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ABSTRACT
We present simulation results for the Donnan equilibrium between a homogeneous bulk reservoir and inhomogeneous confining geometries
with varying number of restricted dimensions, dc. Planar slits (dc = 1), cylindrical pores (dc = 2), and spherical cavities (dc = 3) are consid-
ered. The walls have a negative surface charge density. Because different dielectric constants are used in the reservoir and confined system, we
used the Donnan grand canonical Monte Carlo method [Boda and Gillespie, J. Mol. Liq. 391, 123372 (2023)] to simulate the equilibrium. The
systems with larger confining dimensionality produce greater adsorption of counterions (cations) into the confinements, so cation selectivity
increases with increasing dimensionality. The systems with smaller dielectric constants produce more effective coion (anion) exclusion, so
cation selectivity increases with decreasing dielectric constant. The combined effect of a more confining space and solvation penalty produces
even more efficient anion exclusion and cation selectivity than each separately.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0237169

I. INTRODUCTION

The basic question of partition equilibria is how a compo-
nent distributes between two subsystems (e.g., two immiscible liquid
phases) when it can move between them. The condition for chemical
equilibrium is the equality of the chemical potentials of the com-
ponent in the two subsystems. For example, with a semipermeable
membrane, the component that can permeate the membrane can be
the solvent (osmosis) or an ionic component, as in the case of the
cell membrane where the membrane is permeable for K+ ions.

The distribution of charged particles and ions among different
media is a fundamental phenomenon. There are many examples,
ranging from energy storage (e.g., supercapacitors1) to nanotech-
nology (energy conversion2 and water purification3) to biology
(e.g., calcium microdomains in cell,4 cavities and binding sites
within macromolecules,5–7 and function of ion channels across
cell membranes8,9). A fundamental question in ion partitioning is
how many ions are adsorbed from a bulk-phase electrolyte into

environments with properties that are different from those of the
bulk phase.

One important aspect of this is the role of ion confinement in
these systems. All of them work because they confine ions to some
extent, ranging from sub-nanometer tubes (e.g., ion channels) and
cavities (e.g., macromolecular binding sites) up to multi-nanometer
and larger porous materials (e.g., supercapacitors and desalination
membranes). In all these systems (especially the engineered ones), it
is not clear what the optimal confining geometry (e.g., cavity, cylin-
der, or slit) is or what its optimal size should be. Changing any of
these will result in secondary changes, like the effective dielectric
environment seen by the ions; smaller, more confining geometries
will reduce the mobility of water molecules. Therefore, while all
these systems are qualitatively different in many ways, they also
share a number of traits that are fundamental to how they work and
how they might be optimized.

In order to define how these primary and secondary changes
affect ion adsorption, one could study each system separately. The
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approach we choose instead is to abstract these systems down to
the fundamental building blocks they have in common and study
the changes over a broad parameter space. This necessarily requires
substantial simplifications and idealizations. In return, however, we
hope to identify general physical principles that will place each spe-
cific system into a much broader context. As single points within
a new broad landscape, each system can then potentially be opti-
mized by following the guidelines the underlying general physics
suggests.

The goal of this study is to use computational modeling to
investigate how the ions of an electrolyte are distributed between a
homogeneous bulk-phase solution and an inhomogeneous confined
system. Beyond geometric confinement, an additional difference
between the two subsystems is that the dielectric constants may be
different in the two systems.

The dielectric constant characterizes the ability of a medium
to screen the charge of an ion, or, conversely, the ability of an ion
to polarize the medium. Dielectrics may differ for a number of rea-
sons. For example, the solvent may be different in the two liquid
phases. The same solvent may also change its screening ability when
placed in an electric field (dielectric saturation). This electric field
may be due to the charges of the functional groups on the surfaces,
the charges of the electrodes, or the presence of ions themselves. For
example, the dielectric constant is lower in a concentrated electrolyte
solution than in a dilute electrolyte.10–12

Spatial confinement can also affect the behavior of liquids,12–15

and hence the dielectric constant,16 as shown by theoretical17 and
molecular dynamics18–22 studies. The difference in the dielectric
environment between bulk systems and porous membranes has been
the focus of experimental and modeling studies on the dielectric
exclusion of ions, salt partitioning, and nanofiltration.23–30

In this study, by spatial confinement, we mean narrow pores,
slits, or cavities, where the electrolyte is surrounded by charged
walls. Depending on how these charged walls are curved and on
the symmetry of the system, we distinguish different geometries and
define the dimensionality of the system as the number of dimensions
in which the ions are restricted (dc, see Fig. 1):

Bulk: The system is homogeneous in all the three dimensions;
confinement is not present (dc = 0).

Slit: The electrolyte is confined in one dimension (dc = 1) between
two parallel infinite walls. The system is homogeneous in the
two planar dimensions; it has a planar symmetry.

Pore: The electrolyte is confined in two dimensions (dc = 2) inside
an infinite cylinder. The system is homogeneous in the axial
dimension; it has a cylindrical symmetry.

Cavity: The electrolyte is enclosed in a sphere. The system is con-
fined in all the three dimensions (dc = 3); it has a spherical
symmetry.

These and similar less symmetric structures play an increas-
ingly important role in nanotechnology and molecular biology.31,32

The thermodynamic (statistical mechanical) properties of real
porous media may be calculated as a superposition of the statistical
mechanical properties of these three basic geometries.

In general, any equilibrium between two subsystems where
there is some electrical asymmetry between them can be called a
Donnan equilibrium. In this work, this asymmetry is caused by (1)
the presence of charged walls at which electrical double layers form

FIG. 1. Confined geometries of different dimensionalities: slit (dc = 1), cylindrical
pore (dc = 2), and spherical cavity (dc = 3). The radius of the cylindrical and
spherical geometries, as well as the half width of the slit, is denoted by R.

and (2) the difference in the dielectric screening environments in the
two subsystems (i.e., the different dielectric constants).

Donnan equilibrium has been studied by numerous modeling
methods.29,33–35 The Grand Canonical Monte Carlo (GCMC) sim-
ulation method is especially well-suited for this purpose. Barr and
Panagiotopoulos,36 for example, proposed a GCMC procedure to
determine the thermodynamic equilibrium of such a system. They
implemented specific ion insertion/removal steps that allowed the
calculation of the electrical potential difference (Donnan potential)
between the two baths. A version of the method combined with a
grand-reaction method at constant pH37 simulates the ionization
equilibria.

The Donnan Grand Canonical Monte Carlo (D-GCMC)
method of Boda and Gillespie38 differs from these methods by allow-
ing the dielectric constants to be different in the two subsystems. In
this case, one must include the solvation (Born) energy penalty in the
chemical potential (Fig. 2). The Born energy is commonly used in
studies where ions are partitioned between bulk phases and polymer
membranes.23–30

The number of articles in the literature where two or more
of the three geometries (slit, pore, and cavity) are considered is
relatively limited. Sánchez-Arellano et al.39 studied the electroki-
netic properties of electrolytes confined in slit-like and cylindrical
nanopores by the hypernetted chain/mean spherical approximation
and found that the ion–ion correlations and confinement effects are
enhanced in the cylindrical pore. Aguilar-Pineda et al.40 studied the
pressure behavior of electrolytes confined in the three geometries.

Cherstvy41 studied the adsorption of polyelectrolytes in all the
three geometries with a theoretical approach. Szymczyk and Fievet42

studied the rejection rate of ions from nanofiltration membranes
using a model that included steric effects, image forces, and dielec-
tric exclusion for both slit-like and cylindrical pores compared to
slit-like ones. They showed that the dielectric exclusion was neces-
sary to reproduce the experimental data. Buyukdagli et al.43,44 used
a field theoretic variational approach to study ion exclusion phase
transitions in planar and cylindrical nanopores. They considered
the computationally difficult case of confining dielectrics that go
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FIG. 2. Schematic drawing of the coexisting systems. Left: inhomogeneous confined system (sys) of various geometries. Right: homogeneous reservoir (res). The system is
simulated with the D-GCMC method in the grand canonical ensemble, so ion insertion/deletion steps are applied. The two subsystems may have different dielectric constants,
ϵsys and ϵres, so a solvation penalty, Δμ0

i , is applied between the two subsystems. The role of the Donnan potential, Δϕ, is to make the system charge neutral.

together with a dielectric interface and induced charges. This study
has also been performed for spherical confinements.45

In this work, we provide a systematic analysis for the different
geometries in conjunction with dielectric exclusion to show their
combined effect. We find that the two together produces better
counterion selectivity and coion exclusion than each alone. That is,
the two effects, when working together, are more efficient than each
individually.

II. MODEL AND METHOD
The condition of thermodynamic equilibrium between subsys-

tems “sys” (the simulated confined system) and “res” (reservoir)
is the equality of electrochemical potentials for ionic species i as
μsys

i = μres
i , where

μsys
i = μ0,sys

i + kT ln (csys
i (r)V0) + μex,sys

i (r) + qiϕsys, (1)

μres
i = μ0,res

i + kT ln (cres
i V0) + μex,res

i + qiϕres. (2)

In these equations, k is Boltzmann’s constant, T is the temperature,
and for ion species i, qi is the ionic charge, csys

i and cres
i are the con-

centrations in the system and the reservoir, V0 is a unit volume,
μex,sys

i and μex,res
i are the excess chemical potentials due to the interac-

tions between the ions (zero at infinite dilution), and ϕsys and ϕres are
the mean electrical potentials in the respective baths. μ0,sys

i and μ0,res
i

are self (or reference) terms that contain the solvation terms due to
the interaction of the ion with the surrounding dielectric medium
(solvent) undisturbed by other ions. The terms μ0,sys

i and qiϕ
sys are

present even at infinite dilution. The quantities csys
i (r) and μex,sys

i (r)
are position dependent, because the system is inhomogeneous, while
the reservoir is homogeneous.

From the equilibrium condition, we obtain the equalities for
cations and anions (or, any additional species) that

μc,sys
i + Δμ0

i + qiΔϕ = μc,res
i , (3)

where Δϕ = ϕsys
− ϕres is the Donnan potential, Δμ0

i = μ0,sys
i

− μ0,res
i is the difference of the solvation free energy between

the two baths, while μc,sys
i = kT ln (csys

i V0) + μex,sys
i and

μc,res
i = kT ln (cres

i V0) + μex,res
i are the configurational chemical

potentials. The system contains two equations [Eq. (3) refers to
cation and anion as well] and three unknowns (csys

+
, csys
−

, and Δϕ), so
a third equation expressing sys charge neutrality is required,

∑
i

qi∫
V

csys
i (r)dr + σA = 0, (4)

where A is the area of the confining surface. The system is solved
with the D-GCMC method, in which insertions/deletions of individ-
ual ions are performed for the simulated system for spherical cavities
and cylindrical pores. For the slit, we insert neutral groups of ions
(ion pairs in the case 1:1 electrolytes studied here). Using Eq. (3), the
acceptance criterion of the insertion/deletion steps is obtained as

pi,χ =
Ni!(V/V0)

χ

(Ni + χ)!
exp(−

ΔU − χμc,sys
i

kT
) =

Ni!(V/V0)
χ

(Ni + χ)!

× exp(−
ΔU − χ[μc,res

i − Δμ0
i − qiΔϕ]

kT
), (5)

where V is the volume of sys, N i is the number of ions of species
i before insertion/deletion, χ = 1 for insertion, χ = −1 for deletion,
and ΔU is the energy change. The following are the steps to be
performed:

1. Specify the concentrations of the reservoir: {cres
i }.

2. Compute the excess and configurational chemical potentials
in the reservoir with the adaptive GCMC method:46 {μc,res

i }.
3. Use those configurational chemical potentials in the accep-

tance criterion of D-GCMC [Eq. (5)] and subtract the sol-
vation penalty (Δμ0

i ) and the interaction with the Donnan
potential (qiΔϕ). The simulation provides the concentrations
in the simulated system: {csys

i }.
4. To find the Δϕ value that provides charge neutrality [Eq. (4)],

we perform several short simulations and apply linear inter-
polation. The Donnan potential obtained this way is used in
the production run.

The ions of the electrolyte are modeled as hard spheres with
point charges in their centers (the “primitive” model). The spheres
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cannot overlap with each other or with the wall. The interaction
potential is

uij(r) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∞ for r < Ri + Rj ,
1

4πϵ0ϵsys
qiqj

r
for r ≥ Ri + Rj ,

(6)

where Ri and Rj are the ionic radii of species i and j, ϵ0 is the
permittivity of vacuum, and r is the distance between the cen-
ters of the ions. We consider 1:1 electrolytes in this study with
R+ = R− = 0.15 nm.

The solvation penalty of moving the ion from the ϵres medium
to the ϵsys medium can be estimated from Born’s theory47 as

Δμ0
i =

q2
i

8πϵ0RB
i
(

1
ϵsys −

1
ϵres ), (7)

where RB
i is a parameter for which various choices can be applied.

It can be the ionic radius (RB
i = Ri), but it is well known that

that choice overestimates the hydration free energy (compared to
experiment). Therefore, the Born radius most often used is the one
obtained from fitting Eq. (7) to the experimental hydration free ener-
gies. The Born radius is generally larger than the radius of the “bare”
ion, e.g., the Pauling radius. To avoid using an additional parameter
in this work, we use the choice of RB

i = Ri, but the reader should be
aware of the limitations of that choice as the limitations of the Born
theory itself.28,29

The Born model was developed to estimate the solvation
penalty of bringing an ion from one dielectric bulk medium to
another. Here, we assume that the penalty scales similarly for mov-
ing an ion into a low-dielectric confining geometry. A more nuanced
approach of having a location and concentration dependent dielec-
tric is computationally too expensive in our simulations here with
curved dielectric interfaces.48 In that case, explicit dielectric inter-
faces would be present in the simulation cell with the computation-
ally challenging case of ions passing through the interface.49 The
advantage of the present approach is that the two subsystems are
not part of the same simulation cell; they are only connected by the
chemical potential.

We end with a sketch of a proof that the Donnan potential Δϕ
is a uniquely defined number (i.e., not location dependent), even for
an inhomogeneous system. By combining Eqs. (1) and (2), one can
solve for qicsys

i (r). Formally integrating this over r, summing over i,
and equating this to −σA (i.e., applying the total charge neutrality),
one gets a polynomial of the form50

f (x) = sxqN +
N−1

∑
i=1

qiaixqN−qi + qN aN , (8)

where x = eΔϕ, the valences q1, . . . , qN are ordered from smallest to
largest, ai > 0 is the ratio of the integrated csys

i (r) with e−qiΔϕ taken
out of the integral to ∣σA∣, and s is the sign of σ. If f(x) has a unique
positive root, then Δϕ is a uniquely defined number that imposes
system charge neutrality. Since we are not aware of a general proof
of this, we outline one.

Separating Eq. (8) into a sum of cation and anion terms, it can
be generalized to

g(x) =
m

∑
k=1

bkxk
−

M

∑
k=m+1

bkxk (9)

with bk ≥ 0 [bk = ∣qk∣ak (with qk = 0 if that valence is not present)
or ∣s∣], m being the largest cation power of x in Eq. (8), and M
being the largest anion power of x. If there is more than one pos-
itive root of g(x), pick the two smallest at x1 and x2. Then, there
must be a local minimum between them; at the smaller x1, g′(x1) < 0
because g(0) > 0 and g(x1) = 0. Therefore, g′(x2) > 0. In order for
g(x →∞) < 0, there must be a maximum to the right of x2. In other
words, g′(x) must have two positive roots. Playing the same game
with g′ and further derivatives, we eventually find a contradiction
because g(m+1)

(x) < 0 for x > 0 and thus has no positive roots.

III. RESULTS
Since we study (negatively) charged confinement, one impor-

tant output property is cation selectivity defined as

S+ =
N̄+ − N̄−
N̄+ + N̄−

, (10)

where N̄ i is the ensemble average of the total number of ionic species
i in the confining geometry. The numerator is −σA/e for 1:1 elec-
trolytes. For the 1:1 electrolyte studied here, S+ ∼ 1 is the perfectly
cation selective case (N̄− ∼ 0), while S+ ∼ 0 is the non-selective case
(N̄+ ∼ N̄−).

Since selectivity is a key factor in many applications from biol-
ogy to energy conversion, we focus on the question of how we can
attain better cation selectivity, or, put in a different way, better anion
exclusion. It has been previously shown51–53 that selectivity depends
on the overlap of double layers, and, thus, it scales with λD/R in
charged pores (λD ∝ c−1/2 is the Debye length). This means that
we can increase selectivity either by decreasing c, or by decreasing
R. Therefore, in this study, we only change the geometry radius
R but not the reservoir concentration (cres

i = 0.1). The pore radii
used in this work (R = 3 and 5 nm) are larger than the ion radii
(Ri = 0.15 nm), so volume exclusion effects (although interesting in
other cases) are minimized here.

Figure 3 shows the number of particles normalized by the sur-
face area [panel (a)] and by the volume [panel (b)] of the confining
geometry as a function of ϵsys. Different colors indicate different
geometries. Surface areas and volumes are A = 2L2 and V = 2RL2 for
the slit, A = 2RπL and V = R2πL for the pore, as well as A = 4πR2 and
V = 4πR3

/3 for the sphere, where L is the length of the simulation
cell in the dimension in which it is homogeneous (not confined).

In Fig. 3(a), the difference between the cations and anions
does not change because their difference is the surface charge den-
sity (σ = −0.1e/nm2). As ϵsys decreases, the quantity of both species
decreases due to the increasing solvation penalty [Eq. (7)]. The
number of anions, however, approaches zero as ϵsys

→ 40. So, each
geometry becomes more cation selective as ϵsys decreases because
anions are excluded more. Meanwhile, the N̄ i/A values are smaller
for more confined systems because there is less space for ions in such
geometries.
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FIG. 3. Ensemble average of the total number of cations (solid line) and anions
(dashed line) in confining geometries (indicated by colors) of radius R = 3 nm as a
function of ϵsys. Panels (a) and (b) show the ion numbers normalized by the area,
A, and the volume, V , of the confining geometry, respectively. The surface charge
density is σ = −0.1e/nm2. Here and in all the figures, cres

i = 0.1 M. Arrows indicate
the direction in which dc increases.

This is supported by Fig. 3(b), where we normalize with V . The
average density of cations is larger in the systems with larger dc. In
the limiting case of perfect anion exclusion (ϵsys

< 40), the density
of cations in the pore is twice that in the slit, and in the cavity, it is
three times larger than in the slit (see more about this in Sec. IV).

While Fig. 3 characterizes the selectivity by showing normal-
ized N̄+ and N̄− values separately, it is also informative to describe
various phenomena with just one number, the selectivity S+. There-
fore, in Fig. 4, we plot cation selectivity [Eq. (10)]. While Fig. 4(a)
shows a more selective case (smaller R, larger ∣σ∣), Fig. 4(b) shows
a less selective case (larger R, smaller ∣σ∣). The general behavior is
that the selectivity for the more confined system is larger than for
the less confined system; i.e., it is larger for the spherical cavity than
for the cylindrical pore, for which it is larger than for the slit. Since
the selectivity approaches 1 and 0 in the limiting cases of ϵsys

→ 1
and ϵsys

→∞, respectively, the curves imply a sigmoid-like form;
the curves are concave down for large selectivities and concave up
for small selectivities.

Figure 5 shows the concentration profiles that produce this
behavior. Figure 5(a) shows the concentration curves with a linear
scale, while Fig. 5(b) shows them with a logarithmic scale. Since the
pore is strongly cation selective (R = 1 nm), the linear scale shows

FIG. 4. Cation selectivities [Eq. (10)] as a function of the dielectric constant of the
system, ϵsys, for different geometries (different colors). Panels (a) and (b) refer to
different R and σ values, as indicated.

the behavior of the cations better, while the logarithmic scale shows
the behavior of the anions better. Results for the various geometries
(different line types) and for various dielectric constants (different
colors) are shown.

Figure 5 shows that the number of confining dimensions has
a large effect on the cation profiles. Cation concentrations are
larger for the more confining geometries (slit < pore < cavity). As
before, the cation concentration decreases with decreasing dielectric
constant in all geometries due to the solvation penalty.

For anions, this dielectric effect is amplified: the dielectric con-
stant has a larger effect on them than on the cations, at least, for the
parameters used here (note that the same behavior is observed for
R = 3 nm; see Fig. 3). Moreover, for a given ϵsys, anion exclusion is
more effective as dc increases; that is, anions are excluded from the
cavity better than from the pore, and they are excluded from the pore
better than from the slit.

In Fig. 6, we show the Donnan potential. It is always just a few
kT/e, so its effect is generally mild. However, when this is combined
with the differences in contact densities across various geometries
[Fig. 5(a)], there may be additional changes in the surface charge
in systems where there is charge regulation. This may have effects
because pH-regulated surface charge, for instance, is sensitive to the
local ion concentrations and electrostatic potential.54
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FIG. 5. Concentration profiles for differ-
ent geometries (line styles) and dielectric
constants (color). The left panel uses a
linear scale for the ordinate, so it focuses
on the cations, while the right panel uses
a logarithmic scale for the ordinate, so it
focuses on the anions. The curves below
and above 0.1M refer to the anions and
cations, respectively (see gray shading).

FIG. 6. Donnan potential as a function of ϵsys (left panel), −σ (middle panel), and R (right panel) for various values of the other two parameters as indicated in the figure.
Red and blue curves refer to the pore and cavity geometries, respectively. We only show Δϕ for the pore and cavity because the simulation method used for the slit did
not compute it directly; it uses moves of neutral ion groups (versus individual ion moves in the other geometries), which we have previously shown works equivalently but
without explicitly referencing Δϕ.38

IV. DISCUSSION
Figure 5 shows a highly cation selective case, where the exclu-

sion of the anions is especially efficient. The cation profiles show
that the cation concentrations in the pore are approximately twice as
large as in the slit and approximately three times larger in the cavity.
The same behavior was noted in Fig. 3(b).

This finding can be understood by assuming that anion exclu-
sion is perfect, so the surface charge, ∣σ∣A, is neutralized only by the
minimum number of cations, c̄+Ve (for monovalent cations), where
A is the area of the confining surface, V is the volume of the confined
region, and c̄+ is the average cation concentration (in the appropriate
unit). Then, ∣σ∣A = c̄+Ve, and, therefore,

c̄+ =
∣σ∣
e

A
V

. (11)

Substituting A and V for the various geometries, we obtain that c̄+ is
proportional to dc,

c̄+ =
∣σ∣
e

dc

R
. (12)

This simple derivation explains the behavior of the cation profiles
in Fig. 5 and the average densities in Fig. 4(b). The problem could
also be approached from the point of view of surface energetics and
curvature.55

That the average counterion density and coion exclusion
increases with increasing dc is consistent with earlier studies.39,41,42

The effect of decreasing ϵsys (dielectric exclusion) was also shown in
many previous studies.23–30,42 Here, we combined these two effects
and showed that they mutually reinforce each other. By adding the
varying dielectric constant to the change in the geometry, we gained
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an additional system parameter with which partitioning of ions into
a confined space can be optimized.

While we focused on the exclusion of coions in this study, it is
relevant to note that the same principle can be used to distinguish
the counterions of different charge (e.g., monovalent vs divalent)
or different size. In GCMC studies for calcium channels, for exam-
ple, it was proposed that Ca2+ ions are preferred over monovalent
ions because they provide twice the charge to neutralize the negative
charge of the pore modeled as a crowded region surrounded by a
low-dielectric confinement.48,56–58

Multivalent electrolytes pose an especially interesting case,
because the solvation penalty is four times larger for divalent ions,
but the attraction of the negative charge of the pore is also stronger.
This competition results in a diverse behavior that will be considered
in subsequent studies.

The goal of this work was to define the physics of an idealized
system where ions partition into confining low-dielectric environ-
ments. This foundation can then be built upon by adding layers
of complexity to identify their individual effects in a controlled
way. The next layers include adding solvent molecules, changing the
homogeneous uniform surface charge distribution to more realis-
tic localized ones,59 and modeling hydrophobicity with a dielectric
inhomogeneity, which is a computational challenge.60
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