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Transition dairy cows experience sudden changes in both metabolic and immune
functions, which lead to many diseases in postpartum cows. Therefore, it is crucial to
monitor and guarantee the nutritional and healthy status of transition cows. The objective
of this study was to determine the effect of diet enriched in n-3 or n-6 polyunsaturated fatty
acid (PUFA) on colostrum composition and blood immune index of multiparous Holstein
cows and neonatal calves during the transition period. Forty-five multiparous Holstein
dairy cows at 240 days of pregnancy were randomly assigned to receive 1 of 3
isoenergetic and isoprotein diets: 1) CON, hydrogenated fatty acid (control), 1% of
hydrogenated fatty acid [diet dry matter (DM) basis] during prepartum and postpartum,
respectively; 2) HN3, 3.5% of extruding flaxseed (diet DM basis, n-3 PUFA source); 3)
HN6, 8% of extruding soybeans (diet DM basis, C18:2n-6 PUFA source). Diets containing
n-3 and n-6 PUFA sources decreased colostrum immunoglobulin G (IgG) concentration
but did not significantly change the colostrum IgG yield compared with those with CON.
The commercial milk yield (from 14 to 28 days after calving) was higher in the HN3 and
HN6 than that in the CON. Furthermore, the n-3 PUFA source increased neutrophil cell
counts in blood during the prepartum period and increased neutrophil percentage during
the postpartum period when compared with those with control treatment. Diets
containing supplemental n-3 PUFA decreased the serum concentration of interleukin
(IL)-1b in maternal cows compared with those in control and n-6 PUFA during prepartum
and postpartum. In addition, the neonatal calf serum concentration of tumor necrosis
factor (TNF) was decreased in HN3 compared with that in the HN6 treatment. The diet
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with the n-3 PUFA source could potentially increase the capacity of neutrophils to defend
against pathogens in maternal cows by increasing the neutrophil numbers and percentage
during the transition period. Meanwhile, the diet with n-3 PUFA source could decrease the
pro-inflammatary cytokine IL-1b of maternal cows during the transition period and decline
the content of pro-inflammatary cytokine TNF of neonatal calves. It suggested that the
highest milk production in n-3 PUFA treatment may partially be due to these
beneficial alterations.
Keywords: dairy cows, neonatal calves, immune cell, inflammation, colostrum
INTRODUCTION

The transition period of dairy cows, which normally spans from
3 weeks before parturition and 3 weeks after, is characterized by
dramatic changes in metabolism and host defense system that are
associated with the increased incidence of diseases such as
retained placenta, milk fever, ketosis, and clinical mastitis (1,
2). Furthermore, it is suggested that metabolic adaptations such
as lipid mobilization are accompanied by alterations in
inflammatory responses that modify the immune function (3).
Bertoni et al. (4) revealed that the cows with the strongest
inflammatory profiles were at an 8-fold higher risk for
experiencing one or more transition disorders, which led to
less milk production in the period of first-month lactation.

Many types of evidence showed that the immune system was
impared during the transition period, including decreased
mitogen-induced proliferation of lymphocytes, decreased
antibody response, and decreased capacity of neutrophils to
kill pathogens (5). One strategy to improve the metabolic
status of transition cows is supplementing fatty acids (FAs),
which can increase dietary energy density (6, 7) and modulate
the immune cell function and inflammatory response (8). Fatty
acids can modify the immune response in several pathways,
which include the inhibition of arachidonic acid metabolism,
induction of anti-inflammatory mediators, modification of
intracellular lipids, and activation of nuclear receptors (9, 10).
.org 2
Studies in cultured cells, animal models, and human subjects
have shown that both the dose and type of FA can influence the
immune response (11). In addition, it has been shown that a
colostrum supplement of n-3 FA can reduce the oxidant status of
newborn calves in the first week of life (12) and encourage a
greater anti-inflammatory state (13).

However, most of the meta-analyses regarding the effects of
different types of lipid supplements on dairy cows focused on the
milk FA and productivity (14), rarely involved in the blood
immune cell counts, inflammatory cytokine levels in maternal
cows, and whether these impacts in pre-calving maternal cows
will directly influence the newborn calves. Moreover, most of the
colostrum studies focus narrowly on immunoglobulin G (IgG),
IgA, and IgM and ignore other nutrients or compounds (15). A
complete understanding of transition cow biology requires a
truly integrative perspective. Therefore, it is necessary to
determine changes of immune cells, inflammatory cytokines in
maternal cows and neonatal calves, and the effect of diet
supplementary n-3 or n-6 polyunsaturated fatty acid (PUFA)
on immune function and inflammatory reaction in cows during
the transition period. We hypothesize that n-3 PUFA
supplementation in the diet can improve cows’ transfer from
non-lactation to lactation initial during the perinatal period.

In this study, multiparous dairy cows were fed diets enriched
in saturated FA (C16:0), extruded flaxseed (n-3 PUFA source),
or extruded soybean (n-6 PUFA) during the transition period.
GRAPHICAL ABSTRACT | Effects of diets enriched in n-3 or n-6 polyunsaturated fatty acid on blood immune cell counts, immunoglobulin, inflammatory factor,
and milk trace element of transition cows and calves.
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The objective of this study is to assess the influence of dietary
PUFA and parturition on milk production, colostrum
composition, blood immune cell counts, immunoglobulin, and
inflammatory cytokines in transition cows and calves.
MATERIALS AND METHODS

Animals involved in this experiment were taken care of
according to the guidelines from the committee of animal
welfare and animal experimental ethical inspection of China
Agricultural University. The committee reviewed and approved
the experiment and all procedures involving animals (protocol
number: CAU20201024-2).
Animals and Experimental Design
Multiparous Holstein dairy cows (n = 45), at 240 days of pregnancy,
were randomly assigned to 3 isoenergetic and isoprotein treatments:
1) 1% dry matter (DM) hydrogenated FA (C16:00 enriched) in the
diet from 28 days prepartum to 28 days postpartum (CON); 2) 3.5%
DM of extruded flaxseed (C18:3n-3 enriched) supplemented in the
diet from 28 days prepartum to 28 days postpartum (HN3); 3) 8%
DM of extruded soybean (C18:2n-6 enriched) supplemented in the
diet from 28 days prepartum to 28 days postpartum (HN6). The
cows were dried at 215 days of pregnancy (the duration of dry
period was 60 ± 3 days). Holstein dairy cows were housed in a free-
stall barn (with rubber bed and rice hull bedding) with the
Roughage Intake Control (RIC) system (INSENTEC, Marknesse,
Netherlands) and offered a total mixed ration (TMR) twice daily at
07:00 and 15:00 h ad libitum prepartum and postpartum. The
ingredients and chemical composition of the close-up and milking
cow TMR were presented in Table S1. The calves were separated
from their mother immediately after being born. They were placed
in individual hutches deep-bedded with rice hull, weighed, blood
sampled, and given 4 L of colostrum pooled from their mother. The
procedure was completed generally within 2 h after the calf was
born. The colostrum feeding was repeated at 12 h and again at 24 h,
and the blood was collected again at 24 h. After 24 h, the calves were
fed whole milk until weaning at 55 ± 3 days of age. The animal
feeding experiment was carried out in Beijing Zhongdi Animal
Husbandry Technology Co. Ltd. (39°30’N, 116°33’E) in northern
China. The average temperature, humidity, altitude, and light/dark
cycle in the farm were 1°C–12°C, 58%, 35 m, and 16/8
h, respectively.

Of the total 45 cows assigned to treatments, only the data of
37 of them were used in the trial at the end (12 cows in the CON
group, 12 in the HN3 group, and 13 cows in the HN6 group).
Two cows that calved early and six diseased cows were excluded
in the statistical analysis (Table S2). The parity, body weight
(BW), body condition score (BCS), and milk yield of the cows
were 2.47 ± 1.06, 759.23 ± 65.89 kg, 3.30 ± 0.26, and 10,182.18 ±
1,664.90 kg/lactation (mean ± SD, previous lactation production)
at the start of the experiment, respectively, and they were similar
in the three groups (Table S3). The detailed health information
of the calves was shown in Table S4.
Frontiers in Immunology | www.frontiersin.org 3
Measurements
Samples of TMR and orts were obtained weekly and dried at 55°
C for 48 h for DM determination. The TMR samples were pooled
weekly and sent to the State of Key Laboratory of Animal
Nutrition (China Agricultural University, Beijing) for chemical
composition analysis. Postpartum cows were milked four times
daily at 06:00, 12:00, 18:00, and 24:00 h, and the milk production
was recorded at each milking by the ALPROTM system
(DeLaval©, Tumba, Sweden). The colostrum was collected
using a Portable Milking Machine (H8192, Duomai
Technology Co., Ltd., Hebei, China) immediately after the cow
calving and then two 50-ml aliquots of colostrum were obtained
for further analysis. Two 50-ml aliquots of milk were collected at
14 and 28 days after calving and at each milking proportional to
yield (4:3:3, composite). One aliquot of milk or colostrum
containing Bromopol (milk preservative; D&F Control
Systems, San Ramon, CA, USA) was stored at 4°C for later
analysis of milk composition. Blood samples were obtained at
09:00 h on 28 and 4 days prior to calving, at parturition, and 14
and 28 days after calving into evacuated 10-ml test tubes
(Vacutainer, Becton Dickinson, Rutherford, NJ, USA)
containing or without ethylene diamine tetraacetic acid
(EDTA) by venipuncture of the coccygeal vessels, respectively.
Blood samples were stored at room temperature for less than 3 h
prior to the test. EDTA blood samples were used for the
determination of immune cell counts. The tubes without
EDTA were centrifuged at 3,000 × g for 12 min in a
refrigerated centrifuge at 4°C. Serum was separated and
transferred to 2-ml plastic scintillation vials and stored at –80°
C for further analysis.

Chemical Analysis
The analytical DM content of the TMR was determined by oven-
drying at 135°C for 2 h (16). The crude protein contents were
determined using an Elementar Rapid N Exceed (Elementar,
Germany) according to the manufacturer’s instructions (17). The
TMR samples were also analyzed for acid detergent fiber (ADF)
(16) and neutral detergent fiber (NDF) (18) using the ANKOM
2000i automatic fiber analyzer (Beijing Anke Borui Technology
Co. Ltd., Beijing, China). All chemical analyses were performed
in duplicate.

Colostrum and milk samples were collected and analyzed for
concentrations of crude protein (CP) by infrared spectroscopy
(Foss Electric, Hillerod, Denmark). Calcium (Ca) and zinc (Zn)
contents were determined by inductively coupled plasma–optical
emission spectrometry (iCAP6300, Thermo Fisher company,
USA) according to the methods described by Melton et al.
(19). The colostrum and milk immunoglobulin (IgG, IgA,
IgM) lactoperoxidase and lysozyme were measured using an
enzyme-labeled instrument (BioTeck, VT, USA) for ELISA
analysis with respective bovine ELISA kits (WSJH40101A,
Beijing Laibotairui Technology Co. Ltd.) according to the
instruction methods. The coefficients of variation of inter-assay
and intra-assay in ELISA kits were 5.1% and 4.0%, respectively.
The lactoferrin quantification in colostrum or milk was
determined by high-performance liquid chromatography with
July 2022 | Volume 13 | Article 897660
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fluorescence detection (U300, DIONEX company, USA)
according to a simple immunoaffinity magnetic purification
method described in Pang et al. (20).

The serum concentrations of interleukin (IL)-1b, IL-2, IL-6,
IL-10, and tumor necrosis factor (TNF)-a were measured using
an enzyme-labeled instrument (BioTeck, USA) with respective
ELISA kits (WSJH40014A, Beijing Laibotairui Technology Co.
Ltd.) according to the instruction methods. The coefficients of
variation of inter-assay and intra-assay in ELISA kits were 4.8%
and 4.2%, respectively.

For the determination of differential immune cell counts, 200
ml of blood were incubated with 5 ml of erythrocyte-lysing
solution (8.26 g NH4Cl, 1.09 g NaHCO3, 0.037 g Na2 EDTA, and
1,000 ml A. dest.) for 5 min (room temperature). Then, the cells
were pelleted by centrifugation (200 × g, 5 min) and resuspended
in 1.2 ml of PBS (10 g NaCl, 0.25 g KCl, 0.25 g KH2PO4, 1.8 g Na2
HPO4 * 2H2O, and 1,000 ml A. dest.). Analysis was performed on
a blood analyzer (BC-2800vet, Mindray company, China).
Electronic gates were set according to the light scatter
characteristics of lymphocytes, monocytes, and neutrophil
granulocytes, and the proportion of the respective cell type
was read.

Statistical Analysis
The normal distribution of the data was checked using Proc
UNI-VARIATE (release 9.1, SAS Institute Inc.). Commercial
milk data were obtained from 14 to 28 days of milking. Data of
colostrum and milk were subjected to ANOVA using the MIXED
procedure of SAS, relevant model as follows:

Yijk = m + ai + bj + tk + abð Þij+eijk,

where Yijk is the dependent variable, m is the overall mean, ai is
the treatment effect (i = 1, 2, 3), bj is the effect of milk
(j = colostrum and commercial milk), tk is the random effect
of cow, (ab)ij is the interaction effect of treatment and milk, and
eijk is the residual error.

Data of blood parameters were analyzed using the model as
follows:

Yijk = m + ai + bj + tk + abð Þij+eijk,

where Yijk is the dependent variable, m is the overall mean, ai is
the treatment effect (i = 1, 2, 3), bj is the effect of sampling time
for prepartum maternal cows (−28, −4, at parturition) or
postpartum maternal cows (at parturition, 14, 28) or neonatal
calves (0 h, 24 h), tk is the random effect of cow, (ab)ij is the
interaction effect of treatment and sampling time, and eijk is the
residual error.

The repeated measurement option in time was used with cow
nested within treatment as the repeated subject for variables with
repeated measurements. Differences among treatments were
tested for significance using Tukey’s honestly significant
difference. The correlation analysis using Pearson’s correlation
coefficient was calculated by SPSS Statistics (V26, IBM, USA).
Effects were considered significant at p < 0.05, whereas a
Frontiers in Immunology | www.frontiersin.org 4
tendency was assumed for 0.05 ≤ p ≤ 0.10. Data are expressed
as means and SEM.
RESULTS

Milk or Colostrum Production
and Composition
Colostrum means colostrum samples obtained at the first
milking after calving; commercial milk means milk samples
obtained at 14 days and 28 days post-calving. Compared with
CON, dairy cows in HN3 and HN6 had significantly higher
commercial milk yield (p < 0.01), while it was not the case for
colostrum yield (Table 1). There were no differences between
groups in the concentrations of lactoferrin, lysozyme, Zn, and Ca
in colostrum and commercial milk. However, the peroxidase
concentration in commercial milk was greater (p = 0.02) in the
HN3 treatment than that in the CON treatment (Table 1).
Furthermore, the content of protein, lactoferrin, and Ca in
commercial milk was significantly lower (p < 0.01) than that in
colostrum, while the peroxidase and lysozyme concentrations
in commercial milk were higher (p < 0.01) than those in
colostrum (Table 1). The overall effect of Ca in HN6 was
higher (p < 0.05) than that in CON, but no difference was
observed in colostrum and commercial milk. Interestingly, the
overall effect of Zn in HN3 was higher (p < 0.05) than that in
CON, but no difference was observed in colostrum and
commercial milk.

Blood Immune Cell Counts
During the prepartum period, the lymphocyte (p < 0.01) and
monocyte (p = 0.02) were decreased in the three treatments over
time (Figure 1). The neutrophilic granulocyte cell counts also
decreased (p = 0.02) in CON and HN6 during the prepartum
period but increased (p = 0.02) in HN3 at parturition
(Figures 1A–C). The lymphocyte, monocyte, and neutrophilic
granulocyte cell counts began to increase (p < 0.01) in the three
treatments from calving to 28 days postpartum (Figures 1A–C).
There were no treatment effects on total cell counts of
lymphocytes and monocytes during the prepartum and
postpartum periods, while the neutrophilic granulocyte cell
counts were higher in HN3 than those in the other two
treatments in pre-calving cows (Figures 1A–C). The
lymphocyte percentage was decreased and neutrophilic
granulocyte percentage was increased (p < 0.01) in each
treatment from 28 days pre-calving to calving day. No
differences were observed in the three diets for lymphocyte,
monocyte, and neutrophilic granulocyte cell percentage before
calving (Figures 1D–F). The lymphocyte percentage was highest
at 14 days postpartum and lowest at 28 days postpartum,
whereas the neutrophilic granulocyte percentage was lowest at
14 days postpartum and highest at 28 days postpartum
(Figures 1D–F). The HN3 group tended to have a lower level
(p = 0.06) of the lymphocyte percentage and a higher level
(p = 0.04) of the neutrophilic granulocyte percentage during the
postpartum period when compared with those in CON cows
July 2022 | Volume 13 | Article 897660
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(Figures 1D–F). Especially, the lymphocyte percentage in HN3
was lower (p < 0.05) and the neutrophilic granulocyte percentage
(p < 0.05) was higher at 28 days postpartum than those in CON,
but no difference occurred between treatments at 14
days postpartum.

The monocyte and neutrophilic granulocyte cell counts in
neonatal calves were not affected by diet treatments, while the
lymphocyte cell counts in blood were greater (p < 0.05) in HN3
than those in CON in neonatal calves (Figures 1A–C). All of the
immune cell counts in neonatal calves decreased (p < 0.05) at 24
h post-calving (Figures 2A–C). The HN6 and HN3 tended to
increase (p = 0.06) the lymphocyte cell percentage and reduce (p
< 0.01) the neutrophilic granulocyte cell percentage in neonatal
calves when compared with CON treatment. The neutrophilic
granulocyte cell percentage in HN6 and HN3 in neonatal calves
after 24 h from birth was lower (p < 0.05) than that in CON,
whereas there was no difference at 0 h. The HN6 group decreased
(p < 0.05) the monocyte cell percentage in neonatal calves after
24 h from birth, but no difference was found at 0 h. The
lymphocyte cell percentage did not differ among the three
groups. There was a tendency to a lower (p = 0.06) percentage
of lymphocyte cell percentage and a higher (p = 0.06)
Frontiers in Immunology | www.frontiersin.org 5
neutrophilic granulocyte cell percentage in calves for each
treatment at 24 h after calving (Figures 2D–F).
Blood Immunoglobulin
The IgG concentration in the serum of maternal cows was
significantly greater (p < 0.01) in HN6 at pre4d and calving
than that in CON, whereas the IgA and IgM concentrations were
not altered by the diet treatments during the whole transition
period (Figures 3A–C). There were no significant differences in
IgG and IgM in serum between groups during postpartum, while
IgA tended to increase (p = 0.08) in HN3 and HN6 when
compared with that in CON maternal cows (Figures 3A–C).
The IgA in each treatment maternal cow significantly declined
(p < 0.01) from 28 days pre-calving to parturition but was not
changed from calving to 28 days postpartum (Figure 3A). The
serum IgG was decreased (p = 0.06) and increased (p = 0.06) in a
tendency in maternal cows during prepartum and postpartum,
respectively (Figure 3B). The IgM in serum in maternal cows did
not differ significantly from 28 days pre-calving to calving but
had a significant increase (p < 0.01) from calving to 28 days
postpartum (Figure 3C).
TABLE 1 | Effects of dietary n-6 or n-3 PUFA on milk composition of transition cows from 28 days before calving to 28 days postpartum.

Item1 Diet2 SEM3 p-value

CON HN6 HN3 Diet3 Time3 INT3

Production (kg)
Colostrum 4.5 5.17 6.14 0.43 0.32 NA4 NA
Commercial milk 40.97b 46.23a 47.06a 0.78 <0.01 NA NA
Overall 27.29b 32.54a 32.54b 1.98 0.01 <0.01 0.12
Protein (mg/100 g)
Colostrum 17.63 15.18 15.48 0.76 0.39 NA NA
Commercial milk 3.34 3.39 3.21 0.06 0.32 NA NA
Overall 8.53 7.32 7.30 1.06 0.14 <0.01 0.14
Lactoferrin (mg/100 g)
Colostrum 166.50 201.70 132.95 35.74 0.77 NA NA
Commercial milk 3.55 3.10 3.45 0.40 0.90 NA NA
Overall 57.87 69.30 46.62 17.44 0.56 <0.01 0.56
Lysozyme (mg/ml)
Colostrum 0.37 0.33 0.57 0.11 0.68 NA NA
Commercial milk 2.84 3.57 2.88 0.30 0.56 NA NA
Overall 2.01 2.49 2.11 0.30 0.82 <0.01 0.67
Peroxidase (mg/ml)
Colostrum 0.47 0.46 1.24 0.22 0.28 NA NA
Commercial milk 9.72b 10.66b 14.98a 0.83 0.02 NA NA
Overall 8.01 7.26 9.03 1.04 0.60 <0.01 0.88
Zn (mg/kg)
Colostrum 18.83 17.88 22.50 0.95 0.10 NA NA
Commercial milk 4.09 4.58 4.39 0.15 0.44 NA NA
Overall 9.00b 9.01b 10.43a 1.27 <0.01 <0.01 <0.01
Ca (g/kg)
Colostrum 2.21 2.47 2.37 0.06 0.19 NA NA
Commercial milk 1.23 1.33 1.28 0.02 0.26 NA NA
Overall 1.55b 1.71a 1.65ab 0.09 0.02 <0.01 0.43
July 2022 |
 Volume 13 | Article 8
1 Colostrum means the first milking yield after calving; commercial milk means 14 days post-calving to 28 days post-calving. Zn, Zinc; Ca, Calcium.
2 CON, control treatment (saturated fatty acid source), n = 12; HN3, extruded flaxseed treatment (n-3 PUFA source), n = 12; HN6, extruded soybean treatment (n-6 PUFA source), n = 13.
3 SEM, standard error of the mean; Diet, diet treatment effect; Time, the colostrum or commercial milk effect; INT, the interaction effect between diet effect andmilk effect. Values in the same
row denoted by different superscript lowercase letters indicate significant differences (p < 0.05) between treatments, whereas those denoted by the same letters or no letters are not
significantly different (p > 0.05).
4 NA, not applicable.
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There were no observed differences between groups in
concentrations of serum IgA, IgG, and IgM in neonatal calves
(Figures 3D–F). The post-calving time and colostrum feeding
did not affect the IgA and IgM in calf serum (Figures 3D–F). As
expected, the IgG concentration was increased in neonatal calf
serum at 24 h after calving (Figure 4E).

Milk Immunoglobulin
The IgA and IgM concentrations in colostrum and commercial
milk were not shifted by diet treatments, while the IgA and IgM
concentrations in commercial milk were greater (p < 0.01) than
those in colostrum (Table 2). The IgG in colostrum was
significantly lower (p < 0.01) in HN6 and HN3 than that in
CON treatment (Table 2). Meanwhile, the IgG concentrations
in colostrum were significantly higher (p < 0.01) than those in
commercial milk (Table 2). However, the IgG yield in colostrum
or commercial milk was not significantly affected by diet
treatments (Table 2). Moreover, the average IgG yield obtained
in colostrum and commercial milk was higher (p = 0.04) in HN3
than that in HN6 (Table 2).

In addition, we found that the IgG concentration in
colostrum was positively associated (r = 0.718, p = 0.01) with
Frontiers in Immunology | www.frontiersin.org 6
the protein concentration in colostrum, while it had a negative
relation (r = -0.753, p < 0.01) with the Ca concentration in
colostrum (Figures 4A–C). There was no significant correlation
between the IgG concentration and the lactoferrin (r = 0.344,
p = 0.127) or Zn (r = 0.467, p = 0.243) concentration in
colostrum (Figures 4B–D).

Blood Inflammatory Cytokines
The concentration of IL-1b in the serum of maternal cows in
HN3 was lower during prepartum (p = 0.05) and postpartum
(p = 0.03) compared with the ones in CON and HN6
(Figure 5A). The serum concentration of IL-2 in HN3 was
greater (p = 0.01) than that in CON treatment in pre-calving
cows, but there was no change in post-calving cows (Figure 5B).
Dietary treatments did not affect the serum concentration of IL-
6, IL-10, and TNF-a in prepartum or postpartum maternal cows
(Figures 5C–E). An effect of time was observed for almost all
variables in the prepartum or postpartum periods (Figure 5).
The serum concentration of IL-1b in maternal cows was
decreased during prepartum (p < 0.01) and the postpartum
period (p = 0.05), IL-2 was decreased from parturition to 28
days postpartum, IL-10 was decreased from 28 days pre-calving
A B

D

E F

C

FIGURE 1 | Blood immune cell counts in maternal cows. CON: control treatment (saturated fatty acid source), n = 12. HN3: extruded flaxseed treatment (n-3 PUFA
source), n = 12. HN6: extruded soybean treatment (n-6 PUFA source), n = 13. SEM, standard error of the mean; Diet, diet treatment effect; Time, the calving time
effect; INT, the interaction effect between diet effect and time effect. Values in the same sampling time point denoted by different superscript lowercase letters
indicate significant differences (p < 0.05) between treatments, whereas those denoted by the same letters or no letters are not significantly different (p > 0.05).
(A–C): the blood immune cell counts in maternal cows; (D–F): the percentage of blood immune cell in maternal cows.
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to calving, and TNF was decreased from 28 days before calving to
calving and then increased from calving until 28 days post-
calving. There was no significant interaction between time and
diet treatment for these inflammatory cytokines (Figure 5).

There was no difference in the neonatal calf serum
concentration of inflammatory cytokines between diet
treatments, except for TNF, which was decreased (p = 0.04) in
HN3 compared with that in the HN6 treatment (Figure 6). After
colostrum feeding, the concentration of the inflammatory
cytokines in neonatal calves decreased (p < 0.05) at 24 h after
calving, but the IL-6 was not altered (p = 0.27) by the calving
time (Figure 6). No interactions between diet and calving time
were observed for inflammatory cytokines (Figure 6).
DISCUSSION

In this part, we discussed about the effect of n-3 and n-6 PUFA
on the IgG concentration and yield in colostrum. Moreover, we
evaluated the influence of n-3 or n-6 PUFA addition on the
immune cell counts in blood and inflammotary cytokines in
serum in maternal cows and neonatal cows.

The protein percentage in colostrum and commercial milk
did not differ between the dietary groups in our study and may be
due to the protein level being similar in the diet between groups
(Table S1). It also could be explained by a meta-analysis
literature that concluded that protein was adequate in the diet
to support the level of performance, and most studies showed no
effect of oil supplementation on milk protein (21). In the present
study, cows fed any source of PUFA (n-6 or n-3) compared with
Frontiers in Immunology | www.frontiersin.org 7
saturated FA-supplemented cows produced colostrum with
lower IgG content, without affecting yield and chemical
composition. Garcia et al. (22) reported that multiparous cows
fed fat (saturated or rich in n-6 FA) produced colostrum with
higher IgG concentration compared with parous cows not
supplemented with fat. On the other hand, others reported
that cows fed n-6 but not n-3 produced colostrum with higher
IgG content compared with non-supplemented cows (23). Our
findings and those of others were not in complete agreement on
which fat enriched in n-6 PUFA had higher contents of IgG in
colostrum than saturated FA. Moreover, the IgG content data
(CON, 79.4–96.7 g/L vs. HN6, 46.8–61.3 g/L vs. HN3 54.9–64.1
g/L) obtained in our study were less than previous study values
(fat-supplemented 126 g/L vs. non-fat-supplemented 98 g/L)
(24). However, in the current study, the colostrum IgG
production was not affected by the type of FA (CON, 169–386
g; HN6, 183.91–289.38 g; HN3, 224.49–494.45 g; p = 0.26). It
meant that the PUFA treatment did not reduce the system to
produce IgG yield. On the other hand, the protein concentration
value in n-6 (15.18 g/100 g) or n-3 PUFA (15.48 g/100 g)
treatment was at least 2 g/100 g lower (p = 0.32) than that of
saturated FA (17.63 g/100 g), which was in line with our
correlation analysis, and another study showed that the IgG
content was highly positively related to protein in
colostrum (25).

Our results also found that the IgG content was highly
negatively correlated (r = -0.753, p < 0.01) with Ca content in
colostrum. Zn plays an important role in enzyme systems,
protein synthesis, and many other biochemical reactions (26).
Even though the treatment did not shift the Zn concentration in
A B

D E F

C

FIGURE 2 | Blood immune cell counts in neonatal calves. CON: control treatment (saturated fatty acid source), n = 12. HN3: extruded flaxseed treatment (n-3 PUFA
source), n = 12. HN6: extruded soybean treatment (n-6 PUFA source), n = 13. SEM, standard error of the mean; Diet, diet treatment effect; Time, the calving time
effect; INT, the interaction effect between diet effect and time effect. Values in the same sampling time point between treatments denoted by different superscript
lowercase letters indicate significant differences (p < 0.05), whereas those denoted by the same letters or no letters are not significantly different (p > 0.05). (A–C):
the blood immune cell counts in neonatal calves; (D–F): the percentage of the blood immune cell in neonatal calves.
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FIGURE 3 | Blood immunoglobulin in maternal and neonatal cows. CON: control treatment (saturated fatty acid source), n = 12. HN3: extruded flaxseed treatment
(n-3 PUFA source), n = 12. HN6: extruded soybean treatment (n-6 PUFA source), n = 13. SEM, standard error of the means; Diet, diet treatment effect; Time, the
calving time effect; INT, the interaction effect between diet effect and time effect. IgA, immunoglobulin A; IgG, immunoglobulin G; IgM, immunoglobulin M. (A–C) The
blood immunoglobulin in maternal cows; (D–F) the blood immunoglobulin in neonatal calves. Values in the same sampling time point between treatments denoted by
different superscript lowercase letters indicate significant differences (p < 0.05), whereas those denoted by the same letters or no letters are not significantly different
(p > 0.05).
A B

DC

FIGURE 4 | The correlation between colostrum IgG content and colostrum composition. r: Pearson correlation coefficient. Effects were considered significant at p <
0.05, whereas a tendency was assumed for 0.05 ≤ p ≤ 0.10. n = 35. IGG, immunoglobulin G; Ca, calcium; Zn, Zinc. (A–D): the correlation of macro-element and
trace element with IgG concentration in colostrum.
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colostrum or commercial milk, the HN3 significantly increased
the overall Zn concentration. More Zn in milk fed to calves
would benefit the growth of calves (27). It suggested that the diet
added with HN3 could potentially increase the milk value for
calves. As expected, the commercial milk content of protein,
Frontiers in Immunology | www.frontiersin.org 9
lactoferrin, Ca, and Zn was significantly lower than that of
colostrum. The results were in line with the study of Georgiev
(28), who demonstrated that the chemical composition of
colostrum (solid nonfat extract, milk protein) decreases rapidly
with time, so that by the third day postpartum, it is already
TABLE 2 | Effects of dietary n-6 or n-3 PUFA on milk immunoglobulin of transition cows from 28 days before calving to 28 days postpartum.

Item1 Diet2 SEM3 p-value

CON HN6 HN3 Diet3 Time3 INT3

IgA (mg/ml)
Colostrum 0.17 0.21 0.35 0.04 0.18 NA4 NA
Commercial milk 0.63 0.70 0.72 0.05 0.73 NA NA
Overall 0.48 0.54 0.60 0.05 0.35 <0.01 0.78
IgG (mg/ml)
Colostrum 85.90a 56.50b 59.15b 4.32 <0.01 NA NA
Commercial milk 0.94 1.06 0.97 0.05 0.64 NA NA
Overall 29.26a 19.54b 20.37b 5.46 <0.01 <0.01 <0.01
IgM (mg/ml)
Colostrum 0.13 0.18 0.24 0.03 0.43 NA NA
Commercial milk 0.46 0.63 0.55 0.07 0.63 NA NA
Overall 0.35 0.48 0.44 0.06 0.64 <0.01 0.85
IgG (g)
Colostrum 301.28 236.81 412.13 42.87 0.26 NA NA
Commercial milk 35.54 46.47 45.39 2.56 0.16 NA NA
Overall 124.12ab 109.92b 167.64a 25.94 0.04 <0.01 0.05
July 2022 | V
olume 13 | Article 8
1 Colostrum means colostrum samples obtained at the first milking after calving; commercial milk means milk samples obtained at 14 days and 28 days post-calving. IgA, immunoglobulin
A; IgG, immunoglobulin G; IgM, immunoglobulin M.
2 CON: control treatment (saturated fatty acid source), n = 12; HN3: extruded flaxseed treatment (n-3 PUFA source), n = 12; HN6: extruded soybean treatment (n-6 PUFA source), n = 13.
3 SEM, standard error of the mean; Diet, diet treatment effect; Time, the colostrum or commercial milk effect; INT, the interaction effect between diet effect andmilk effect. Values in the same
row denoted by different superscript lowercase letters indicate significant differences (p < 0.05) between treatments, whereas those denoted by the same letters or no letters are not
significantly different (p > 0.05).
4 NA, not applicable.
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FIGURE 5 | Blood inflammatory cytokines in maternal cows. CON: control treatment (saturated fatty acid source), n = 12. HN3: extruded flaxseed treatment (n-3
PUFA source), n = 12. HN6: extruded soybean treatment (n-6 PUFA source), n = 13. SEM, standard error of the mean; Diet, diet treatment effect; Time, the calving
time effect; INT, the interaction effect between diet effect and time effect. IL, interleukin; TNF, tumor necrosis factor. (A–E): the different blood inflammatory cytokines
in maternal cows. Values in the same sampling time point between treatments denoted by different superscript lowercase letters indicate significant differences (p <
0.05), whereas those denoted by the same letters or no letters are not significantly different (p > 0.05).
97660

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Sun et al. Immunity Index of Transition Cows
similar to normal milk. Cow colostrum also contains
components with a concentration lower than 1 mg/ml (trace
components, i.e., enzymes, IgA, IgM, etc.). Despite their low
concentrations, trace components are physiologically important
for both the local protection of the udder and the growth and
development of neonates (28). In our study, the contents of
lysozyme, peroxidase, IgA, and IgM were higher in commercial
milk than those in colostrum. It could be explained by Levieux
(29), who revealed that trace elements decrease abruptly during
the first milking postpartum and then increase in late lactation
that may be due to the udder involution before calving. In
addition, it also has been confirmed that lactoperoxidase
content in bovine colostrum is low and reaches its maximum
concentration between 3 and 5 days postpartum (30). Moreover,
the diet enriched in n-3 PUFA increased the commercial milk
lactoperoxidase content. Lactoperoxidase is responsible for
catalyzing the oxidation of specific molecules using H2O2 to
generate reactive products with high antibacterial activity (31). It
indicated that the colostrum was vulnerable to bacterial
contamination, while n-3 PUFA supplementation could
increase the bacteriostatic ability of commercial milk.

In this study, the commercial milk production was increased
in cows fed n-3 or n-6 sources of PUFA when compared with
those fed saturated FA sources. It was supported by a previous
study that showed that supplementation after calving with high
n-3 PUFA oilseed increased milk production of dairy cows in the
early stage of lactation (32). Furthermore, Petit (33) also found
that the milk production from the cows fed n-3 PUFA source
oilseed for the first 16 weeks of lactation was similar to the milk
Frontiers in Immunology | www.frontiersin.org 10
yield of cows fed n-6 PUFA source oilseed but higher than that of
those fed protected palm oil. However, our results were not
completely in line with a recent meta-analysis literature that
suggested that the effects of n-3 PUFA source supplementation in
the diet on milk production of dairy cows seem to be neutral
(34). These different results could be explained by Onetti and
Grummer (35), who found that there was an interaction between
the stage of lactation and the amount of supplemental fat
observed, since supplemental fat increases milk production of
dairy cows in the early stage of lactation but not that of cows in
the mid-stage lactation, where milk fat depression occurred. In
addition, we consider that the n-3 or n-6 PUFA could improve
the colostrum and milk production that may be partially due to
the PUFA addition improving the mammary gland recovery
when cows transferred from pre-calving to post-calving. It was
supported by Hilakivi–Clarke et al. (36) who reported that the
PUFA could benefit the development of mammary glands.

Impaired neutrophil, mononuclear leukocytes, and
lymphocyte activity were observed in cows during the
periparturient period (37, 38). Mononuclear leukocytes protect
the body against invading pathogens and play an important role
in innate immunity. In contrast, lymphocytes play a critical role
in cell- and antibody-mediated adaptive immune responses (39).
The consequences of impaired function and killing activity of
neutrophils on disease incidence also have been reviewed
elsewhere (40–42), which suggested that neutrophils could
modulate the inflammatory microenvironment and exert direct
antimicrobial action. In this study, we found that the immune
cell counts (i.e., mononuclear leukocytes, lymphocytes, and
A B

D E

C

FIGURE 6 | Blood inflammatory cytokines in neonatal calves. CON: control treatment (saturated fatty acid source), n = 12. HN3: extruded flaxseed treatment (n-3
PUFA source), n = 12. HN6: extruded soybean treatment (n-6 PUFA source), n = 13. SEM, standard error of the mean; Diet, diet treatment effect; Time, the calving
time effect; INT, the interaction effect between diet effect and time effect. IL, interleukin; TNF-a, tumor necrosis factor a. (A–E): the different blood inflammatory
cytokines in neonatal calves. Values in the same sampling time point between treatments denoted by different superscript lowercase letters indicate significant
differences (p < 0.05), whereas those denoted by the same letters or no letters are not significantly different (p > 0.05).
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neutrophils) in maternal cows were reduced during the
prepartum period compared with those in the postpartum
period, which was in line with the reports of Harp et al. (43),
Kimura et al. (44), Nagahata et al. (45), and Roche et al. (46). Our
findings and these studies suggested that the function and killing
activity of immune cells may be reduced by decreasing the
numbers of the immune cells as a function of reduced
proliferation during the transition period. Interestingly, the
diet supplemented with high n-3 PUFA increased the maternal
cows’ neutrophil counts during prepartum and calving and
elevated neutrophil percentage at calving and during
postpartum. It suggested that the n-3 PUFA could potentially
improve the body’s defense against pathogen invasion by
increasing the immune cell counts in maternal cows during the
transition period.

Fetal calves are predominantly protected by the innate
immune system. The innate immune response mediated by
phagocytic cells (neutrophils and macrophages) does not fully
develop until late gestation, and there is a decline in functional
capacity as gestation approaches because of the increase in fetal
cortisol levels (47). The number of peripheral blood T cells
dramatically decreases beginning 1 month before calving as
they traffic and populate lymphoid tissues of fetal calves (48).
A subsequent decrease in the number of immune cells from
calving to 24 h after calving (post colostrum feeding) in newborn
calves was found in our study. It could be explained by Chase
et al. (49), who found that the circulating humoral components
of the innate system in newborn calves were quickly diminished
to less than 20% of the level circulating in adult cows at 1 day of
age. And then, the levels of complement in circulation gradually
increase and, by 1 month of age, increase to approximately 50%
of the level in adults (50). Therefore, the newborn calves were
very susceptible to infection due to the inhibitory innate immune
function. It is crucial to feed newborn calves with sufficient
colostrum (enriched in IgG) as soon as possible. The data
observed in this study showed that the diet enriched in n-3
PUFA increased the lymphocyte cell counts in neonatal calves. It
suggested that the n-3 PUFA could potentially increase the
neonatal calves’ lymphocyte immune function.

Inflammation is an evolutionarily conserved response
underlying many physiological and pathological processes. In
response to the stimuli associated with infection and tissue
injury, components of the innate and adaptive immunity initiate
coordinated responses and trigger inflammation (51). However,
an exaggerated inflammatory response would result in negative
effects on the transition cow. The previous study showed that all
cows experience some degree of systemic inflammation associated
with the pro-inflammatory cytokine increase several days after
parturition, and the magnitude and potential persistence of the
inflammatory state vary widely among cows, and several studies
have linked the degree of postpartum inflammation to increased
disease risk and decreased whole-lactation milk production (52).
These results were not completely consistent with those of our
study; we did not find a dramatic increase in pro-inflammatory
cytokines IL-1b and IL-6. In addition, the anti-inflammatory
cytokines IL-2 and IL-10 were observed to decrease after
Frontiers in Immunology | www.frontiersin.org 11
calving, which indicated that calving can decrease the ability to
control the inflammation status. Interestingly, we found that the
n-3 PUFA treatment could decrease the IL-1b concentration
during postpartum and increase IL-2 during prepartum. These
results agreed with those of Zhao et al. (53), who reported that the
concentrations of n-3 PUFA capable of binding Nuclear factor
kappa B (NFkB) declined during the transition period and
provided Nuclear factor kappa B (NFkB) effects such as limiting
the production of inflammatory cytokines such as IL-1b, IL-6, and
TNF. It might also explain why n-3 PUFA treatment decreased the
blood TNF in newborn calves, which could benefit the subsequent
health and growth of calves. Fortunately, we found that the n-3
PUFA could reduce the inflammation reaction of maternal cows
during the transition period by decreasing IL-1b and increasing
IL-2, which would help the dairy cows to transfer smoothly from
pregnancy to lactation and partially explained the increase of milk
production in n-3 PUFA treatment.
CONCLUSION

Our results suggested that the diets with similar levels of fat, fiber,
and protein, but containing extruded flaxseed (n-3 PUFA source)
or extruded soybean (n-6 PUFA source) instead of hydrogenated
saturated FA (enriched in C16:0 saturated FA), increased the milk
production of cows without altering the protein content and
decreased the IgG content without altering the IgG yield in
colostrum. The diet with the n-3 PUFA source could potentially
increase the body’s ability to defend against pathogen invasion in
maternal cows by increasing the neutrophil numbers and
percentage during the transition period. Meanwhile, the diet
with n-3 PUFA source could potentially reduce the
inflammation of the maternal cows during the postpartum
period and decrease the neonatal calves’ inflammatory cytokine
TNF content in serum. It also suggested that the highest milk
production in n-3 PUFA treatment may partially be due to these
beneficial alterations.
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