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a b s t r a c t

Catechol-O-methyltransferase (COMT, EC 2.1.1.6) plays a crucial role in dopamine metabolism which has
intimately linked this enzyme to some neurodegenerative diseases, such as Parkinson’s disease. In recent
years, in the attempt of developing new therapeutic strategies for Parkinson’s disease, there has been a
growing interest in the search for effective COMT inhibitors. In order to do so, large amounts of COMT in an
active form are needed, and the best way to achieve this is by up-scaling its production through biotech-
nological processes. In this work, a fed-batch process for the biosynthesis of the soluble isoform of COMT
in Escherichia coli is proposed. This final process was selected through the evaluation of the effect of dif-
ferent dissolved oxygen concentrations, carbon and nitrogen source concentrations and feeding profiles
on enzymatic production and cell viability, while controlling various parameters (pH, temperature, start-
ing time of the feeding and induction phases and carbon source concentration) during the process. After

several batch and fed-batch experiments, a final specific COMT activity of 442.34 nmol/h/mg with approx-
imately 80% of viable cells at the end of the fermentation were achieved. Overall, the results described
herein provide a great improvement on hSCOMT production in recombinant bacteria and provide a new
and viable option for the use of a fed-batch fermentation with a constant feeding profile to the large scale
production of this enzyme.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
. Introduction

Catechol-O-methyltransferase (COMT, E.C. 2.1.1.6) is a methyl-
ransferase enzyme that catalyses the transfer of the methyl group
rom S-adenosyl-l-methionine (SAM) to one of the hydroxyl groups
f the catechol substrate (including catecholamine neurotrans-
itters and catechol estrogens) in the presence of Mg2+ [1]. This
ethylation reaction is a sequentially ordered mechanism, with

AM being the first to bind to the enzyme, followed by the Mg2+ ion
nd finally the substrate [1]. The enzyme exists as two isoforms: a
oluble, cytosolic protein (SCOMT) and a membrane-bound protein
MBCOMT) [2], both coded by the same gene (located in chromo-

ome 22) from two promoters. The general function of COMT is
he elimination of biologically active or toxic catechols and other

etabolites, while playing a particularly important role in the
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215-017X/© 2014 The Authors. Published by Elsevier B.V. This is an open access article un
license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

metabolism of catecholamines, especially in the breakdown of the
neurotransmitter dopamine [3].

Over the last decades, the lack of dopamine has been linked to
Parkinson’s disease (PD) [4], and so, levodopa and dopamine ago-
nists are currently the drugs of choice for PD when a significant
symptomatic effect needs to be achieved [5]. However, the use of
COMT inhibitors plus levodopa is more effective at reducing PD
symptoms when compared to the use of levodopa alone [6]. In the
present, only two COMT inhibitors are currently available, namely
tolcapone, which use is restricted; and entacapone, a safer but less
efficient compound [7]. In order to develop new COMT inhibitors,
a high quantity of enzymatically active COMT is needed, either for
crystallization studies based on structural-based inhibitors inter-
actions [8], or to perform in vitro experiments required for the
development of a new drug formulation.

The best strategy to obtain considerable amounts of human
proteins is by applying recombinant technology. In the case of

recombinant human SCOMT (hSCOMT), it has been produced via
different expression systems, such as transfected mammalian cells
[9], insect cells (via mammalian and baculovirus vectors) [10],
plant cells (via a potyvirus) [11] and prokaryotic cells, such as

der the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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scherichia coli. E. coli is a Gram-negative bacterium and is the most
ommonly used organism for heterologous human protein biosyn-
hesis [12–16], allowing the establishment of large scale production
ystems due to its ability to quickly reach high cell densities in
nexpensive media.

For routine protein expression, E. coli B and K strains, along with
heir derivatives, are the most frequently used, with BL21 being the

ost suitable strain for protein production due to the lack of two
pecific proteases (lon and ompT), thus avoiding heterologous pro-
ein degradation. One particular BL21 derivative strain, E. coli BL21
DE3), has been used to successfully express thousands of homol-
gous and heterologous soluble proteins to high levels [16,17],
ncluding COMT [18–20]. Apart from the optimization of growth
onditions, to achieve high quantities of recombinant protein, a
arge-scale culture processes have to be applied, mostly based on
ed-batch mode cultures [14,21,22].

A fed-batch culture is generally started with an inoculum grow-
ng at the maximum specific growth rate that can be sustained
sing the nutrients initially present in the bioreactor, followed by
he imposition of a specific regime of nutrient feed until fermen-
ation is complete [14]. These methods are based on mathematical

odels that describe growth patterns and the expected demand
or nutrients [22]. Regarding the pattern of nutrient addition, three

ain types of pre-determined feeding profiles can be considered:
onstant, exponential and stepwise feeds [14]. Another feeding
pproach that can be used is based on the direct or indirect feedback
ontrol systems for the controlled addition of nutrients. Indirect
ontrol is based on online monitoring of parameters such as pH,
issolved oxygen, CO2 evolution rate and cell concentration. Direct
eedback is based on monitoring the concentration of the major
arbon substrate [14,22].

In this work, a fed-batch bioprocess was developed, via an
p-scaling of hSCOMT production. Initially, several batch fermen-
ations were carried out, in order to establish the ideal culture
onditions, for instance batch phase and bioreactor operation for
he fed-batch fermentations. After this stage, several fed-batch fer-

entations with different feeding profiles were tested in order
o maximize biomass production and to improve protein activity
evels, without compromising cell viability.

. Materials and methods

.1. Chemicals

Ultrapure reagent-grade water was obtained from a Mili-Q
ystem (Millipore/Waters). Carbenicillin disodium salt, calcium
hloride dihydrate, magnesium sulfate heptahydrate, lysozyme,
obalt(II) chloride hexahydrate, dithiothreitol (DTT), SAM chloride
alt, DNase, epinephrine (bitartrate salt), disodium ethylene-
iamine tetraacetic acid (EDTA), sodium octyl sulfate (OSA),
ovine serum albumin (BSA), LB-Agar, IPTG, tryptone, glycerol
nd propidium iodide (PI) were obtained from Sigma Chemical
o. (St. Louis, MO, USA). Potassium chloride, sodium chlo-
ide, boric acid were supplied by Fluka (Buchs, Switzerland).
odium phosphate dibasic and potassium dihydrogen phosphate
onobasic were obtained from Panreac (Barcelona, Spain). Bis-

1,3-dibutylbarbituric acid)trimethine oxonol (BOX) was obtained
rom Molecular Probes®, Invitrogen, part of Life Technologies
Carlsbad, CA, USA). All other chemicals were of analytical grade
nd used without further purification.

.2. Methods
.2.1. Expression vector and bacterial strain
The Champion pET101 Directional TOPO expression kit (Invitro-

en Corporation, Carlsbad, CA, USA) was used for the expression
logy Reports 3 (2014) 34–41 35

of hSCOMT on E. coli BL21(DE3) strain kindly provided by Bial
(Departamento de Investigação e Desenvolvimento, São Mamede
do Coronado, Portugal).

2.2.2. Escherichia coli pre-cultivation, batch and fed-batch
fermentations

In this study, except for tryptone and glycerol concentrations,
all media components for the semi-defined medium were kept
constant (5.5 g/L Na2HPO4, 0.5 g/L NaCl, 1.64 g/L citric acid mono-
hydrate, 2 g/L potassium citrate, 1.21 g/L MgSO2·7H2O, 50 �g/mL
carbenicillin and 1.5 mL/L trace elements solution) for the pre-
cultivations, batch, and batch phase of fed-batch experiments. The
trace elements solution consisted of 27 g/L FeCl3·6H2O, 2 g/L ZnCl2,
2 g/L CoCl2·6H2O, 2 g/L Na2MoO4·2H2O, 1 g/L CaCl2·2H2O, 1.2 g/L
CuSO4 and 0.5 g/L H3BO4, prepared in 1.2 M HCl. LB agar plates
supplemented with 50 �g/mL carbenicillin were inoculated from
a cell bank aliquot and grown overnight at 37 ◦C. Afterwards, a
pre-cultivation was performed inoculating a single colony into a
500 mL shake flask containing 125 mL of semi-defined medium,
and grown at 37 ◦C and 250 rpm until an optical density at 600 nm
(OD600) of approximately 2.6 was reached. Batch and fed-batch
processes were carried out in 750 mL bench-top parallel mini-
bioreactors (Infors HT, Switzerland) with 250 mL of semi-defined
medium. In our research group, three physical culture conditions
for the production of hSCOMT in shake flasks were already opti-
mized [20], namely temperature (40 ◦C), pH (6.5) and stirring rate
(351 rpm) and this was the starting point for the strategy described
in the present work. So, the bioreactors were inoculated from the
pre-cultivation to obtain a starting OD600 of approximately 0.2.
Temperature and pH were kept constant throughout the batch and
fed-batch phases at 40 ◦C and 6.5, as previously optimized, with the
pH value controlled by the automatic addition of 0.75 M H2SO4 and
0.75 M NaOH through two peristaltic pumps. The dissolved oxygen
percentage (pO2) was controlled by a two-level cascade of stirring
(between 250 and 900 rpm) and air flow (between 0.2 and 2 vvm).

In general, the feeds consisted of different concentrations of
tryptone and glycerol dissolved in deionized water and their addi-
tion was maintained by automated peristaltic pumps controlled by
IRIS software (Infors HT, Switzerland).

2.2.3. Cell lysis
Intracellular SCOMT was obtained via a combined lysis process.

Typically, 2 mL of samples from fermentations were centrifuged at
4 ◦C and 16,000 × g for 5 min, resuspended in 500 �L of a standard
buffer (150 mM NaCl, 10 mM DTT, 50 mM Tris, 5 �g/mL leupeptin
and 0.7 �g/mL pepstatin), transferred to lysis tubes and kept on ice.
The lysis process was then carried out as previously described [20].
The resulting supernatant, containing the solubilized SCOMT, was
used as sample for the enzyme activity and protein quantitation
assays.

2.2.4. Flow cytometry assays
In order to assess cellular viability during the fermentation runs,

samples were retrieved at specific times and treated for the flow
cytometry assays, according to a previously developed protocol
[23]. The samples’ OD600 was measured and a dilution with PBS
buffer was prepared to obtain a final OD600 of 0.2 (approximately
1 × 108 cells/mL and further diluted in PBS with 4 mM NaEDTA to
a cell concentration of about 1 × 106 cells/mL). To this cell suspen-
sion, the appropriate volumes of PI and BOX were added in order
to attain final concentrations of 10 and 2.5 �g/mL, respectively.
The samples were incubated for 15 min at room temperature in

the dark, centrifuged for 5 min at 5000 rpm and resuspended in
PBS prior to analysis in a CyAn ADP flow cytometer (Beckman
Coulter Inc., California, United States). Acquisition and analysis
were performed with the Summit Software (Beckman Coulter
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experiments were this strain’s growth rate and the time at which
to initiate the feeding process under these conditions. The growth
rates, � (h−1), obtained for the 1st, 2nd and 3rd formulations,
depicted previously, were 0.51, 0.49 and 0.55 h−1, respectively,
6 G.M. Espírito Santo et al. / Bio

nc., California, United States). The acquisition was based on light
catter and fluorescence signals resulting from 25 mW solid state
aser illumination at 488 nm Fluorescence signals were collected
y FL1 (530/40 nm, BOX) and FL4 (680/30 nm, PI) bandpass filters.
ight scattering, BOX and PI fluorescence measurements were
cquired logarithmically. Threshold was set on SSC to exclude
oise, other particles and debris. Cells were gated according to
heir light scatter parameters. Sample acquisition was operated
t flow rate of no more than 300 events per second and a total of
000 cells were gated and analyzed for each sample.

.2.5. Analytical methods

.2.5.1. Glycerol. For glycerol determination, samples were
etrieved at specific times and centrifuged at 4 ◦C and 16,000 × g
or 5 min The resulting supernatant was then filtered through

0.22 �m filter (Millipore) for subsequent HPLC analysis onto
n Agilent 1290 Infinity LC HPLC system (Waldbronn, Germany)
oupled with a Refractive Index Detector (RID) (Agilent 1260
nfinity). Compound separation was achieved using a Hi-Plex H
on-exchange analytical column (Agilent, Santa Clara, CA, USA)

ith a 7.7 × 300 mm and 8 �m pore size. The mobile phase
onsisted of a 5 mM H2SO4 solution prepared with ultrapure
ater, filtered through a 0.2 �m pore membrane and degassed for

5 min before use. Flow rate was set to 0.6 mL/min and column
emperature was set to 65 ◦C.

.2.5.2. Enzymatic activity. The enzyme activity was measured via
he quantity of metanephrine produced as a result of the reaction
etween recombinant hSCOMT and the substrate epinephrine, with
amples being processed as described elsewhere [24]. The resulting
etanephrine was measured via an HPLC system with coulochem-

cal detection as previously described [25], applying a total protein
oncentration of 150 �g/mL. Specifically, the injections were per-
ormed using a HPLC model Agilent 1260 system (Agilent, Santa
lara, CA, USA) equipped with an autosampler and quaternary
ump coupled to an ESA Coulochem III (Milford, MA, USA) coulo-
etric detector. Chromatographic separation was achieved on an

nalytical column Zorbax 300SB C18 reverse phase analytical col-
mn (250 mm × 4.6 mm i.d. 5 �m) (Agilent, Santa Clara, CA, USA).
he mobile phase (0.1 M sodium dihydrogen phosphate, 0.024 M
itric acid monohydrate, 0.5 mM OSA and 9% acetonitrile, v/v), pH
.9, was filtered under vacuum (0.2 �m hydrophilic polypropylene
lter) and degassed in ultrasonic bath before use. Column effluent
as monitored with an electrochemical detector by a coulomet-

ic mode, which was equipped with a 5011 high sensitivity dual
lectrode analytical cell (electrodes I and II) using a procedure of
xidation/reduction (analytical cell #1: +410 mV; analytical cell #2:
350 mV). The flow rate applied was 1 mL/min. Column tempera-

ure was optimized to 30 ◦C. The chromatograms were obtained by
onitoring the reduction signal of the working electrode II.

.2.6. Total protein
The protein determination was carried out using a Pierce BCA

rotein Assay kit (Thermo Scientific, USA) on a 96 well plate accord-
ng to manufacturer’s instructions, after which the absorbance at
70 nm was measured and the values applied to a previously cal-
ulated calibration curve.

. Results

.1. Batch fermentations
Two batches were performed at 30% dissolved oxygen to deter-
ine the typical growth curve under these conditions. The medium

omposition used was the one previously described in Section 2.2.2,
ith a concentration of glycerol and tryptone of 30 and 20 g/L,
Fig. 1. Growth curves of E. coli in a batch process with 20, 30 and 40% dissolved
oxygen (n = 2).

respectively. These fermentations showed that the stationary phase
of growth is reached after approximately 8 h of fermentation. Under
these conditions the maximum OD attained is of about 28 (data not
shown).

Subsequently, the next step was to evaluate the effect of dis-
solved oxygen concentration on COMT production, testing three
set-points for dissolved oxygen concentrations (20, 30 and 40%)
and performing recombinant COMT induction. The three different
dissolved oxygen set-points (20%, 30% and 40%, Fig. 1) were tested
in duplicates and the results for each set-point were averaged. All
fermentations were stopped 4 h after induction, according to the
experiments. For the activity assays, cell samples were retrieved
at the end of the fermentation. The results from Fig. 1 show that a
dissolved oxygen concentration of 20% gives better results than the
other two concentrations tested in terms of maximum OD reached.

The following step was the assessment of the most appropriate
carbon (glycerol) and nitrogen (tryptone) source concentrations in
the batch phase stage for the fed-batch process, in order to reduce
time, and also to increase cell density at the end of the batch phase.
It is extremely relevant to reduce batch and fed-batch times in
order to avoid, or at least minimize, nutrients/oxygen depletion.
To achieve this, the concentration of glycerol and tryptone were
varied, according with three formulations: 1st formulation (20 g/L
glycerol and 20 g/L tryptone), 2nd formulation (10 g/L glycerol and
15 g/L tryptone) and 3rd formulation (20 g/L glycerol and 30 g/L
tryptone) (growth curves were depicted in Fig. 2).

3.2. Growth rate and time of fed-batch initiation

The last parameters to be assessed before initiating fed-batch
Fig. 2. Growth curves of the assays corresponding to the three formulations (n = 2).
1st formulation, 20 g/L tryptone and glycerol; 2nd formulation, 10 g/L glycerol and
15 g/L tryptone; 3rd formulation, 20 g/L glycerol, 30 g/L tryptone.
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ig. 3. Growth curves and glycerol concentration profiles of the assays for the cons
eeding for replicates A and B, respectively. II – 3 g glycerol/L/h, right and left arrows
ight and left arrows indicate the starting of the feeding for replicate A and B, respe

ndicating that these glycerol and tryptone concentrations allowed
imilar growth profiles. In theory, the fed-batch process should be
nitiated when the carbon source is completely depleted, to ensure
utrient limitation. Given this, it is relevant to know exactly when
he carbon source is completely depleted. So, glycerol concentra-
ion was measured every 2 h for the three formulations mentioned
n the previous subsection. Results are consistent with the ini-
ial glycerol concentrations in each fermentation. The 1st and 3rd
ermentations were started at an initial glycerol concentration of
0 g/L, and the 2nd at 10 g/L, and after 4 h of fermentation, only
small amount of that initial glycerol was consumed (data not

hown).

.3. Fed-batch trials

Given all the previous assays, the fed-batch fermentations were
nitiated with a batch phase containing glycerol and tryptone at a
oncentration of 20 g/L and a dissolved oxygen rate of 20%. The feed-
ng profiles were initiated at 10.5 h of batch fermentation. For the
reliminary fed-batch studies, two predetermined feeding profiles,
amely exponential and constant feeding were preferred. For each

eeding profile, three feeding rates were evaluated: 1, 3 and 6 g glyc-
rol/L/h for constant feeds and 0.1, 0.2 and 0.3 h−1 for exponential
eeds.

.3.1. Constant feeding profiles
To achieve the desired rates (1, 3 and 6 g glycerol/L/h), several

eed mediums with different glycerol concentrations were pre-
ared. For these assays, the three feeding rates were tested as
uplicates (A and B), without induction, so that the growth pro-
les could be established (Fig. 3). In these fed-batch experiences,
lycerol was measured as mentioned in Section 2.2.4 until the end
f the feeding process. The growth curves for these profiles (Fig. 3)
how a maximum OD of about 50 which, as expected, is consid-
rably higher than those obtained in the batch experiments. For
he 1 g/L/h constant feeding profile, glycerol concentration was

ept close to zero until the end of the fed-batch process, mean-
ng that these cultures were able to consume all of the glycerol
rovided by the feeding solution. For the 3 g/L/h constant feeding
rofile, glycerol concentration reached close to zero values only
eding profiles. I – 1 g glycerol/L/h, left and right arrows indicate the starting of the
te the starting of the feeding for replicate A and B, respectively. III – 6 g glycerol/L/h,

y.

after about 10 h of fed-batch, meaning that limiting concentrations
are not reached during most of the fed-batch process. However, the
maximum OD reached (52) was very similar to that of the 1 g/L/h
feeding profile. Finally, for the 6 g/L/h feeding profile, glycerol con-
centrations either increased throughout the experiment (replicate
A) or were kept constant at relatively low levels (replicate B). Since
glycerol concentrations during the fed-batch phase of the feeding
profiles evaluated were very different (from almost 0 g/L to as high
as 30 g/L), cytometry assays were used to see if the feeding profile
of 1 g/L/h was, in fact, the best choice among the three constant
feeding profiles tested.

In order to assess cell physiology during the fed-batch experi-
ments, flow cytometry assays were carried out using a PI/BOX dual
staining. Dead cells will be stained with both BOX and PI, cells with
depolarized membrane will be stained only with BOX and viable
cells will not be stained. The results (not shown), indicate that as
fermentation time increases, the percentage of dead cells (stained
with PI and BOX) also increases. This effect is heightened at higher
feeding rates, possibly because of the higher glycerol concentra-
tions, which can hamper E. coli growth. In fact, at the end of the
fermentation, the average percentages of viable cells were 79.43,
65.84 and 75.61% for 1, 3 and 6 g/L/h, respectively.

3.3.2. Exponential feeding profiles
The three chosen specific growth rates for exponential feeding

profiles were 0.1, 0.2 and 0.3 h−1 with feed medium addition speed
being calculated according to an equation previously described
[14]. For this set of experiments, the three specific growth rates
were also performed in duplicates (A and B) without induction
(Fig. 4). Glycerol concentration and cellular viability assessments
were performed as described for the continuous feeding profiles.

The results showed that all three specific growth rates tested
yielded approximately the same maximum ODs (40–50), which
were also similar to those obtained with the constant feeds. In these
experiments, glycerol concentrations were generally high from the
start of the feeding, due to higher feeding speeds, indicating that

cells are not able to exhaust all the glycerol added to the culture
medium. Taking into account the results of both feeding profiles,
the selected feeding profile for hSCOMT induction fermentation
was a constant feed of 1 g glycerol/L/h.
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ig. 4. Growth curves and glycerol concentration profiles of the assays for the expon
or replicates A and B, respectively. II – 0.2 h−1, left and right arrows indicate the sta
ndicate the starting of the feeding for replicates A and B, respectively.

.4. COMT production in fed-batch fermentations

As mentioned above, for the final fermentations a constant feed
f 1 g glycerol/L/h was used, with a higher (50 g/L) initial concen-
ration of tryptone in order to compensate the possible tryptone
imitation during the fed-batch phase. All other bioprocess param-
ters remained unaltered. Firstly, a fermentation without induction
as performed, in order to determine the starting point of the

tationary phase with this new medium formulation, and con-
equently the start of the feeding (Fig. 5). As seen in Fig. 5, the
tationary phase was reached at about 8 h into the fermentation,
nd that was the time chosen to initiate the feeding. However,
nd since there was no significant increase in cell growth after this
oint, we decided to initiate the feeding 1 h earlier (at 7 h) in the
ubsequent experiment, with IPTG induction.

The induction was carried out 1 h after starting of the feeding,
or 4 h. In this fermentation, glycerol quantitation assays were car-
ied out as mentioned above and as expected, glycerol consumption
rofile was very similar to the previous assays carried out with this

eeding profile, however in this case, glycerol concentration was
ow just from the beginning, and after 2 h of feeding, the concen-
rations remained the same in both replicates (data not shown).
ytometry assays were carried out as explained above, and the

ig. 5. Growth curve for the final fermentations, with (B) and without (A) IPTG
nduction (n = 4). Arrow indicates the starting of the feeding for curve B.
feeding profiles. I – 0.1 h−1, right and left arrows indicate the starting of the feeding
of the feeding for replicates A and B, respectively. III – 0.3 h−1, left and right arrows

results for these fermentations can be seen in Fig. 6 (only for the
first replicate). As the results show, the percentage of viable cells at
the end of the fermentation are relatively high, between 84% and
almost 90%.

For the enzymatic assay, samples were taken every 2 h after
induction (until 6 h of induction), and treated according to the
method described in Section 2.2.3. Specific activity results are
plotted in Fig. 5, and as we can observe an increment in activ-
ity is achieved during 6 h after induction from 56 nmol/h/mg to
442.34 nmol/h/mg.

4. Discussion

In recent years, several attempts have been performed to obtain
a large quantity of active and pure hSCOMT. One of the most
effective ways of enhancing recombinant protein production is the
application of a fed-batch process, which highly increases cell den-
sity and, subsequently, protein production. In this work, a fed-batch
bioprocess was developed for hSCOMT biosynthesis. Initially, sev-
eral batch fermentations were carried out, in order to establish and
optimize culture conditions, batch phase and bioreactor operation
for the fed-batch fermentations. After this stage, a series of fed-
batch fermentations with different feeding strategies were tested
in order to obtain the maximum biomass production.

4.1. Batch fermentations

Firstly, dissolved oxygen concentration in culture media was
studied, as it is one of the most difficult variables to reproduce,
due to the combination of low oxygen solubility in water and the
requirement for pure oxygen supplementation when cell density
increases [26].
As mentioned in Section 3, two batches were performed at
30% dissolved oxygen [19] to determine the typical growth curve
under these conditions. A maximum OD of 28 was obtained
in these assays, which was significantly higher than the value
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Fig. 6. Cell samples taken at (A) 0 h immediately after induction and (B) 6 h after
induction, for the first replicate. Cells were stained with PI/BOX, and up to three
main subpopulations of cells can be distinguished, corresponding to healthy polar-
ized cells (R5), not stained; depolarized cells (R6), stained with BOX; and cells with
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[14], and so three exponential feeding rates falling between these
ermeabilized and depolarized cytoplasmatic membranes, (R4), stained with both
I and BOX.

reviously obtained [19] for fed-batch fermentations applying the
ame expression system, culture medium and dissolved oxygen
oncentration. In fact, just by applying the physical parameters
ptimized by [27] to a mini-bioreactor platform, maximum OD
alues reached were very promising.

Afterwards, three standard set points for dissolved oxygen con-
entration (20, 30 and 40%) were tested. Based on the maximum
D reached, these results showed that a batch at 20% oxygen gives
etter results than 30% and 40%. This may not correspond to the
xpected results as higher percentages of dissolved oxygen should
llow increased cell growth. However, the maintenance of the set
alue of dissolved oxygen is not possible throughout the whole
atch process using agitation and airflow cascade, indicating that
xygen supplementation might be needed for these fermentations.
ubsequently, two more fermentation runs at 20% dissolved oxygen
ere performed, with samples for enzymatic activity assay being
ithdrawn every hour after induction, to verify whether there was
peak of activity during this 4 h period. Therefore, we concluded

hat the best time for enzymatic activity was, in fact, 4 h after induc-
ion, due to the fact that those times corresponded to the highest

alues of specific COMT activity (316.16 and 237.20 nmol/h/mg
or each assay, respectively), what is in agreement with previous
esults [19,20].
logy Reports 3 (2014) 34–41 39

The next step in this study was to test carbon and nitrogen
source concentrations in the batch phase. Regarding carbon source,
it is known that, when compared to glucose, glycerol could be a
better choice as it yields reduced acetate levels, low growth inhibi-
tion at high concentrations [13,14,19,28] and higher heterologous
protein expression levels in E. coli [19,29]. Lower concentrations
of glycerol (10–20 g/L) were proven to be preferable for higher
hSCOMT specific activity results [19], and so, this was the con-
centration range chosen. Tryptone concentration variations were
kept around the 20 g/L concentration present in the semi-defined
medium, as it was previously optimized. From Fig. 2, it appears
that tryptone greatly influences cell growth, as the fermentation
with the higher tryptone concentration (3rd formulation) yielded
higher optical densities, whereas the fermentation with the lowest
tryptone concentration (2nd formulation) showed a decreased cell
density when compared with the other two formulations. Glycerol
does not seem to have such a great impact in cell growth at the
lower concentrations used in these experiments, since the two for-
mulations with different glycerol concentrations (1st and 2nd) led
to similar growth profiles and cell densities, which meets the results
previously obtained [19]. Since the main aim of these experiments
was to reduce the batch phase time, the selected formulation was
glycerol and tryptone at a concentration of 20 g/L, the first formu-
lation, due to the fact that nutrient exhaustion occurred at a lower
fermentation time (data not shown).

4.2. Fed-batch trials

To initiate the fed-batch trials, the growth rates for each glyc-
erol/tryptone combination had to be assessed, and we verified that
these were very similar and consistent with previously estimated
values [19] (about 0.50 h−1 for a glycerol concentration of 10 g/L).
It is important to determine the specific growth rates for each
formulation for the establishment of the feeding profiles, namely
exponential feeding profiles, as these are normally set to fall below
the maximum specific growth rate of the expression system, thus
minimizing acetate formation [14,30]. Results showed that, for the
selected formulation of 20 g/L of glycerol and tryptone (1st formu-
lation), after 11 h of fermentation almost all of the glycerol present
in the culture is consumed. This was the time selected to initiate
the feeding process. With all aspects determined, the feeding pro-
files were chosen, based on previously described feeding profiles
[19], on the typical growth rates for exponential feeding [14], and
on the maximum specific growth rates obtained for the batch fer-
mentations, since the growth rates selected for the feeding should
be lower than the maximum value obtained, in order to guarantee
complete glycerol consumption.

4.2.1. Constant feeding profiles
In a constant feeding strategy, a predetermined constant rate of

glycerol is fed to the reactor [14]. The results obtained for the fer-
mentations with constant feed profiles suggested that the amount
of glycerol fed to the bioreactor was significantly higher than what
E. coli could consume.

From the three feeding profiles tested, the one that had a greater
reproducibility was 1 g/L/h, and since all three of them achieved
similar maximum ODs (around 50), this seemed the best option to
perform a constant feeding profile.

4.2.2. Exponential feeding profiles
Typically, exponential feeding allows cells to grow at pre-

determined specific growth rates, usually between 0.1 and 0.3 h−1
limits were chosen (0.1, 0.2 and 0.3 h−1). The results for the
exponential feeding profiles suggested that cell growth was not
visibly hampered by the high glycerol concentrations observed in
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eeding stage, as these feeding profiles were able to achieve the
ame OD level of that obtained for the constant feeding profiles.
rom the three growth rates, the lower rate used (0.1 h−1) seems
o be preferable, taking into account its reproducibility and the
bility of cells to consume the glycerol provided by the feed in the
arly stages of the fermentation.

Comparing these results to those obtained with constant feeds,
oth allowed the achievement of very similar maximum ODs
between 50 and 60, approximately), and because the feeding solu-
ions for the exponential feeds require much larger quantities of
lycerol, constant feeds seem preferable, considering the lower
osts associated in a further scale-up strategy.

Similarly to the results obtained for constant feeding experi-
ents, cellular viability results in exponential feeding showed that

he number of dead cells increased throughout the fed-batch phase.
ince glycerol concentration did not seem to have a great influ-
nce in cell growth and viability, it seems that other aspect may
e affecting cell growth in late stages of the fermentation. One of
he possibilities is the accumulation of toxic byproducts during the
rocess, that has been reported in fed-batch processes [14,22,27].
nother possible factor that might be influencing these results is

ryptone concentration, which might be hampering E. coli viability
s a limiting substrate.

.3. COMT production in fed-batch fermentations

Maximum OD reached in these fermentations was a little lower
about 40), which can be associated with IPTG induction, since this
nducer is known to be toxic and promote metabolic stress [13,17].
he comparison of cytometry results from the fermentations at
onstant feeding with the same feeding rate (1 g/L/h) showed over-
ll lower percentages of permeabilized and dead cells. This may
e possibly due to the higher concentration of tryptone present

n these fermentations, confirming the above mentioned possible
ffect of low tryptone concentrations in cell viability. Another rea-
on for these seemingly better results might be related with process
uration. In these last assays, the whole process (batch and fed-
atch) only took 13 h to develop, against the 17 and 22 h of the
rocesses that used the same feeding rate. This shorter period was
robably due to the early implementation of the fed-batch tech-
ique (7 h of batch fermentation, against 9 and 10 for the other
ssays). With lower fermentation times, possibly toxic by-products
re less likely to accumulate, or they do so at lower levels, and so
heir effect on cell viability is not so evident.

From Fig. 5, we can see that specific hSCOMT activity
nhances progressively after induction, with the highest value
442.34 nmol/h/mg) being achieved 6 h after induction, since the
romoter had more time to act.

. Conclusions

In this study, several fermentation conditions were tested to
ncrease SCOMT production in E. coli BL21 (DE3) strains, with the
im of developing a fed-batch strategy suitable for COMT produc-
ion and further scale-up. This study indicates that a fed-batch
rocess as a good option for recombinant human SCOMT pro-
uction in E. coli BL21 (DE3), and it was verified that a constant
eeding process is preferable to exponential feeding strategies. An
D600 of about 40 was achieved via a constant feeding profile
f 1 g glycerol/L/h, with a maximum specific hSCOMT activity of
42.34 nmol/h/mg. Finally, we verified that a high percentage of

iable cells was maintained at the end of the fermentation. The
ombined results of high optical densities reached in comparison
ith previous work with this protein in this expression system, the
igh specific hSCOMT activity and high cell viability at the end of the

[

logy Reports 3 (2014) 34–41

fermentation suggest that further optimization of this particular
expression system is a great option for human SCOMT production,
and a scale-up process could be extremely promising, giving even
better results in terms of cell growth and protein productivity.
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