truly B providers) are unstable, they are in the same direction 

as the true effects and the instability has moderated effects on the estimation of SRRs; 

i.e., SRRs are reasonably well-estimated and are the relevant quantities used in practice 

as they incorporate patient case-mix. However, if the provider-specific estimates, γ i’s, 

are themselves of interest, then our proposed correction method can be used to provide 

better estimates, especially corresponding to uncorrected γ i that are substantially less than 

zero. Second, the consequence of sparse outcome data impacts more directly inference 

for B providers because true over-performers are the ones that contribute no or few 

events (readmissions); however, this “deficit” in estimation does not greatly impact the 

identification of W providers/under-performers and ND providers, which is the current 

focus of profiling in practice. Development of novel methods that have better sensitivity for 

flagging B providers would be useful when public policies or regulatory goals incorporate 

an incentive for over-performers.
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Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

Provider-Specific Modified Score Equation Penalties

We describe details of calculating the penalties for the Firth’s modified score equations, 

adapted for the high-dimensional FE profiling model in Section 3.2. For a fixed β, the hat 

matrix used in the estimation of γ with Firth’s correction is H = W1/2X(XTWX)−1XTW1/2 

where W = W1 ⊕…⊕WF, X = X1 ⊕…⊕XF, Wi =diag{pi1(1−pi1),…,piNi(1−piNi)} are 

provider-specific weight matrices (see Section 3.2). Direct calculation yields

H = W 1 ∕ 2X(XTW X)−1XTW 1 ∕ 2

= W 1 ∕ 2X{(X1 ⊕ ⋯ ⊕ XF)T (W 1 ⊕ ⋯ ⊕ W F)(X1 ⊕ ⋯ ⊕ XF)}−1XTW 1 ∕ 2

= W 1 ∕ 2X(X1
TW 1X1 ⊕ ⋯ ⊕ XF

T W FXF)−1XTW 1 ∕ 2

= W 1 ∕ 2X{(X1
TW 1X1)−1 ⊕ ⋯ ⊕ (XF

T W FXF)−1}XTW 1 ∕ 2

= (W 1
1 ∕ 2X1 ⊕ ⋯ ⊕ W F

1 ∕ 2XF){(X1
TW 1X1)−1 ⊕ ⋯ ⊕ (XF

T W FXF)−1}XTW 1 ∕ 2

= {W 1
1 ∕ 2X1(X1

TW 1X1)−1 ⊕ ⋯ ⊕ W F
1 ∕ 2XF(XF

T W FXF)−1}XTW 1 ∕ 2

= {W 1
1 ∕ 2X1(X1

TW 1X1)−1 ⊕ ⋯ ⊕ W F
1 ∕ 2XF(XF

T W FXF)−1}(X1
TW 1 ∕ 2 ⊕ ⋯ ⊕ XF

T W 1 ∕ 2)

= W 1
1 ∕ 2X1(X1

TW 1X1)−1X1
TW 1

1 ∕ 2 ⊕ ⋯ ⊕ W F
1 ∕ 2XF(XF

T W FXF)−1XF
T W F

1 ∕ 2 .

Thus, 

diag(H) = [diag{W 1
1 ∕ 2X1(X1

TW 1X1)−1X1
TW 1

1 ∕ 2}, …, diag{W F
1 ∕ 2XF(XF

TW FXF)−1XF
TW F

1 ∕ 2

}]
.

Dependence Structure of Covariates in Simulation Model

The correlation matrix and the standard deviation of the patient case-mix variables, 

Zij1,…,Zij15, are summarized in Table 1.

Table 1:

Correlation Matrix of Z1,…,Z15 and their Standard Deviations

Correlation

Z 1 Z 2 Z 3 Z 4 Z 5 Z 6 Z 7 Z 8 Z 9 Z 10 Z 11 Z 12 Z 13 Z 14 Z 15

−0.06 −0.01 −0.31 0.04 0.08 −0.12 −0.05 0.28 −0.04 −0.13 −0.22 −0.06 0.02 −0.01

1 0.03 −0.16 0.20 0.33 −0.05 0.08 0.07 0.01 −0.04 −0.05 −0.04 −0.05 0.00

1 0.00 0.03 0.03 0.00 0.10 0.00 0.07 0.08 0.01 0.02 0.02 0.10

1 −0.01 −0.67 0.00 0.09 −0.03 0.11 0.17 0.04 0.01 0.04 0.04

1 0.06 0.00 −0.10 0.02 0.05 0.02 −0.06 −0.09 0.02 0.01

1 −0.07 0.21 −0.03 −0.01 −0.12 −0.04 −0.02 −0.06 0.01
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Correlation

Z 1 Z 2 Z 3 Z 4 Z 5 Z 6 Z 7 Z 8 Z 9 Z 10 Z 11 Z 12 Z 13 Z 14 Z 15

1 −0.02 −0.03 0.00 0.07 0.06 0.25 0.02 −0.02

1 0.06 0.13 0.09 0.06 0.02 −0.01 0.08

1 0.48 0.15 0.11 0.06 0.18 0.06

1 0.33 0.17 0.07 0.19 0.14

1 0.21 0.29 0.10 0.10

1 0.34 0.03 0.03

1 0.02 0.01

1 0.01

1

Standard Deviation

1.59 1.03 0.87 1.43 0.50 0.49 0.10 0.24 0.41 0.36 0.32 0.20 0.19 0.16 0.19

LIST OF ABBREVIATIONS

CMS Centers for Medicare and Medicaid Services

FE Fixed effects

US United States

USRDS United States Renal Data System

RE Random effects

SRR Standardized readmission ratio

W Worse

ND Not different

B Better

SEN Sensitivity

SPEC Specificity
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Figure 1: 
Estimates of provider-specific effects, γi < 0 (over-performers) and γi > 0 (under-

performers) (A) for the uncorrected high-dimensional fixed effects (FE) model and (B) for 

the corrected method at high-level of outcome data sparsity of 3%. Displayed is average for 

each γi estimate, averaged over 200 simulated data sets.
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Figure 2: 
Uncorrected (left column) and corrected (right column) estimation of provider-specific 

effects, γi’s, for 3%, 5%, 10%, and 20% overall outcome event rate. Displayed is average for 

each γi estimate, averaged over 200 simulated data sets.
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Figure 3: 
Uncorrected (left column) and corrected (right column) estimates of standardized 

readmission ratios (SRRs) for 3%, 5%, 10%, and 20% overall outcome event rate. Displayed 

is average for each SRRi estimate, averaged over 200 simulated data sets.
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Figure 4: 
Estimation of standardized readmission ratios (SRRs) for 3% and 20% overall outcome 

event rate for corrected and uncorrected methods among the 125 better (B) and 125 worse 

(W) providers. Displayed is average for each SRRi estimate, averaged over 200 simulated 

data sets.
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Figure 5: 
Overall performance of the uncorrected and corrected estimation methods to identify truly 

worse (sensitivity - worse), truly better (sensitivity - better), and specificity (providers not 

different from the reference) across data sparsity of 3%, 5%, 10%, and 20% overall outcome 

event rate. Displayed is average for each SRRi estimate, averaged over 200 simulated data 

sets.
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Figure 6: 
Rate of false negative (FN) for incorrectly flagging better (B) providers as worse (W) 

providers (FNB→W) and incorrectly flagging B providers as providers not different (ND) 

from the reference (FNB→ND) for the uncorrected and corrected estimation methods across 

data sparsity of 3%, 5%, 10%, and 20% overall outcome event rate. Displayed is average 

rates, averaged over 200 simulated data sets.
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