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Earlier investigations have revealed a surprising complexity and variety in the range of interaction between cells of the innate and
adaptive immune system. Our understanding of the specialized roles of dendritic cell (DC) subsets in innate and adaptive immune
responses has been significantly advanced over the years. Because of their immunoregulatory capacities and because very small
numbers of activated DC are highly efficient at generating immune responses against antigens, DCs have been vigorously used
in clinical trials in order to elicit or amplify immune responses against cancer and chronic infectious diseases. A better insight in
DC immunobiology and function has stimulated many new ideas regarding the potential ways forward to improve DC therapy
in a more fundamental way. Here, we discuss the continuous search for optimal in vitro conditions in order to generate clinical-
grade DC with a potent immunogenic potential. For this, we explore the molecular and cellular mechanisms underlying adequate
immune responses and focus on most favourable DC culture regimens and activation stimuli in humans. We envisage that by
combining each of the features outlined in the current paper into a unified strategy, DC-based vaccines may advance to a higher
level of effectiveness.

1. Introduction

Dendritic cells (DCs), originally described by Steinman and
Cohn [1], serve as a crucial link between innate and adaptive
immunity [2]. Although they represent only a small pop-
ulation of leukocytes, they are the most powerful antigen
presenting cells (APC) with the unique ability to activate
naive T cells [3]. As sentinel members of the innate immune
system, DCs respond to antigens and molecules contain-
ing pathogen-associated molecular patterns (PAMPs) or
damage-associated molecular patterns (DAMPs)—so-called
danger signals—by the generation of protective cytokines
[4]. As members of the acquired immune system, DCs re-
spond to these harmful molecules by efficient antigen uptake,
processing, and presentation, and hence DCs are crucial in
the initiation of adaptive immune responses. Besides their
potent capacity to stimulate naive T cells, effector T cells and

memory T cells, as well as B cells, they are also involved in the
maintenance of tolerance against harmless (auto)antigens
[4, 5].

Because of their immunoregulatory capacities and be-
cause very small numbers of activated DCs are highly effi-
cient at generating immune responses against antigens [6],
DCs have been vigorously used in clinical trials in order
to elicit or amplify immune responses against cancer and
chronic infectious diseases [7]. Although an impressive
amount of data has been obtained from these clinical trials
completed thus far, the outcomes were not in line with initial
expectations [8–10]. A critical issue in the development of
DC-based vaccines is that their ability to stimulate immune
responses depends largely on the activation state of DCs.
In this paper, we discuss the continuous quest for the
best in vitro conditions in order to generate clinical-grade
DCs with a potent immunogenic potential. For this, we
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explore the molecular and cellular mechanisms underlying
adequate immune responses and focus on optimal DC
culture regimens and activation stimuli in humans.

2. Origin and Subsets of DCs

DCs originate from CD34+ haematopoietic stem cells in the
bone marrow and circulate as precursors through the blood
stream to target tissues. Additionally, it is well established
that during physiological stress, monocytes are also a
source of DC precursors and differentiate into immature
DCs in the presence of GM-CSF and a variety of other
cytokines. Immature DCs take residence at sites of potential
antigen entry and are specialized in antigen capturing and
processing. They recognize the so-called pathogen-associated
molecular patterns (PAMPs) which are evolutionary con-
served structures, including microbial lipids, carbohydrates,
nucleic acids and intermediates of viral replication (double-
stranded (ds)RNA), via pattern recognition receptors (PRRs)
[11]. There are several types of PRRs that are involved in
innate recognition of pathogens, including toll-like recep-
tors (TLRs), nucleotide-binding-oligomerization-domain-
(NOD-like) receptors, interferon (IFN-induced) dsRNA-
activated protein kinase (PKR), and RIG-I-like helicases [12].
Once DCs have captured a foreign nonself-antigen, they
undergo a highly regulated maturation process and remodel
into fully activated antigen-presenting DCs [13] capable
to elicit effective immune responses. Indeed, mature DCs
express high levels of several costimulatory molecules as well
as major histocompatibility complex (MHC) molecules on
their surface [14]. Maturation of DCs also induces the pro-
duction of chemokines that attract naive and memory T cells.
During the maturation process, DCs exit the nonlymphoid
tissues to migrate via afferent lymph to lymphoid tissues.
Subsequently, mature DCs will activate (naive) T- and B-
lymphocytes that recognize the presented antigen as peptide-
MHC complexes on the surface of the DC. Yet, additionally,
positive amplification of antigen presentation via costimu-
lation and secretion of various cytokines is also crucial to
induce proper immune responses [3, 15] (cfr. 3.1).

Besides the above-delineated classical view of the DC life
cycle, it has gradually become clear that DCs do not rep-
resent a homogeneous population. Briefly, the first division
is the distinction between plasmacytoid and myeloid or
conventional DCs (cDCs). Plasmacytoid DCs (pDCs), also
referred to as type I IFN-producing cells (IPCs), are the key
effectors in the innate immune system because of their extra-
ordinary capacity to produce type I IFN upon viral infection
[16, 17]. The conventional DCs can be further subdivided
according to their localization: (i) lymphoid organ-resident
DCs, (ii) peripheral tissue-resident DCs (e.g., langerhans
cells and interstitial DCs), and (iii) circulating DCs. In
human blood, differences in DC subsets can be identified
based on differential expression of specific markers: pDCs
express CD303 (BDCA-2), CD304 (BDCA-4), and CD123
(IL-3Rα), whereas cDCs are characterized by their expression
of CD1c (BDCA-1) and CD11c [18, 19]. In addition, pDCs
and cDCs also express a different set of toll-like receptors

TLRs [20]. In brief, pDCs express mainly TLR7 and TLR9,
whereas cDCs exhibit strong expression of TLR1, TLR2,
TLR3, TLR4, and TLR8. Accordingly, pDCs mainly recognize
viral components and produce a large amount of IFN-α. In
contrast, cDCs recognize bacterial components and produce
proinflammatory cytokines such as TNF-α, IL-6, and IL-
12p70 to activate proinflammatory T-cell subsets [T helper
type 1 (Th1)/Th17] and consequently recruit cytotoxic
T-lymphocytes (CTL). Because of the unique biological
function of each DC subset, it was proposed that a specific
DC lineage determines the outcome of T-cell contact, that
is, tolerance or immunity. Indeed, it was initially thought
that cDCs were inducers of immunity, while pDCs induced
tolerance [21]. However, nowadays pDCs are believed to be
the key effector cells in the early antiviral innate immune
response by producing large amounts of type I interferons
upon viral infection. Furthermore, it has been shown that
pDCs augment immune responses by cross-talking with
cDCs by the production of IFN-α, thereby playing a key
role in effective stimulation of adaptive immunity as well. In
addition to IFN-α production, it has been demonstrated that
mouse pDCs also express CD40L, which activates cDCs to
produce IL-12p70 [22] (Figure 1).

Recently, several groups identified a unique human DC
subset (CD11c+BDCA-3+) as the homologue of mouse
CD8α+ DC [23–26]. Of particular importance is their supe-
rior antigen cross-presentation capacity, expression of the XC
chemokine receptor 1 (XCR1), and their capacity to produce
high levels of bioactive IL-12p70. Initially, it was suggested
that BDCA-3+ DCs and BDCA-1+ DCs may represent mat-
urational stages of the same cell type. The fact that BDCA-3
expression is induced on a reasonable proportion of BDCA-
1+ DCs after culture-induced maturation may be considered
an argument in favour of the former concept. However, since
the same observation was also made for IL-3-stimulated
pDC, such data could also be taken as an argument in
favour of a similar relationship between BDCA-3+ DCs and
pDCs [27]. Nowadays, it is well accepted that BDCA-3+

DCs represent a unique myeloid DC subset that effectively
activates CD8+ CTL, in analogy with mouse CD8α+ DCs.
This supports a potential key role for the myeloid BDCA-
3+ DC subset in immunity to viruses, as well as other
intracellular pathogens [28–30] and may have important
implications in the design of human DC vaccines.

3. The Immune System against Cancer and
Chronic Infectious Diseases

3.1. 3-Signal Theory for T-Cell Activation. Therapeutic vac-
cines to treat chronic infectious diseases (such as human im-
munodeficiency virus (HIV), cytomegalovirus (CMV), hep-
atitis B virus (HBV), and hepatitis C virus (HCV)), or num-
erous tumor types (including melanoma, leukaemia, breast,
and prostate cancer) mainly aim to induce antigen-specific
cell-mediated immunity to clear infected cells and eliminate
tumor cells. Recent studies have shown that DCs play a
critical role in directing effector T-cell responses towards a
Th1, Th2, Th17, or regulatory T cell (Treg) response [31, 32].
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Figure 1: Cooperative action of different DC subsets to tackle both innate and adaptive immunity for clearance of tumors and viral infection.

Briefly, upon maturation, DCs upregulate the expression of
certain products necessary to supply T lymphocytes with
the 3 signals that will determine their activation status and
general fate [33]: antigen-specific signalling via the T cell
receptor (TCR), mediated by the binding of MHC-peptide
complexes to the TCR drives the initial interaction between
DCs and T cells (i.e., signal 1). Costimulation by surface
molecules on APC, such as DCs, can either amplify or
regulate the interaction with T cells (i.e., signal 2) [34].
Costimulatory molecules can be divided in two classes: Ig
superfamily members, including CD28, that interact with
several members of the B7 family (CD80/CD86) [35–37]
on the one hand, and TNF receptor superfamily members,
including CD27 and CD40, that bind to membrane-bound
proteins of the TNF superfamily [35, 38, 39] on the other
hand. CD28 is expressed on T cells, and is the receptor for
CD80 and CD86 expressed on activated APC [37]. Ligation
of CD28 provides costimulatory signals required for T cell
activation: (i) altering the threshold level of TCR ligation
required for activation, (ii) reducing the time needed to
stimulate naive T cells and (iii) enhancing the magnitude
of the T cell response. Without CD28 signalling, the T cell
would either become apoptotic or anergic [40]. The B7 fam-
ily of costimulatory molecules has been extensively reviewed
elsewhere [41, 42]. CD27, a member of the TNF receptor
superfamily, is constitutively expressed on the surface of
naive T cells, in contrast to other members of the TNF
receptor family [43] and can thus play a role during the
initiation of T cell responses [35]. The contribution of CD27
to the immune response is dependent upon CD70 expression
[44]. While during primary T cell activation there seems to

be a certain redundancy in CD80/CD86 and CD70 costim-
ulation, it is triggering of CD27 on T-lymphocytes by its
ligand CD70 that enhances the magnitude of antigen-specific
cytotoxic T cell reponses [38, 45], which is required for effec-
tive immunotherapy. CD27/CD70 interaction increases the
initial expansion and survival of antigen-specific T cells [46]
and improves their cytotoxic capacity [47]. Furthermore,
a recent study has shown that CD70 expressed on mouse
DEC205+ cDCs represents an IL-12p70-independent Th1-
inducing factor [48] (vide infra). Taken together, enhancing
CD70 expression on DCs would lead to the development
of a vaccine strategy capable of facilitating the CD27/CD70
interaction, and hence the induction of an adequate anti-
tumor or antiviral immune response. Finally, mature DCs
can secrete a variety of pro- and anti-inflammatory cytokines
for differentiation from naive T cells to effector T cells (i.e.,
signal 3). One well-studied third signal agent is interleukin
(IL)-12p70 for the induction of Th1 and CTL [49], which
are essential for efficient tumor/pathogen rejection [50]. IL-
12p70 is a multifunctional proinflammatory cytokine with
pleiotropic effects and comprises two subunits: p35 and p40.
Highly-coordinated p35 and p40 gene expression results in
the formation of the biologically active form IL-12p70 and
is essential for initiation of an effective immune response.
Indeed, IL-12p70 activates natural killer (NK) and T cells
to produce mainly IFN-γ, it favours the generation of CTL
and it enhances the cytotoxic activation of activated NK cells
[51]. Besides the activation of innate and antigen-specific
adaptive immunity against the tumor cells, the antitumor
effects of IL-12p70 are based on the ability to inhibit tumor
angiogenesis through IFN-γ [52, 53]. In addition, IL-12p70
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is crucial in the early phase of host defence against microbial
infections [52, 54, 55], where it is produced within a few
hours after bacterial, fungal or parasitic infection [52]. Thus,
to develop an efficient vaccine against tumors or chronic
infectious diseases, DCs producing the biologically active
form IL-12p70 are desired [56].

3.2. Other Arms of Cellular Immunity Required to Fight Can-
cer and Chronic Infectious Diseases. Rather than simply re-
cruiting Th1 cells and CTL, vaccines should be designed
to recruit other cellular arms of the immune system as
well, for example, NK cells and antibody-producing B cells.
In this perspective, it has been shown that DCs also play
a key role in the activation of NK cells that can have
powerful effects against tumor cells, particularly those with
attenuated MHC expression [57]. Indeed, in response to DC-
derived cytokines, such as IL-12p70 and IL-18, NK cells are
able to produce IFN-γ [58]. In turn, exposure to signals
provided by activated NK cells subsequently induces DCs to
mature into a highly stimulatory phenotype that produces
sustained IL-12p70, thereby promoting adaptive immunity
[59, 60]. Overall, these findings support the concept to
include DC-NK interactions in order to improve DC-
based immunotherapy. Furthermore, recent studies that have
resulted in reappraisal of the potential of antibodies in the
control of tumors and viruses support the strategy that
DC-based vaccines should also be designed with antibody
production in mind [61–63]. In addition to priming of T
cells and NK cells, the group of Banchereau have recently
demonstrated that DCs may also directly signal naive B-
cell differentiation through the production IL-12p70 [64]
and indirectly by promoting the differentiation of IL-21-
producing T follicular helper cells (Tfh) in an IL-12p70-
dependent manner [65, 66]. These observations suggest
that IL-12p70 could constitute a potent vaccine adjuvant
in situations when both the cellular and humoral arms of
the immune system are required, such as cancer [62, 63]
and HIV [61]. Indeed, studies with rhesus macaques have
concluded that IL-12p70 enhances the induction of specific
antibody responses in vivo when used as vaccine adjuvant
[67–69]. Noteworthy, IL-12p70 also possesses a number of
powerful nonimmunologically related anticancer activities.
For example, IL-12p70 plays a role as an antiangiogenic agent
that can strongly inhibit the formation of neovasculature
[53].

Taken together, the goal of many DC-based vaccination
protocols is to cultivate DCs that are capable of expressing
immunostimulatory cytokines (IL-12p70) and costimulatory
molecules (CD70) in parallel with antigen presentation.
Since expression of costimulatory molecules and cytokine
secretion can be influenced by environmental signals during
DC maturation, it is necessary to find an optimal cytokine
environment for DC maturation in order to create a powerful
vaccine against several cancer types or chronic infectious
diseases. Various attempts have subsequently been made in
order to harness DC to achieve most powerful immunity,
including strategies to enhance or stabilise antigen-specific
stimulation, as well as essential costimulatory modulation of
DCs.

4. Harnessing DCs for Clinical Use

4.1. Antigen Loading Strategy. To maximize the efficiency and
stability of antigen presentation by DCs, several strategies
have been developed. These include direct in vivo delivery
of antigen to circulating DCs in patients [70], as well as a
variety of ways for in vitro loading of DCs with antigen.
Indeed, antigens coupled to antibodies specific for DC mark-
ers, such as 33D1 or DEC-205, have already been used in
preclinical models to deliver antigens to DCs in vivo [71].
Additionally, DCs transduced ex vivo with tumor- or viral-
derived mRNA or DNA [72–74], fused with tumor cells
[75, 76], or directly loaded with tumor- or viral-derived
peptides [77, 78] have been tested for the induction of
antigen-specific immune responses in vitro and in vivo.
While the use of peptides as a source of antigen has
several limitations when implementing clinical trials with
antigen-loaded DCs, including human leukocyte antigen
(HLA) restriction as well as a limited number of identified
immunodominant tumor- and virus-associated antigens, we
[79] and others [80–84] have previously shown that DCs
transfected with mRNA-encoding antigens are superior to
other loading strategies to induce immune responses. In
general, there are several advantages regarding the use of
mRNA for antigen loading of DCs [72, 85] as compared to
tumor-associated peptides. mRNA transfection will generate
multiple antigenic epitopes, possibly more immunogenic
than those already characterized, independent of the patient’s
HLA haplotype. In addition, mRNA can be isolated and
amplified from autologous tumor or virally infected cells in
order to obtain mRNA encoding patient-specific antigens
[86–88]. Moreover, because mRNA only has a short half-
life and does not integrate in the host genome, genetic
modification of DCs by mRNA electroporation is considered
to be highly safe and an easily applicable clinical tool.

4.2. Different Sources for Isolation or Generation of DCs. The
earliest studies on DC vaccination were initiated in 1993 and
utilized whole blood leukapheresis products with subsequent
gradient centrifugation procedures to enrich for rare imma-
ture DC precursors of the peripheral blood before antigen
loading and maturation [89]. However, because of low yield
of circulating DCs and difficulty to obtain them, the clinical
utility of DC vaccines was initially limited. In a second
attempt to directly isolate DCs from peripheral blood, they
were first mobilized by cytokines such as Flt3-ligand [90, 91].
Unfortunately, the in vivo expanded cells lacked efficient
protein uptake properties [89]. Moreover, although blood
DCs from patients with a malignant or chronic infectious
disease may seem to have normal distributions, they might
have some functional defects, such as a lower expression of
costimulatory molecules or an impaired capacity to stimulate
autologous antigen-specific T cells [92, 93]. Currently, DCs
for vaccination studies are generally obtained in large
numbers after in vitro generation. At first, human DCs
were cultured from CD34+ haematopoietic progenitors in
the presence of granulocyte-macrophage colony stimulating
factor (GM-CSF) and tumor necrosis factor alpha (TNF-α)
[94, 95]. However, only few studies that used CD34+-derived
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DC preparations for vaccination protocols in clinical phase
I studies have been reported [96, 97]. Nowadays, generating
DCs from peripheral blood CD14+ monocytes is a generally-
accepted method and is extensively used in experimental and
clinical vaccination studies. In doing so, large numbers of
monocyte-derived (mo-)DCs are obtained without necessity
for pretreatment of donors with any cytokines to mobilize
DC progenitor cells [98]. Yet, the design of DC-based clinical
trials varies greatly, including DC preparation, and therefore,
standardization and further improvement for clinical use are
needed [99].

While a combination of granulocyte-macrophage col-
ony-stimulating factor (GM-CSF) with IL-4 is most com-
monly used to induce immature DCs from monocytes [100,
101], a variety of other cytokines, such as IFN-α [102–
104], TNF-α [105, 106], and IL-15 [107] have been used
in combination with GM-CSF for this purpose. In this
perspective, Santini et al. [102] as well as Arimoto-Miyamoto
et al. [34] reported independently that IFN-α induces rapid
differentiation of freshly isolated GM-CSF-treated human
monocytes into mo-DCs endowed with potent functional
activities, both in vitro and in vivo [102, 103], possibly
mediated by IFN-α-dependent induction of CD70 expres-
sion [34]. It must be noted however that IFN-α also induces
activity of RNases [108], and can not therefore be used
in in vitro culture regimens for DCs when mRNA-based
in vitro modification of DCs is wanted [109]. In addition,
others have demonstrated that CD14+ monocytes respond
to IL-15 by undergoing morphological transformation and
acquiring characteristic DC features that facilitate antigen-
specific responses of T cells [110]. In contrast to IFN-α-
modulated DCs, mRNA electroporation appeared to serve as
an efficient antigen-loading strategy for IL-15-treated DCs
[111]. Furthermore, Chomarat et al. described that TNF-
α facilitates the induction of adaptive immunity also by
promoting DC differentiation from CD14+ blood precursors
in vitro [106]. However, it has been reported in contrast
that TNF-α-treated semi mature DCs induce tolerance in
experimental acute encephalitis (EAE), a mouse model for
multiple sclerosis [112]. Moreover, due to strong plastic
adherence before and to a lesser extent also after maturation,
IL-15 and TNF-α treatment for DC generation results in a
lower DC yield [34]. Consequently, the well-established and
generally used combination of GM-CSF and IL-4 [100, 101]
is the most efficient method to obtain mo-DCs that express
acceptable levels of CD70 with minimal loss of cells by
adherence [34] and with good compatibility with a mRNA
approach [79].

4.3. Various Stimuli to Obtain Mature DC. Regardless of how
they are generated, it is important that DCs are activated
to a mature phenotype, since immature DCs are no longer
considered as competent candidates for vaccination trials
because of their low T-cell activation potential [113–115].
Most DC culture regimens that have been commonly
employed in clinical trials have activated DCs through the
use of individual cytokines associated with inflammation
[101] or inflammatory cytokine cocktails [116].

Indeed, in an attempt to resemble a physiological envi-
ronment for DC maturation, balanced cocktails of matura-
tion agents that may be the most representative of various
inflammatory states have often been used. In 1996, Romani
was the first to describe a method to mature DCs from
human blood by using a conditioned medium containing an
unidentified cytokine mixture produced by adherent periph-
eral blood mononuclear cells (PBMC) stimulated by human
immunoglobulins or fixed Staphylococcus aureus Cowan I
strain [98]. Only one year later, Morse and colleagues
described a way to mature mo-DCs by adding TNF-α to the
culture medium. TNF-α appeared to enhance the number
of cells expressing the maturation marker CD83, which
seemed to be the most potent allostimulatory cells in mixed
lymphocyte reactions [117]. Also, Jonuleit et al. reported
for the first time a well-defined cytokine cocktail to induce
DC maturation, consisting of IL-1β, IL-6, TNF-α, and PGE2

[116]. This combination of proinflammatory mediators
represents current “golden” standard for activation of DCs,
although the concentration of the diverse components varies
among studies. Fully-mature DCs induced by this combi-
nation of inflammatory cytokines have been consistently
observed as superior to immature DCs in promoting a
higher degree of specific T-cell priming in vitro and in vivo.
While PGE2 increases the expression of CCR7 and hence
the capacity of DCs to migrate to the regional lymph nodes
through chemotaxis by CCL-19 and/or -21 [118], PGE2 also
inhibits IL-12p70 secretion by DCs [56]. Although some
details remain incompletely clarified, expression of IL-12p70
appears to be under unusually tight regulation and requires
at least 2 signals activating both MyD88 (myeloid differentia-
tion factor 88)- and TRIF (TIR domain-containing adapter-
inducing IFN-β)-dependent pathways simultaneously for
maximal expression [119, 120]. Of note, TLRs, commonly
used for activation of DCs, are divided in those that
are MyD88-dependent and those that are TRIF-dependent,
hence explaining observed requirements of multiple TLR
engagement for maximized IL-12p70 production. In this
perspective, mature DCs with the potential to produce high
amounts of biologically active IL-12p70 (10–15 ng/mL) were
obtained by Mailliard et al. in 2004, who used a combination
of IL-1β, TNF-α, IFN-α, IFN-γ, and poly I:C [121]. Although
these mature mo-DCs displayed a slightly decreased migra-
tory capacity [121], they induced significantly more antigen-
specific cytotoxic T cells than did the “golden standard”
counterparts, dependent on the high IL-12p70 secretion.
In 2007, Zobywalski et al. proposed a cytokine cocktail
consisting of TNF-α, IL-1β, IFN-γ, R848 and PGE2 as the
best cocktail to allow large-scale processing of clinical-grade
mo-DCs with the capacity to secrete IL-12p70 [56]. Addition
of poly I:C to this cocktail significantly increased IL-12p70
production even more, yet it disabled the mature DCs to
express the transgene after exogenous RNA electroporation
and it led to a decline in cell viability [56]. Dohnal et al.
used a mixture of LPS and IFN-γ to mature DCs [122].
Although high IL-12p70 secretion by mature mo-DCs was
previously attributed to the addition of IFN-γ [121], IFN-
γ also appeared to be responsible for the low migratory
ability of DCs cultivated in the presence of LPS and IFN-γ
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[122, 123]. Nevertheless, this migratory problem could be
fixed by including PGE2 in the maturation-inducing cytokine
cocktail [123, 124]. In addition, whereas DC maturation by
TLR ligand alone (including LPS, CpG, and poly I:C) has
been reported to increase expression of classical activation
markers as well as many inflammatory cytokines [125], a
TLR agonist alone does not result in a substantial CD8+ T-
cell response, which is probably due to no or very low levels of
IL-12p70 secretion as well as insufficient induction of CD70
by TLR ligand stimulation alone [126]. According to Sanchez
et al., expression of CD70 on mo-DCs requires combined
TLR/CD40 stimulation [125]. In preliminary experiments,
we experienced that addition of IFN-γ alone to a cocktail
of proinflammatory cytokines is neither enough for optimal
CD70 induction on mo-DC (unpublished data). In contrast,
addition of IFN-γ in combination with the TLR7/8 agonist
R848 to the standard maturation cocktail from which IL-
6 was omitted resulted in a significant increase in CD70
expression (unpublished data).

From the above-mentioned observations, it may be
evident that each compound added to a cytokine cocktail can
influence DC phenotype and function in its own way and the
“ideal” maturation mixture still needs to be well considered.
Taken together, the “ideal” maturation cocktail to prime
Th1-polarizing mo-DCs must contain PGE2 [123, 124], for
its migration-inducing potential, a TLR ligand (e.g., LPS
[125] or R848 (own unpublished data), but not poly I:C
[56]) in combination with CD40L [125] or IFN-γ [56], and
some proinflammatory cytokines that have a positive impact
on DC maturation (e.g., TNF-α [117] and IL-1β [116]). In
addition, the cocktail must be free of IL-6 which has been
described to inhibit IL-12p70 secretion [34, 56], while IL-4
[126] and IL-10 [126] need to be eliminated from the cocktail
as well, since these cytokines prevent CD70 expression.

Alternatively, one can optimise DC immunogenicity
through molecular modification of the cells [109], for exam-
ple, by selective overexpression of genes encoding immune-
stimulatory signals (e.g., IL-12p70 [127, 128], CD40 or
CD40 ligands [129, 130], and CD80/CD86) or by selective
downmodulation of negative regulatory molecules, such as
IL-10 [131, 132], IDO [133], SOCS1 [134, 135], and TGF-
beta [136].

4.4. Influence of Different Oxygen Levels and Culture Media on
Mo-DC Physiology. Mo-DC generation as well as maturation
does not solely depend on the cytokine environment, but
can also be influenced by oxygen levels, culture media and
medium supplements. Mo-DCs are generally differentiated
ex vivo in incubators that maintain atmospheric oxygen
levels of 21% O2 in combination with 5% CO2. In contrast,
DCs do not come across such high oxygen levels in vivo.
Indeed, the oxygen levels in tissues are usually 3–5% [137],
whereas approximately 12% in arterial blood [138]. In many
inflamed and tumor tissues, even extremely low oxygen levels
(<1%) have been found [139]. Therefore it is evident that
DCs experience rapid changes of oxygen supply during their
migration in different tissues. Although it is well recognized
that tissue microenvironments are involved in regulating the

development and function of immune cells, including B-
and T cells, only few studies have investigated the effect of
hypoxia (<1% oxygen saturation) or physiological oxygen
levels (±3% oxygen saturation) on the differentiation of
human DCs from progenitors and their maturation. Yang et
al. reported that monocytes remain able to differentiate into
DCs under hypoxia. However, these hypoxia-conditioned
DCs displayed poor T cell-stimulatory activity and shifted
towards a Th2-stimulatory phenotype [140], presumably
as a consequence of the marked reduction of MHC class
II and costimulatory molecule expression, [141] as well as
of reduced Th1-polarizing cytokine secretion [140, 141].
The observed inhibition of DC function by hypoxia could
possibly explain why most tumors can efficiently escape from
host immune surveillance. However, Wang et al. showed only
one year later that reoxygenation of hypoxia-differentiated
DCs results in complete recovery of their mature phenotype
and function, including a strong ability of the reoxygenated
DCs to drive immune responses towards a proinflammatory
Th1/Th17 direction [141]. Besides hypoxic conditions, one
study investigated the influence of physiological oxygen levels
on DC physiology and antigen-presenting capacity. Sur-
prisingly, no difference in expression of surface molecules
(CD54, CD40, CD83, CD86, HLA-DR, CXCR4, CCR7) nor
secretion of TNF-α, IL-6, and IL-10 was observed between
DC cultures under physiological (3%) or atmospherical
(21%) oxygen levels [138]. Albeit that DCs stimulated with
LPS or CD40L under physiological O2 conditions secreted
higher amounts of IL-12p70, these DCs did not elicit
increased CD8+ T-cell responses in vitro, as measured by
IFN-γ secretion [138]. Taken together, there is still some
controversy on whether physiologically or atmospherically
oxygen levels must be used for DC culture and not enough
data exist to robustly support a conclusion.

For optimal production of clinical-grade DCs from peri-
pheral blood monocytes, it is also important to choose the
appropriate culture medium as well as potential serum sup-
plements. Initially, most mo-DCs used for clinical trials
were generated in medium supplemented with plasma or
serum, such as fetal bovine serum (FBS) containing xenol-
ogous proteins. For this, FBS can be immunogenic and
possibly transfer bovine-related infections, including bovine
spongiform encephalopathy [98, 142]. However also the
use of autologous or allogeneic (pooled) serum derived
from patients or healthy controls, respectively, might lead
to undesired immunomodulatory ingredients that can affect
DC phenotype and function [143]. Therefore, it is clear that
by eliminating the need for serum, an undesirable variable is
removed making the medium more defined and consistent
[142, 143]. For this reason, several clinical-grade serum-
free media are now commercially available and have been
tested, including XVivo15, XVivo20, and AIMV [98, 144,
145]. Although so far only a small amount of studies have
compared mo-DCs differentiated in serum-free medium
with cells cultured in medium containing serum, they all
agree that serum-containing media were more able to gen-
erate mature mo-DCs as compared with serum-free media
[143, 145, 146]. The latter resulted mainly in the generation
of semimature mo-DCs that express CD83 (a mature DC
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marker [147]) as well as CD1a (an immature DC marker
[98, 101]), and were slightly but consistently less able to
produce IL12p70 in response to maturation-inducing stimuli
[142, 143]. Other characteristics, including yield, surface
expression of maturation markers, in vitro survival, migra-
tory capacities and induction of lymphocyte proliferation,
were comparable between DCs differentiated in serum-free
or serum-containing media [99, 143, 145, 146]. In vivo assays
following transfer of such mo-DCs generated in serum-
free medium into humans are needed to decide whether
the limited difference in CD1a expression and cytokine
production is of true biological relevance.

5. Taking DC into the Clinic

5.1. Completed and Ongoing Clinical Trials. Despite the use
of mature DCs in vaccination trials, results from multiple
clinical trials with DC-based vaccines have been contradic-
tory and only fractions of enrolled patients show potent
antitumor or antiviral immune responses with moderate
clinical response rates (approximately 10–15%) (reviewed in
[10, 148–151]) or partial control of viremia and immune
reconstitution [77, 152–154], respectively. Several studies
suggested that this is because of inefficient activation of Th1-
polarized responses due to incomplete DC maturation [155–
157]. For this, different strategies are currently being pursued
in order to improve the efficacy and outcome of DC-based
cancer vaccines. Considering the above-mentioned powerful
immune-stimulatory properties possessed by IL-12p70, DC-
based vaccination strategies may consistently benefit from
incorporation or endogenous induction of this cytokine. In
a first phase I clinical trial by the group of Czerniecki [158],
13 breast cancer subjects were injected intranodally with
short-term DCs activated with a cytokine-cocktail consisting
of IFN-γ and LPS in order to induce IL-12p70-secreting
DCs. The authors reported induction of robust detectable
immunity as evidenced by in vitro monitoring of circulating
vaccine-induced antigen-specific CD4+ and CD8+ T cells, as
well as both T-and B-cell infiltrates into tumor region as
well as dramatic reductions in tumor volume. Additionally,
Dohnal et al. [122] also showed the safety and feasibility
of IFN-γ/LPS-activated DCs for the treatment of paediatric
cancer patients. Besides that no adverse events were reported,
they also demonstrated the potential of IL-12p70-secreting
DCs to induce cellular immune responses. It should, how-
ever, be noted that Traxlmayr et al. [159] reported IL-12p70-
dependent proliferation of immunosuppressive γδ T cells
in cancer patients vaccinated with IL-12p70-secreting DCs,
pointing to a negative regulatory feedback mechanism for
DC-controlled immune responses.

Furthermore, it has been demonstrated by others [160–
162] that DCs electroporated with mRNA encoding CD40
ligand, CD70, and constitutively active toll-like receptor 4,
so-called TriMix DCs, display increased potential for the
induction and amplification of tumor-specific responses in
patients with advanced melanoma. Noteworthy, a positive
delayed-type hypersensitivity assay (DTH) postvaccination
correlated with Il-12p70 secreting capacity of vaccinated
DCs.

5.2. Overcoming Tumor and Virus Immune Escape. One of
the major obstacles against successful DC vaccination, is cer-
tain immunosuppressive mechanisms triggered by the tumor
cells or viruses. Indeed, under the influence of the tumori-
genic microenvironment, the host DCs may acquire a tolero-
genic phenotype. These tumor-conditioned DCs could, in
return, produce a variety of immunosuppressive molecules
and thus further supporting tumor immune escape [163].
For example, many tumors produce IL-10 [164], a potent
immunosuppressive cytokine. We (unpublished data) and
others have previously shown that DC differentiation and
functional activities are tightly regulated by this cytokine
[165, 166]. In return, DCs can secrete IL-10 and effectively
inhibit T-cell activation. Additionally, numerous viruses,
including human CMV, HIV, herpes simplex virus type
1, and measles virus, target DCs [167, 168], and have
evolved strategies to specifically modulate DC phenotype
and/or function, thereby promoting virus-mediated immune
escape. For example, DCs infected by human CMV are
characterized by reduced expression of MHC class I and II
molecules, costimulatory molecules, and proinflammatory
cytokines, which consequently results in reduced T-cell
activation [169]. Nowadays, emerging evidence indicates that
one of the most effective ways to enhance the efficacy of
DC-based immunotherapy is by targeting the negative arm
of immune regulation. For future clinical trials, this may be
achieved by the use of small interfering RNA (siRNA) for
knocking down IL-10 expression by DCs [131, 132], or other
negative regulatory molecules, such as indoleamine 2,3-
dioxygenase (IDO) [133], suppressors of cytokine signalling
1 (SOCS1) [134, 135], and transforming growth factor
(TGF)-beta [136]. Indeed, inhibition of expression of these
regulatory molecules has been demonstrated to significantly
enhance the abilities of DCs to present tumor antigens,
to produce IL-12p70, and to induce effectively antitumor
responses.

5.3. Future Perspectives. With respect to tackle different arms
of the immune system, many different approaches are cur-
rently being pursued. In particular, considering the distinct
ability of different DC subsets in inducing both innate
and adaptive immunity, the exploitation of specific subsets
of DCs to elicit the desired immune response is foreseen.
Although pDCs primarily contribute to innate antiviral
immune responses by producing IFN-α/β [16], this ability
also has been reported to activate other DCs, including
those involved in cross-priming [170], and consequently
greater activation of adaptive immune responses. In doing so,
pDCs may play a critical role in provoking cancer immunity.
Hence, combination therapies aiming at interaction of pDCs
and cDCs to stimulate T-cell priming, and hence effective
anti-tumor or antiviral immunity are needed in cancer
patients and chronically infected patients (Figure 1).

Additionally, differentiation of monocytes into DCs with
cocktails including GM-CSF and IL-15 will generate cells
with the phenotype and characteristics of Langerhans cells
(LC), which are far more efficient in vitro in priming
antigen-specific CD8+ T cells than DCs derived with GM-
CSF and IL-4 [111, 171]. As described by others, LCs are
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very efficient in cross-presenting peptides to CD8+ T cells,
which acquire potent cytotoxicity and are able to efficiently
kill target cells, including tumor cell lines that express
peptide-HLA complex, only at low amounts [172] in an
IL-15-dependent manner. The pivotal role of LC to allow
maximal stimulation of both humoral and cellular immune
responses, supports the important concept for targeting LC
in the design of vaccines that aim at eliciting strong cellular
immune responses [66, 173, 174].

The recent identification of human CD141+ DCs that can
effectively cross-present antigens has clear implications for
the design of new therapies to treat cancers and infectious
diseases with improved efficacy. It has been reported that the
limiting cytokine for the development of the murine coun-
terpart is the Fms-related tyrosine kinase 3 ligand (Flt3L),
rather than GM-CSF or M-CSF, which has major influence
on the development of inflammatory and migratory DCs
[175–177]. However, although Poulin et al. [24] made a
first attempt to delineate in vitro culturing conditions for
the generation of CD141+ DCs from human progenitor
cells, further optimization of such protocols is necessary
to allow for their use in adoptive transfer immunotherapy
approaches.

6. Conclusion

Current efforts for DC-based modalities have been com-
promised by a failure to utilize the full potential of DCs.
However, even though only limited success rates have been
achieved to date, DC vaccination remains a promising
immunological approach against tumors and/or viruses
and deserves further exploration. Alternative strategies to
enhance DC immunogenicity by functional conditioning
and molecular modifications have been investigated in vitro.
The different findings discussed here, indicate that DCs can
indeed be functionally conditioned and genetically modified
to acquire an enhanced immunogenic phenotype. For this,
time has come to bring DC-based immunotherapy to the
next level and implement above-mentioned observations in
a standardized regimen for alternatively conditioned DCs.
Results from first clinical trials will subsequently reveal
their potential in order to improve treatment of cancer and
chronic infections.
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