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This study investigated the effects of resveratrol on the growth performance, energy
sensing, glycolipid metabolism and glucose and insulin load of blunt snout bream
Megalobrama amblycephala fed high-carbohydrate diets. Fish (39.44 ± 0.06 g) were
randomly fed three diets: a control diet (30% carbohydrate), a high-carbohydrate diet
(HC, 41% carbohydrate), and the HC diet supplemented with 0.04% resveratrol (HCR)
for 12 weeks. Fish fed the HC diet had significantly high values of nitrogen and
energy retention efficiency, hepatosomatic index, intraperitoneal fat ratio, whole-body
lipid content and intraperitoneal fat glycogen and lipid contents compared to the control
group, but showed little difference with the HCR treatment. Liver and muscle lipid
contents and plasma levels of glucose, glycated serum protein, advanced glycation
end products and total cholesterol of fish fed the HC diet were significantly higher
than those of the control group, whereas the opposite was found with resveratrol
supplementation. Fish fed the HC diet obtained significantly low values of plasma
insulin levels and hepatic adenosine monophosphate (AMP) contents and NAD+/NADH
ratio compared to HCR treatment, but showed little difference with the control group.
The opposite was found for hepatic adenosine triphosphate (ATP) contents and the
ATP/AMP ratio. In addition, fish fed the HC diet showed significantly high transcriptions
of glucose transporter 2 (GLUT2), glucose-6-phosphate dehydrogenase, glycogen
synthase, fatty acid synthetase (FAS), acetyl-CoA carboxylase α (ACCα), peroxisome
proliferator-activated receptor γ and PPARα compared to the control group, whereas
the opposite was found for protein levels of AMP-activated protein kinase α (t-AMPKα),
phosphorylated AMP-activated protein kinase α (p-AMPKα), sirtuin-1 (SIRT1), and
p-AMPKα/t-AMPKα ratio as well as the transcriptions of AMPKα1, AMPKα2, SIRT1,
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PPARγ coactivator-1α (PGC-1α), phosphoenolpyruvate carboxykinase, fructose-1,6-
bisphosphatase (FBPase), glucose-6-phosphatase, carnitine palmitoyl transferase I
(CPT I) and acyl-CoA oxidase. Resveratrol supplementation significantly up-regulated
the protein levels of t-AMPK, p-AMPK, and SIRT1, p-AMPK/t-AMPK ratio as well
as the transcriptions of AMPKα1, AMPKα2, SIRT1, PGC-1α, GLUT2, FBPase, and
CPT I compared to HC group, while the opposite was found for sterol regulatory
element-binding protein-1, FAS and ACCα. Furthermore, resveratrol improved glucose
and insulin tolerance of fish fed the HC diet after glucose and insulin load.

Keywords: growth performance, energy sensing, glycolipid metabolism, resveratrol, blunt snout bream

INTRODUCTION

Carbohydrates are generally deemed to the most economical
energy source in fishery, because of their relatively low cost
and protein-sparing effect (namely spare protein from being
catabolized for energy, and decrease the ammonia emission into
aquatic environment) (Shiau and Lin, 2001; Watanabe, 2002).
The inclusion of high levels of carbohydrates is favored by
the aquaculture industry, as could usually result in a decrease
in feed cost. However, unlike the case of most terrestrial
animals, fish generally have a limited ability to use glucose for
energy purposes (Polakof et al., 2012; Wang et al., 2016). In
addition, the nutritional values of carbohydrates vary greatly
among different fish species. Generally, the omnivorous and
herbivorous fish are capable to utilize much higher levels of
carbohydrates than carnivorous ones (Wilson, 1994). To date,
the metabolic differences in carbohydrate utilization among fish
species are not still fully understood. Recently, some studies
have shown that the low utilization of carbohydrates by fish
might be partly due to the poor postprandial supervision of
certain energy metabolic sensors, which are closely involved in
glucose metabolism (Magnoni et al., 2012; Polakof et al., 2012;
Condesieira and Soengas, 2017; Kamalam et al., 2017). Indeed,
some studies have shown that the intermediary metabolism of
fish could be regulated by these energy sensors that control
intracellular glucose use (Lu et al., 2018; Xu et al., 2018). In view
of this, the molecular investigations of these energy sensors might
promote our understanding of the carbohydrate utilization by
fish.

The AMP-activated protein kinase (AMPK) is an evolutionary
conserved serine/threonine protein kinase. As a key energy
metabolic sensor, it plays a vital important role in maintaining
the cellular energy homeostasis (Foretz and Viollet, 2011).
Previous studies have showed that AMPK could activate the silent
information regulator 1 (SIRT1), a NAD-dependent deacetylases,
which is a main regulator of energy metabolism through the
regulation of the transcription factors and coregulators via
deacetylation (Cantó and Auwerx, 2009; Wu et al., 2011).
Among them, peroxisome proliferators γ-activated receptor
coactivator-1α (PGC-1α) is of vital importance, since it is a
main regulator of fatty acid β-oxidation and gluconeogenesis
(Cantó and Auwerx, 2009). Indeed, the AMPK–SIRT1–PGC-1α

system is considered as an energy sensing network that controls
the energy expenditure of animals (Cantó and Auwerx, 2009).

Now, it is well acknowledged that AMPK could be activated
through the increase of the AMP/ATP ratio. Once activated,
AMPK could inhibit hepatic glucose output, adipogenesis and
cholesterol synthesis, but stimulate glucose uptake and fatty acid
oxidation accompanied by a simultaneous modulation of insulin
production by strengthening the survival ability of pancreatic
beta-cells (Winder and Hardie, 1999; Viollet et al., 2009;
Magnoni et al., 2012). Generally, these metabolic adjustments
are accomplished by the assistance of both SIRT1 and PGC-1α

(Rodgers et al., 2005). This again indicated that AMPK, SIRT1
and PGC-1α play an important role in regulatory network for
metabolic homeostasis. However, the aforementioned studies
mainly focus on mammals (especially in rats). The potential role
of this energy sensing network in the intermediary metabolism of
fish is still barely understood.

Resveratrol (3,4′,5-trihydroxy-stilbene) is a naturally
occurring phytoalexin. This compound is found in different
pharmaceutical dosage forms, and is recommended as a dietary
supplement (Lekli et al., 2008; Bhatt et al., 2012; Krithika et al.,
2015). Previous studies have demonstrated that resveratrol
has anti-diabetic properties by the improvement of insulin
sensitivity, stimulation of glucose uptake and enhancement of
lipolysis and fatty acid β-oxidation (Breen et al., 2008; Vallianou
et al., 2013). Indeed, resveratrol has been demonstrated to
alleviate the negative metabolic effects of excess calorie intake,
improve glucose tolerance, prevent the development of fatty
liver, and enhance mitochondrial biogenesis in obese rodents
(Baur and Sinclair, 2006; Lagouge et al., 2006). Several studies
have suggested that these metabolic actions might be due to the
mediation of AMPK. In fact, resveratrol could activate AMPK,
which in turn induces the expression of SIRT1. This subsequently
activates the activity of PGC-1α through deacetylation, thereby
stimulating the catabolic pathways and inhibiting the anabolic
ones (Ajmo et al., 2008; Wu et al., 2011). This indicated that
the beneficial effects of resveratrol on the glucose and lipid
metabolism of animals might be accomplished through the
mediation of the AMPK–SIRT1–PGC-1α network. However,
these information have mainly derived in terrestrial animals.
Studies regarding the beneficial effects of resveratrol on the
intermediary metabolism of aquatic animals are still quite
scared. To date, only three literatures are available investigating
the beneficial effects of resveratrol on the lipid metabolism
of zebrafish Danio rerio, blunt snout bream Megalobrama
amblycephala, Atlantic salmon (Salmo salar) fed high-fat
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diets (Ran et al., 2017; Zhang et al., 2017; Menoyol et al., 2018).
However, such information concerning carbohydrate metabolism
is still absent. In addition, the underlying mechanisms are still
poor understood, as warranted further in-depth studies.

Blunt snout bream is one of the most important economic
freshwater fish in China. Due to its fast growth and high larval
survival rate, this species has been widely cultured worldwide
(Li et al., 2012). However, due to its herbivorous feeding habit,
diets formulated for this species usually contain large amounts of
carbohydrates, as inevitably results in severe metabolic disorders
(Prathomya et al., 2017; Prisingkorn et al., 2017). Therefore,
investigating the carbohydrate utilization by this species and the
underlying mechanisms are extremely important. Considering
this, the present study was conducted to evaluate the long-term
influences of dietary resveratrol supplementation on the growth
performance, energy sensing, glycolipid metabolism and glucose
and insulin load of this fish fed carbohydrate-enriched diets. The
results presented here could provide us some new insights into
the carbohydrate metabolism of fish, as might facilitate the use of
resveratrol in the aquaculture industry.

MATERIALS AND METHODS

Ethics Statement
All experimental animals in the present study were approved by
the Animal Care and Use Committee of Nanjing Agricultural
University (Nanjing, China). All experimental animal operations
were approved and guided by the Care and Use of Laboratory
Animals in China.

Experimental Diets
Four isonitrogenous (32% crude protein) and isolipidic (5%
crude lipid) diets were formulated, including a control diet
(containing 30% nitrogen-free extract), a high-carbohydrate
diet (HC, containing 41% nitrogen-free extract) and a HC
diet supplemented with 0.04% resveratrol (HCR). Dietary
carbohydrate levels were adopted on the basis of our previous
studies (Li et al., 2013, 2014). Resveratrol used in this study
was obtained from Hubei Jusheng Technology Co., Ltd., (Hubei,
China), with a purity of at least 98%. The dose of resveratrol
was adopted on the basis of a previous study (Zhang et al.,
2017), which investigated the effects of dietary resveratrol levels
on the growth and lipid metabolism of blunt snout bream fed
high-lipid diets. Feed formulation and proximate composition
of the experimental diets were presented in Table 1. Protein
was supplied by fish meal, soybean meal, rapeseed meal and
cottonseed meal. Dietary lipids derived from fish oil and soybean
oil. Corn starch was adopted to obtain the dietary carbohydrate
levels required. Microcrystalline cellulose was included as the
filler.

The diets were produced in our laboratory. Ingredients were
finely ground, carefully weighed, well mixed, and pelletized using
a laboratory pellet machine (MUZL 180, Jiangsu Muyang Group
Co., Ltd., Yangzhou, China). All diets were dried at 30◦C for
24 h. After drying, the diets were stored at −20◦C in plastic bags
until use.

TABLE 1 | Formulation and proximate composition of the experimental diets.

Ingredients Control HC HCR

Fish meal 8.00 8.00 8.00

Soybean meal 26.00 26.00 26.00

Rapeseed meal 17.00 17.00 17.00

Cottonseed meal 17.00 17.00 17.00

Fish oil 2.00 2.00 2.00

Soybean oil 2.00 2.00 2.00

Corn starch 12.00 25.00 25.00

Microcrystalline cellulose 13.00 0.00 0.00

Resveratrol (%) 0.00 0.00 0.04

Calcium biphosphate 1.80 1.80 1.80

Premix1 1.20 1.20 1.20

Proximate composition (% air-dry basis)

Moisture 9.32 9.37 9.57

Crude protein 32.20 32.73 32.71

Crude lipid 5.58 5.38 5.71

Ash 7.05 7.07 7.12

Crude fiber 15.99 3.81 3.54

Nitrogen-free extract2 29.86 41.64 41.35

Energy (MJ/kg) 19.71 19.72 19.20

Control, diet with 30% carbohydrate level; HC, diet with 41% carbohydrate level;
HCR, diet with 41% carbohydrate and 0.04% resveratrol. 1Premix supplied the
following minerals and vitamins (per kg): CuSO4·5H2O, 2.0 g; FeSO4·7H2O,
25 g; ZnSO4·7H2O, 22 g; MnSO4·4H2O, 7 g; Na2SeO3, 0.04g; KI, 0.026 g;
CoCl2·6H2O, 0.1 g; Vitamin A, 900,000 IU; Vitamin D, 200,000 IU; Vitamin E,
4500 mg; Vitamin K3, 220 mg; Vitamin B1, 320 mg; Vitamin B2, 1090 mg; Vitamin
B5, 2000 mg; Vitamin B6, 500 mg; Vitamin B12, 1.6 mg; Vitamin C, 5000 mg;
pantothenate, 1,000 mg; folic acid, 165 mg; choline, 60,000 mg. 2Calculated by
difference (100 – moisture – crude protein – crude lipid – ash – crude fiber).

Experimental Fish and Feeding Trial
Blunt snout bream were purchased from the National Fish
Hatchery Station in Yangzhou (Jiangsu province, China). Before
the experiment, fish were acclimated to the experimental
conditions by feeding a commercial diet (feed No. 191, Tongwei
feed group Co., Ltd., Wuxi, China) containing 32% protein and
5% lipid for 2 weeks. After that, a total of 216 fish (average
weight: 39.44 ± 0.06 g) were randomly distributed into 12 tanks
(300 L each) in a flow-through recirculating aquaculture system
(water flow rate, 2 L/min) at a stocking density of 18 fish per
tank. Then, fish were fed to visual satiation thrice daily (07:30,
11:30, and 16:30 h) for 12 weeks with one of three experimental
diets. Each diet was tested in four tanks. Throughout the feeding
period, a 12:12 h light: dark regime (07:00 to 19:00 h light
period) was maintained by timed fluorescent lighting. Water
temperature was maintained at 27 ± 1◦C, and dissolved oxygen
was maintained above 5.0 mg/L. Total ammonia nitrogen and
nitrite were maintained below 0.2 and 0.01 mg/L, respectively.

Sample Collection
Before the feeding trial, six fish were randomly collected from
the acclimated fish for the analysis of initial body composition.
Then, the rest of fish were assigned to the feeding trial. After
the last meal, fish were fasted for 24 h to empty gut contents
prior to sampling. Then, all fish in each tank were counted
and weighed. Four fish from each replicate with a total of
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16 fish from each treatment were randomly selected, and were
slightly anesthetized by MS-222 (tricaine methanesulfonate,
Sigma, United States) at a concentration of 100 mg/L. Thereafter,
blood sample was rapidly taken from the caudal vein using
heparinized syringes, and was centrifuged at 3000 rpm at 4◦C
for 10 min. The supernatant was collected and stored at −80◦C
for subsequent analysis. It should be mentioned here that fish
among different treatments were sampled at equally timed
intervals (about 20 min for each replicate) to average diurnal
fluctuations in hormone titres across the groups. Then, individual
liver, muscle and intraperitoneal fat were also sampled. These
samples were stored in liquid nitrogen for further analysis. In
addition, two fish were randomly collected from each tank,
and were stored at −20◦C for the determination of whole-body
composition.

Growth Performance Determination
The growth performance parameters adopted in this study were
calculated as follows:

Feed intake (g per fish) = total feed intake (g)/

total fish number.

Weight gain rate (WGR,%) = [(Wt − W0)/W0)]
∗100.

Specific growth rate (SGR, %) = [(LnWt − LnW0)/

T]∗100.

Feed conversion ratio (FCR) = total feed intake (g)/

total weight gain (g).

Protein efficiency ratio (PER) = fish weight gain (g)/

total protein fed (g).

Hepatosomatic index (HSI, %) = (liver weight/

body weight)∗100.

Viscera index (VSI, %) = (viscera weight/

body weight)∗100.

Intraperitoneal fat ratio (IPF, %) = (intraperitoneal fat

weight/body

weight)∗100.

Retention of nitrogen (NRE, %) = ((W∗tNt − W∗0N0)/

(Ndiet
∗ feed intake)∗100.

Retention of energy (ERE, %) = (W∗t Et − W∗0E0)/

(Ediet
∗ feed intake)∗100.

The W is body weight, W0 is initial weight, Wt is final
weight, T is the culture period in days, N0/E0 and Nt/Et are
the initial and final nitrogen/energy contents in whole body,

respectively, and Ndiet/Ediet are the nitrogen/energy contents in
the diets.

Glucose Tolerance Test (GTT) and Insulin
Tolerance Test (ITT)
After initial sampling, the remaining fish in each group were
assembled in one tank, and were starved for 24 h before the GTT
and ITT.

For GTT, according to the method detailed by Li et al.
(2016), 20 fish from each treatment were slightly anesthetized
and weighed. Then they received an intraperitoneal injection
of glucose [1.67 g glucose per kg body weight (BW)] within
10 min to minimize the deviation of plasma glucose levels.
A saline solution (0.9%) containing 100 mg glucose per mL
was used for that purpose. Then, fish were immediately
transferred to five tanks at a rate of four fish per tank,
and were sampled at 1, 2, 4, 8, and 12 h, respectively.
One tank of fish was sampled for each sampling time in
order to minimize the stress due to sampling. Additionally,
the blood samples collected before the GTT were used for
time 0 h. Blood samples were taken following the procedures
aforementioned.

The ITT was carried out as described in our previous study
(Shi et al., 2018). Briefly, another 20 fish from each treatment
were individually weighted and injected intraperitoneally with
bovine insulin (0.052 mg/kg BW, Sigma, United States) (Jin
et al., 2014) within 10 min. A saline solution (0.9%) containing
either 0.052 mg insulin per mL was used for that study. Then,
fish were immediately transferred to five tanks at a rate of
four fish per tank, and were sampled at 1, 2, 4, 8, and 12 h,
respectively, after injection following the procedures detailed
in GTT.

Analysis of Proximate Composition,
Tissue Glycogen Synthase (GS)
Activities, and Tissue Glycogen and Lipid
Contents
Diets and fish were analyzed for proximate composition.
Moisture was determined by oven drying at 105◦C until constant
weight. Crude protein (nitrogen × 6.25) was determined by
the micro-Kjeldahl method using an Auto Kjeldahl System
(FOSS KT260, Switzerland). Crude lipid was determined via
ether extraction using a Soxtec System (Soxtec System HT6,
Tecator, Sweden). Ash content was analyzed by burning at
550◦C for 4 h. Gross energy was measured using an adiabatic
bomb calorimeter (PARR 1281, Parr Instrument Company,
Moline, IL, United States). Crude fiber was analyzed by fritted
glass crucible method using an automatic analyzer (ANKOM
A2000i, Macedon, New York, NY, United States). In addition,
the crude protein, crude lipid, ash and gross energy in whole
body were measured on the air-dry basis samples, which were
converted to wet-weight basis samples. Tissue GS activities were
determined following the procedures detailed by Villa-Moruzzi
et al. (1979). Tissue glycogen and lipid contents were measured
according to Folch et al. (1957) and Keppler et al. (1974),
respectively.
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Analysis of Plasma and Liver Metabolites
The levels of plasma glucose was measured using the glucose
oxidase method (Asadi et al., 2009). Plasma glycated serum
protein (GSP) and AGES levels were assayed by the method
detailed by David and John (1984) and Monnier et al.
(1986), respectively. Plasma insulin level was analyzed using a
heterologous radioimmunoassay method (Gutierrez et al., 1984).
This method has been verified in common carp (Cyprinus
carpio L.) (Hertz et al., 1989), which shares the same classification
(the Cyprinidae family) with blunt snout bream. Plasma
triglyceride and total cholesterol levels were determined by
the colorimetric enzymatic methods (McNamara and Schaefer,
1987). Hepatic contents of adenosine triphosphate (ATP) and
adenosine monophosphate (AMP) were measured following the
procedures detailed by Adam (1965) and Lund et al. (1975),
respectively. The contents of nicotinamide adenine dinucleotide
(NAD+) and nicotinamide adenine dinucleotide phosphate
(NADH) were determined by Woodley and Gupta (1971).

Western Blot and Quantitative Real-Time
PCR (RT-PCR)
Total protein was extracted from the liver using RIPA lysis
buffer (#9806, Cell Signaling, Danvers, MA, United States)
containing 20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM
Na2EDTA, 1 mM EGTA, 1% NP-40, 1% sodium deoxycholate,
2.5 mM sodium pyrophosphate, 1 mM beta-glycerophosphate,
1 mM Na3VO4, 1 µg/mL leupeptin, 1 mM PMSF and 1×
protease inhibitor cocktail (Cell Signaling, Danvers, MA,
United States, #5871). Then, it was centrifuged at 12,000 × g
at 4◦C for 15 min. The supernatant was collected and stored at
−80◦C for subsequent analysis. Then, the protein concentration
was determined using a Bio-Rad Protein Assay Kit (Bio-Rad
Laboratories, Munich, Germany). Subsequently, proteins
were separated by sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) using a Mini-Protean system
(Bio-Rad, Spain) for 1–2 h at 100 V, then they were transferred
to polyvinylidene fluoride (PVDF) membranes (Millipore,
Danvers, MA, United States). The specific primary antibodies
used were anti-β-actin (BM3873, Boster, China, 1:5000 dilution),
anti-AMPKα (#2532, Cell Signaling Technology, United States,
1:2000 dilution), anti-phospho-AMPKα (#2535, Cell Signaling
Technology, United States, 1:2000 dilution) and anti-SIRT1
(13161-1-AP, Proteintech, United States, 1:1000 dilution). Then
PVDF membranes were washed and incubated with anti-rabbit
(#7074, Cell Signaling Technology, United States, 1:2000
dilution) secondary antibody for 1–2 h at room temperature.
Immune complexes were detected by a chemiluminescent
substrate (Gel Imagine CHEMI-SMART-3126, France) based
on the manufacturer’s instructions, and were visualized with a
luminescent image analyzer (Fujifilm LAS-3000, Japan). The
protein levels were normalized by β-actin, and the intensities of
each lane were quantified using the densitometry band analysis
tool in Image J 1.44p (United States National Institutes of Health,
Bethesda, MD, United States).

Total RNA in hepatopancreas of blunt snout bream was
extracted using Trizol (Invitrogen, Carlsbad, CA, United States)

according to the manufacturer’s instructions, and was treated
with RQ1 RNase-free DNase (Takara Co. Ltd., Japan) to eliminate
genomic DNA amplification. The quantity and purity of extracted
RNA were determined by absorbance measures at 260 and
280 nm, respectively. The ratio of absorbance at 260 and 280 nm
is used to assess the purity of DNA and RNA. Accordingly, a ratio
near 2.0 is generally accepted as “pure” for RNA. Its integrity
was further measured by electrophoresis in 1.0% formaldehyde
denaturing agarose gels.

cDNA was generated using 500 ng DNase-treated RNA by a
RT-PCR kit (Takara Co. Ltd., Japan) following the manufacturer’s
instructions. The reaction volume was 10 µL, containing 2 µL
buffer (5×), 0.5 µL dNTP mixture (10 mM each), 0.25 µL RNase
inhibitor (40 U µL−1), 0.5 µL dT-AP primer (50 mM), 0.25 µL
ExScriptTM RTase (200 U µL−1) and 6.5 µL DEPC water. Cycling
conditions were 42◦C for 40 min, 90◦C for 2 min, and 4◦C
thereafter.

After reverse transcription, real-time PCR was employed
to determine the mRNA levels based on the SYBR Green II
Fluorescence Kit (Takara Bio. Inc., Japan). The PCR primers
sets were designed using the Primer 5.0 software according
to the available sequences of blunt snout bream (Table 2).
RT-PCRs were carried out on the Mini Option real-time detector
(Bio-Rad, United States). The assays were performed with a
reaction mixture of 20 µL per sample, each of which contained
2 µL cDNA template (equivalent to 100 ng cDNA), 0.4 µL of
each primer (10 µmol L−1), 10 µL SYBR R© premix Ex TaqTM

(TaKaRa), 6.8 µL dH2O and 0.4 µL ROX Reference DyeII
(TaKaRa). The PCR reaction was piloted under the following
conditions: initial denaturation at 95◦C for 5 s followed by 40
cycles, annealing at 60◦C for 34 s and a final extension at 95◦C
for 5 s, followed by a melt curve analysis of 15 s from 95 to
60◦C, 1 m for 60◦C and then up to 95◦C for 15 s. To analyze
the relative transcriptional levels, the transcriptions of target
genes were normalized by a reference gene-elongation factor 1
alpha (EF1α) (Zhang et al., 2013) using the 2−11CT method
(Livak and Schmittgen, 2001). Four samples were analyzed from
each tank. It should be mentioned that all the PCRs were
highly specific and reproducible (0.998 > R2 > 0.983), and
all primer pairs had equivalent PCR efficiencies (from 0.89 to
1.14).

Statistical Analysis
Data on growth performance, body composition, tissue GS
activities and glycogen and lipid contents, plasma parameters
as well as protein and gene expressions were subjected
to one-way ANOVA using the SPSS 20.0 software package
(SPSS Inc., Michigan Avenue, Chicago, IL, United States) for
Windows, after testing the homogeneity of variances with the
Levene test. Unlikely, the data regarding plasma glucose levels
in the GTT and ITT were analyzed by two-way ANOVA
for significant differences among treatment means based on
sampling time, dietary treatments and their interaction. If
significant (P < 0.05) differences were found in the interaction,
each factor was further analyzed separately by one-way ANOVA.
All data were reported as mean ± SEM (standard error of the
mean).
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TABLE 2 | Nucleotide sequences of the primers used to assay gene expressions by real-time PCR.

Target gene Forward primer (5′–3′) Reverse primer (5′–3′) Accession numbers or references

AMPKα1 AGTTGGACGAGAAGGAG AGGGCATACAAAATCAC KX061840.1

AMPKα2 ACAGCCCTAAGGCACGATG TGGGTCGGGTAGTGTTGAG KX061841.1

SIRT1 TCGGTTCATTCAGCAGCACA ATGATGATCTGCCACAGCGT Gao et al., 2012

PGC1-α AAGGCATAAGGGTAATCGTA GAACGAGCTGCACTTTTCCC Gao et al., 2012

GLUT 2 ACGCACCCGATGTGAAAGT TTGGACAGCAGCATTGATT KC513421.1

GK AAAATGCTGCCCACTTAT AATGCCCTTATCCAAATC KJ141202.1

PK GCCGAGAAAGTCTTCATCGCACAG CGTCCAGAACCGCATTAGCCAC Gao et al., 2012

PEPCK TCGCCTGGATGAAGTTCGAC GTCTTGGTGGAGGTTCCTGG Gao et al., 2012

G6Pase TTCAGTGTCACGCTGTTCCT TCTGGACTGACGCACCATTT Gao et al., 2012

FBPase TACCCAGATGTCACAGAAT CACTCATACAACAGCCTCA KJ743995.1

GS CCTCCAGTAACAACTCACAACA CAGATAGATTGGTGGTTACGC Gao et al., 2012

G6PDH AGGTAAAGGTGCTGAAGT AAATGTAGCCTGAGTGGA KJ743994.1

SREBP1 GCTGGCGTGTCGCTATCT TGTTGGCAGTCGTGGAGG Qian et al., 2015

FAS AGCGAGTACGGTGATGGT GGATGATGCCTGAGATGG KF918747.1

ACCα TCTGCCCTCTATCTGTCT ATGCCAATCTCATTTCCT Qian et al., 2015

PPARγ AGCTTCAAGCGAATGGTTCTG AGGCCTCGGGCTTCCA HM140627

PPARα GTGCCAATACTGTCGCTTTCAG CCGCCTTTAACCTCAGCTTCT HM140628

CPT I TACTTCCAAAGCGGTGAG AGAGGTATTGTCCGAGCC Lu et al., 2014

ACO GCTCAACCCTGGCATACT CTGGCTCAGCTTTACACG Lu et al., 2014

EF1α CTTCTCAGGCTGACTGTGC CCGCTAGCATTACCCTCC X77689.1

AMPKα1, AMP-activated protein kinase α1; AMPKα2, AMP-activated protein kinase α2; SIRT1, sirtuin-1; PGC1-α, peroxisome proliferators γ-activated receptor
coactivator-1α; GLUT 2, glucose transporter 2; GK, glucokinase; PK, pyruvate kinase; PEPCK, phosphoenolpyruvate carboxykinase; G6Pase, glucose-6-phosphatase;
FBPase, fructose-1,6-biphosphatase; GS, glycogen synthase; G6PDH, glucose-6-phosphate dehydrogenase; SREBP1, sterol regulatory element-binding protein-1;
FAS, fatty acid synthetase; ACCα, acetyl-CoA carboxylase α; PPARγ, peroxisome proliferator-activated receptor γ; PPARα, peroxisome proliferator-activated receptor α,
CPT I, carnitine palmitoyl transferase I; ACO, acyl-CoA oxidase; EF1α, elongation factor 1 alpha.

RESULTS

Growth Performance, Feed Utilization,
and Whole-Body Composition
Growth performance, feed utilization and whole-body
composition of blunt snout bream were presented in Table 3. No
mortality was observed in all groups during the 12-week feeding
trial. Final weight, feed intake, WGR, SGR, FCR, PER, VSI and
whole-body moisture, protein, ash and energy contents showed
no significant difference (P > 0.05) among dietary treatments.
The NRE, ERE, HSI, IPF and whole-body lipid contents of fish
fed the HC diet were significantly (P < 0.05) higher than those
of the control group. But they showed no statistical difference
(P > 0.05) with those of the HCR treatment.

Tissue GS Activities and Tissue
Glycogen and Lipid Contents
As was shown in Table 4, intraperitoneal fat GS activities
and muscle glycogen contents showed no significant difference
(P > 0.05) among dietary treatments. Intraperitoneal fat lipid
and glycogen contents of fish fed the HC diet were significantly
(P < 0.05) higher than those of the control group. But, they
showed no significant difference (P> 0.05) with those of the HCR
group. In addition, liver and muscle lipid contents of fish fed the
HC diet were significantly (P < 0.05) higher than those of the
other groups. However, the HCR group obtained a significantly
(P < 0.05) high value of liver glycogen than the other treatments.

Liver and Plasma Biochemistry
Parameters
As was shown in Figure 1, hepatic ATP, AMP and NADH
contents as well as the ATP/AMP and NAD+/NADH ratios of
fish fed the HC diet showed no statistical difference (P > 0.05)
with those of the control group. The NAD+ content in fish fed
the HC diet was significantly (P < 0.05) lower than that of the
control group. In addition, the ATP content and the ATP/AMP
ratio of the HC group were significantly (P < 0.05) higher than
those of the HCR treatment, whereas the opposite was found for
AMP content and NAD+/NADH ratio.

Plasma metabolites of blunt snout bream were shown in
Table 5. No statistical difference (P > 0.05) was found in
triglyceride levels among dietary treatments. Plasma levels of
glucose, GSP and total cholesterol in fish fed the HC diet
were significantly (P < 0.05) higher than those of the other
groups. Plasma insulin levels of the HCR group was significantly
(P < 0.05) higher than that of the other treatments. In
addition, fish fed the HC diet obtained significantly (P < 0.05)
high plasma AGES levels compared to the control group,
but HC and HCR showed similar results (no significant
difference).

Hepatic Protein Expressions of AMPKα

and SIRT1
As can be seen from Figure 2 and Supplementary Figure S1,
fish fed the HC diet obtained significantly (P < 0.05) lower
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TABLE 3 | Growth performance, feed utilization, and whole-body composition of blunt snout bream fed different experimental diets.

Parameters Control HC HCR

Initial weight (g) 39.38 ± 0.17 39.45 ± 0.17 39.53 ± 0.05

Final weight (g) 85.05 ± 2.25 89.43 ± 4.39 88.81 ± 2.64

Feed intake (g per fish) 115.00 ± 5.47 121.94 ± 6.10 118.66 ± 8.74

WGR (%) 116.10 ± 5.21 126.76 ± 2.31 124.85 ± 6.90

SGR (% day−1) 1.10 ± 0.03 1.16 ± 0.07 1.15 ± 0.04

FCR 2.10 ± 0.06 2.03 ± 0.09 2.09 ± 0.05

PER 1.41 ± 0.05 1.53 ± 0.05 1.51 ± 0.06

NRE (%) 22.27 ± 0.87b 28.34 ± 0.76a 28.16 ± 0.17a

ERE (%) 21.83 ± 0.50b 25.05 ± 0.66a 25.00 ± 0.28a

HSI (%) 1.13 ± 0.02b 1.39 ± 0.04a 1.31 ± 0.05a

VSI (%) 6.62 ± 0.27 6.47 ± 0.45 6.43 ± 0.22

IPF (%) 1.39 ± 0.07b 1.76 ± 0.08a 1.66 ± 0.06a

Whole-body composition

Moisture (%) 70.71 ± 0.10 70.48 ± 0.67 70.78 ± 0.29

Crude protein (%) 16.80 ± 0.11 17.21 ± 0.25 17.20 ± 0.40

Crude lipid (%) 7.53 ± 0.26b 8.32 ± 0.12a 8.06 ± 0.11ab

Ash (%) 3.11 ± 0.04 3.49 ± 0.08 3.31 ± 0.14

Energy (MJ/kg) 7.58 ± 0.28 7.81 ± 0.16 7.86 ± 0.12

Control, diet with 30% carbohydrate level; HC, diet with 41% carbohydrate level; HCR, diet with 41% carbohydrate and 0.04% resveratrol. Values are means ± SEM of
four replications. Means in the same line with different letters were significantly different (P < 0.05).

TABLE 4 | Tissue glycogen synthase activities and glycogen and lipid contents of blunt snout bream fed different experimental diets.

Parameters Control HC HCR

GS synthase activities (U/g prot)

Liver 20.08 ± 0.49b 21.50 ± 0.91ab 24.42 ± 0.84a

Muscle 17.7 ± 0.42b 20.52 ± 1.11ab 22.28 ± 0.53a

Intraperitoneal fat 8.71 ± 0.31 8.87 ± 0.39 9.46 ± 0.45

Glycogen contents (mg/g)

Liver 6.46 ± 0.33c 15.20 ± 0.19b 18.80 ± 0.68a

Muscle 0.95 ± 0.02 1.06 ± 0.01 1.08 ± 0.04

Intraperitoneal fat 1.55 ± 0.01b 1.85 ± 0.07a 1.88 ± 0.05a

Lipid contents (%)

Liver 16.95 ± 0.37b 20.75 ± 1.00a 17.07 ± 0.65b

Muscle 4.64 ± 0.13b 6.92 ± 0.30a 4.65 ± 0.35b

Intraperitoneal fat 51.28 ± 1.08b 60.00 ± 1.61a 55.80 ± 2.63ab

Control, diet with 30% carbohydrate level; HC, diet with 41% carbohydrate level; HCR, diet with 41% carbohydrate and 0.04% resveratrol. Values are means ± SEM of
four replications. Means in the same line with different letters were significantly different (P < 0.05).

t-AMPKα, p-AMPKα, the p-AMPKα/t-AMPKα, and SIRT1
protein contents compared with other groups.

The mRNA Levels of Hepatic Enzymes
Involved in Energy Sensing and
Glycolipid Metabolism
As can be seen from Figure 3, the transcriptions of AMPKα1,
AMPKα2, SIRT1, and PGC-1α of fish fed the HC diet were
significantly (P < 0.05) lower than those of the other groups.

The transcriptions of the enzymes involved in glucose
metabolism were presented in Figure 4. Hepatic GK and PK
expressions showed no significant difference (P > 0.05) among
dietary treatments. The GLUT2 and G6PDH expressions of the

control group were significantly (P < 0.05) lower than those of
the other groups, whereas the opposite was found for PEPCK and
G6Pase expressions. The GS transcription of the control group
was significantly (P< 0.05) lower than that of the HCR treatment,
but showed no statistical difference (P> 0.05) with that of the HC
group. In addition, the FBPase expression of fish fed the HC diet
was significantly (P < 0.05) lower than that of the other groups.

In the Figure 5, the hepatic expressions of FAS and ACCα of
the HC treatment were significantly (P < 0.05) higher than those
of the other groups, whereas the opposite was found for CPT I
expression. The mRNA expressions of PPARα and PPARγ in the
HC group were significantly (P < 0.05) higher than those of the
control group, but showed no statistical difference (P> 0.05) with
that of the HCR group; whereas, the opposite was found for ACO
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FIGURE 1 | Liver ATP contents (A), AMP contents (B), the ATP/AMP ratio (C), NAD+ contents (D), NADH (E) contents and the NAD+/NADH ratio (F) of blunt snout
bream fed different experimental diets. Each data represents the mean of four replicates. Bars assigned with different letters are significantly different (P < 0.05).
Control, diet with 30% carbohydrate level; HC, diet with 41% carbohydrate level; HCR, diet with 41% carbohydrate and 0.04% resveratrol. ATP, adenosine
triphosphate; AMP, adenosine monophosphate; NAD+, nicotinamide adenine dinucleotide; NADH, nicotinamide adenine dinucleotide phosphate.

expression. In addition, the SREBP1 expression of fish fed the
HC diet was significantly (P < 0.05) higher than that of the HCR
treatment, but HC and control group showed similar results (no
significantly difference).

Plasma Glucose Levels After the GTT
and ITT
As was shown in Figure 6, plasma glucose levels were significantly
(P < 0.001) affected by sampling time, dietary treatments and
their interaction. The glucose injecting resulted in a significantly
(P< 0.05) elevated plasma glucose concentration with the highest
value being obtained at 1 h after injection. Thereafter, plasma
glucose levels decreased significantly (P < 0.05) to the basal
value, which was attained within 8 h after the glucose load.

TABLE 5 | Plasma metabolites of blunt snout bream fed the different experimental
diets.

Parameters Control HC HCR

Glucose (mmol/L) 5.16 ± 0.35b 7.31 ± 0.12a 5.53 ± 0.20b

GSP (mmol/L) 1.17 ± 0.09b 1.64 ± 0.09a 1.20 ± 0.08b

AGES (ng/mL) 5.78 ± 0.11b 6.24 ± 0.09a 5.99 ± 0.07ab

Insulin (µIU/mL) 12.62 ± 0.27b 13.08 ± 0.33b 14.50 ± 0.70a

Triglyceride (mmol/L) 1.81 ± 0.04 1.87 ± 0.03 1.82 ± 0.02

Total cholesterol (mmol/L) 5.48 ± 0.15b 6.70 ± 0.15a 5.89 ± 0.23b

Control, diet with 30% carbohydrate level; HC, diet with 41% carbohydrate level;
HCR, diet with 41% carbohydrate and 0.04% resveratrol. GSP, glycated serum
protein; AGES, advanced glycation end products. Values are means ± SEM of four
replications. Means in the same line with different letters were significantly different
(P < 0.05).

Then gradually reduced to the minimum at 12 h. In terms of
dietary treatments, plasma glucose level of the HCR treatment
was significantly (P < 0.001) lower than that of the other groups.
In addition, plasma glucose levels were significantly affected by
the interaction between sampling time and dietary treatments
with significant (P < 0.001) differences observed during the
period of 0–4 h among different groups.

Plasma glucose levels in blunt snout bream after ITT were
presented in Figure 7. Plasma glucose levels were significantly
(P < 0.001) affected by sampling time, dietary treatments
and their interaction. The insulin administration resulted in a
significantly (P < 0.05) decreased plasma glucose concentration
with lowest levels being obtained at 1 h after injection. Thereafter,
plasma glucose levels decreased significantly (P < 0.05) to the
basal value, which was obtained within 12 h after the insulin
load. In terms of dietary treatments, plasma glucose level of the
HCR treatment was significantly (P < 0.001) lower than that
of the other groups. In addition, plasma glucose levels were
significantly affected by the interaction between sampling time
and dietary treatments with significant (P < 0.001) differences
observed during the period of 0–8 h among different groups.

DISCUSSION

In this study, microcrystalline cellulose was incorporated at 13%
in diets as a filler to compensate for the carbohydrate levels
required. This could not have negative effects on the growth
performance of fish, since as a herbivorous fish blunt snout bream
has a high tolerance for cellulose than most of the carnivorous
and omnivorous species (Li et al., 2013; Zhou C.P. et al., 2013).
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FIGURE 2 | Hepatic t-AMPKα contents (A), p-AMPKα contents (B), the pAMPKα/t-AMPKα ratio (C) and SIRT1 contents (D) of blunt snout bream liver fed different
experimental diets. Gels were loaded with 20 µg total protein per lane. Protein and phosphorylation levels were normalized to liver β-actin levels. Each data
represents the mean of four replicates. Bars assigned with different letters are significantly different (P < 0.05). Control, diet with 30% carbohydrate level; HC, diet
with 41% carbohydrate level; HCR, diet with 41% carbohydrate and 0.04% resveratrol. t-AMPKα, AMP-activated protein kinase α; phosphorylated AMP-activated
protein kinase α; SIRT1, sirtuin-1.

In fact, in previous studies, 21% cellulose did not result in growth
retardation of this species (Zhou C.P. et al., 2013; Li et al., 2014).
In the present study, the final weight, feed intake, WGR, SGR,
FCR, and PER of fish showed no statistical difference among
dietary treatments. This result may be due to the fact that blunt
snout bream could utilize higher carbohydrates compared with
most carnivorous and omnivorous species (Zhou C. et al., 2013;
Li et al., 2014). Hence, high dietary carbohydrate did not result
in a severe growth retardation of this species. Unlikely, the NRE,
ERE, HSI, and IPF ratio of fish fed the HC diet were significantly
higher than those of the control group. The improved NRE
and ERE were not surprising since high-carbohydrate diets

could depress the gluconeogenic pathway of fish, thus improving
energy and protein retention (Sanchez-Muros et al., 1996;
Erfanullah, 1998). In addition, high dietary carbohydrates intake
could up-regulate the enzymatic activities of GS, FAS, G6PDH
and malic enzyme in fish, thus facilitating glycogenesis and
adipogenesis (Moreira et al., 2008; Castro et al., 2016). This
inevitably led to lipid and glycogen deposition in fish, as might
increase body energy contents, thus leading to the increased
ERE, HSI, and IPF ratio (Hemre et al., 1995; Erfanullah, 1998).
In addition, it is worth noting that resveratrol supplementation
resulted in a decrease of these growth parameters (except for
FCR) compared to the HC treatment, although no statistical
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FIGURE 3 | Relative expressions of the genes involved in energy sensing in the liver of blunt snout bream fed different experimental diets. Data are referred to the
values (relative units, RU) obtained in fish fed the control diet. Values were normalized with the transcription of EF1α. Each data represents the mean of four
replicates. Bars assigned with different letters are significantly different (P < 0.05). Control, diet with 30% carbohydrate level; HC, diet with 41% carbohydrate level;
HCR, diet with 41% carbohydrate and 0.04% resveratrol.

FIGURE 4 | Relative expressions of the genes involved in glucose metabolism in the liver of blunt snout bream fed different experimental diets. Data are referred to
the values (relative units, RU) obtained in fish fed the control diet. Values were normalized with the transcription of EF1α. Each data represents the mean of four
replicates. Bars assigned with different letters are significantly different (P < 0.05). Control, diet with 30% carbohydrate level; HC, diet with 41% carbohydrate level;
HCR, diet with 41% carbohydrate and 0.04% resveratrol.

difference was observed. This result was justifiable since
resveratrol could depress feed intake in fish, thus leading to a
lower growth performance (Zhang et al., 2017; Menoyol et al.,
2018). Furthermore, in this study, dietary supplementation of

resveratrol remarkably promoted liver glycogen contents of
fish compared to the HC group, whereas the opposite was
found for both liver and muscle lipid contents. According to a
previous study, resveratrol could enhance the glucose-stimulated
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FIGURE 5 | Relative expressions of the genes involved in lipid metabolism in the liver of blunt snout bream fed different experimental diets. Data are referred to the
values (relative units, RU) obtained in fish fed the control diet. Values were normalized with the transcription of EF1α. Each data represents the mean of four
replicates. Bars assigned with different letters are significantly different (P < 0.05). Control, diet with 30% carbohydrate level; HC, diet with 41% carbohydrate level;
HCR, diet with 41% carbohydrate and 0.04% resveratrol.

FIGURE 6 | Plasma glucose levels of blunt snout bream subjected to a glucose load after the adaption to different experimental diets. Each data represents the
mean of four replicates. Different lower-case letters indicate significant differences (P < 0.05) at different time points within each treatment, whereas different capital
letters indicate significant differences (P < 0.05) among these three treatment at each sampling point. ∗∗∗P < 0.001. Control, diet with 30% carbohydrate level; HC,
diet with 41% carbohydrate level; HCR, diet with 41% carbohydrate and 0.04% resveratrol.

insulin secretion by improving the functions of pancreatic
beta-cells, thus up-regulating GS expression of mammals
(Vetterli et al., 2011). In addition, the increased insulin levels

usually lead to the dephosphorylation of glycogen phosphorylase
(GPase) and glutamine synthetase (GSase) by inhibiting the
activities of adenylyl cyclase and decreasing intracellular cyclic
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FIGURE 7 | Plasma glucose levels of blunt snout bream subjected to an insulin load after the adaption to different experimental diets. Each data represents the
mean of four replicates. Different lower-case letters indicate significant differences (P < 0.05) at different time points within each treatment, whereas different capital
letters indicate significant differences (P < 0.05) among these three treatments at each sampling point. ∗∗∗P < 0.001. Control, diet with 30% carbohydrate level; HC,
diet with 41% carbohydrate level; HCR, diet with 41% carbohydrate and 0.04% resveratrol.

adenosine monophosphate (cAMP) formations, thus inhibiting
the glycogen breakdown in fish (Moon, 2001). This might
inevitably result in a relatively high tissue glycogen contents.
As for tissue lipid contents, resveratrol could inhibit fatty acid
synthesis through the down-regulation of the transcriptions
of ACC, FAS, PPARγ, and SREBP1, all of which are closely
involved in hepatic lipogenesis, thus leading to the reduced lipid
accumulation (Andrade et al., 2014).

In the present study, hepatic ATP contents and the ATP/AMP
ratio were up-regulated in fish fed the HC diet compared
to the control group, although no statistical difference was
observed. This was reasonable since high-carbohydrate intake
usually increases plasma glucose levels, and increases the energy
state of cells, thereby resulting in the increased ATP contents
coupled with the decreased AMP contents (Magnoni et al.,
2012). However, the supplementation of resveratrol induced a
remarkable decrease of ATP content and the ATP/AMP ratio
compared to the HC group, but the opposite was found for AMP
content. According to a previous literature, resveratrol could
inhibit the activity of ATP synthase in rats, as might consequently
lead to a decrease of ATP content and the ATP/AMP ratio, but
the increase of AMP level (Zheng and Ramirez, 2000; Dasgupta
and Milbrandt, 2007). In addition, the intake of high dietary
carbohydrates also led to a decrease of NAD+ contents in liver.

This result may be due to the fact that high-carbohydrate intake
usually induced a hyperglycemia state of fish, inhibiting the
pyruvate dehydrogenase complex, thereby leading to a decreased
NAD+ content (Belenky et al., 2007; Liu et al., 2013; Xu et al.,
2018). Meanwhile, the high value of NAD+/NADH ratio was
found in the HCR group, which may be due to the fact that
resveratrol could increase the phosphorylation of AMPK and
promote mitochondrial biogenesis, thus leading to the increased
NAD+/NADH ratio.

In addition, in this study, fish fed the HC diet attained
quietly high plasma levels of glucose, GSP, AGES, insulin and
total cholesterol compared to the control group. Generally, high
dietary carbohydrate intake usually induces a hyperglycemia state
of fish, as might in turn stimulate insulin synthesis and secretion
(Polakof et al., 2012; Xu et al., 2017). Excessive glucose reacts
non-enzymatically in the blood with the amino groups of plasma
proteins to form glycated proteins, and also could enhance the
Maillard reaction, thus leading to the increased GSP and AGES
levels (Brownlee et al., 1988; Misciagna et al., 2005; Beltramo
et al., 2008). The increased total cholesterol level was in line with
the common sense, since high-carbohydrate diets could promote
the lipogenesis of fish. Furthermore, in this study, resveratrol
supplementation led to a significantly decrease of plasma glucose,
GSP and total cholesterol concentrations compared to the HC
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group, while the opposite was found for insulin levels. This
might be explained by the following facts that: (1) resveratrol
could enhance insulin sensitivity and mitochondrial biogenesis
via the activation of both AMPK and SIRT1, thus accelerating
glucose uptake in peripheral tissues and consequently lowering
plasma glucose and GSP levels (Dasgupta and Milbrandt, 2007;
Barger et al., 2008); (2) resveratrol could inhibit lipogenesis in
parallel with a down-regulation of lipogenic gene expression,
thus lowering plasma total cholesterol levels (Fischer-Posovszky
et al., 2010). In addition, the relatively high insulin level observed
in the HCR group was also not surprising, due to the fact
that resveratrol could activate SIRT1, which in turn regulate
the glucose-stimulated insulin secretion in pancreatic β-cells
(Vetterli et al., 2011).

Previous studies have shown that both AMPK and SIRT1 play
a prominent role in the modulation of cellular energy metabolism
(Cantó and Auwerx, 2009; Chau et al., 2010). The activation of
AMPK results in an up-regulated cellular NAD+ levels, which
could in turn activate SIRT1, and subsequently activates PGC-1α

through deacetylation. However, such information in fish is
still barely available. In this study, hepatic protein contents of
t-AMPKα, p-AMPKα, SIRT1, and the p-AMPKα/t-AMPKα ratio
as well as transcriptions of AMPKα1, AMPKα2, SIRT1, and
PGC-1α were significantly down-regulated by high-carbohydrate
feeding, suggesting that a long-term intake of HC diets could
induce a poor energy sensing of fish, as might lead to an
impaired glucose homeostasis. This result was supported by
the fact that AMPK–SIRT1–PGC-1α is an energy sensing
network that controls the energy expenditure and metabolic
homeostasis of animals (Cantó and Auwerx, 2009). According
to previous studies, high dietary carbohydrates intake usually led
to the increased intracellular ATP contents and the decreased
intracellular AMP contents, thus depressing the activity of
AMPKα (Cammisotto et al., 2008; Polakof et al., 2011, 2012).
Hence, the decreased activity of SIRT1 and PGC-1α might
be a consequence of the decreased AMPKα activity. This was
supported by the fact that AMPK could enhance SIRT1 activity
by increasing cellular NAD+ levels. This might inevitably lead to
the deacetylation of PGC-1α, as might consequently stimulate the
catabolic pathways and inhibiting the anabolic ones (Cantó et al.,
2009; Schirmer et al., 2012). In addition, dietary supplementation
of resveratrol significantly up-regulated the protein contents of
t-AMPKα, p-AMPKα, and SIRT1, the p-AMPK/t-AMPK ratio
as well as the transcriptions of AMPKα1, AMPKα2, SIRT1, and
PGC-1α compared with the HC group. These results indicated
that a long-term administration of resveratrol could improve the
energy sensing of fish fed HC diets. This result might be ascribed
to the fact that resveratrol could activate AMPK. This in turn
induces the activity of SIRT1, which could activate PGC-1α via
deacetylation (Picard et al., 2004).

In the present study, hepatic transcriptions of PEPCK, G6Pase
and FBPase were significantly down-regulated in fish fed the
HC diet compared to the control group, whereas the opposite
was found for that of GLUT 2 and G6PDH. In addition, the
transcriptions of both GK and GS were also up-regulated,
although no statistical difference was observed. This showed
that the long-term intake of a high-carbohydrate diet could

inhibit the hepatic gluconeogenesis of blunt snout bream,
but promoted glucose transport, glycolysis, glycogenesis, and
pentose phosphate pathway. According to previous studies, high-
carbohydrate intake usually induced a hyperglycemia state of
blunt snout bream (Kamalam et al., 2017; Xu et al., 2017).
Excessive glucose was generally taken up by hepatocytes from
plasma with the assistance of GLUT2 (Enes et al., 2009). After
entering the hepatocytes, overmuch glucose is catabolized via
the glycolytic pathway characterized by the up-regulated GK and
PK expressions (Enes et al., 2009). Furthermore, hepatic glucose
could enhance GS transcription, thus leading to an enhanced
glycogenesis (Kamalam et al., 2017). In addition, excessive
glucose also inhibited hepatic gluconeogenesis through down-
regulating the expressions of PEPCK, G6Pase, and FBPase (Enes
et al., 2009; Kamalam et al., 2017), while enhanced the pentose
phosphate pathway by up-regulating the transcription of G6PDH
(Qiang et al., 2014). Moreover, resveratrol supplementation
remarkably increased the transcriptions of GLUT2, and FBPase
coupled with a moderate increase of GS expression. This
showed that resveratrol could heighten the glucose transport
and glycogenesis of fish. According to previous studies,
resveratrol treatment could potentiate the glucose-stimulated
insulin secretion in pancreatic β-cells, which could in turn
promote glucose uptake through irritating GLUT2 in the
peripheral tissues, and activate glycogen synthesis by the up-
regulation of GS (Sundby et al., 1991; Caruso and Sheridan,
2011; Vetterli et al., 2011). In addition, resveratrol could activate
AMPK, as consequently induces the expression of SIRT1, which
subsequently activates PGC-1α via deacetylation, thereby leading
to the increased FBPase expression (Kim et al., 2013).

In this study, hepatic expressions of SREBP1, FAS, ACCα, and
PPARγ were all up-regulated in fish fed the HC diet compared
to the control group, whereas the opposite was found for both
CPT I and ACO. This indicated that high-carbohydrate intake
could promote the fatty acid biosynthesis and fat accumulation
of fish, but decrease the fatty acid β-oxidation. This result may
be supported by the following facts that: (1) SREBP1, FAS, and
ACCα played an important role in hepatic adipogenesis (Qian
et al., 2015); (2) PPARγ is considered to play an important role in
tissue lipogenesis and lipid deposition (Walczak and Tontonoz,
2002); and (3) both CPTI and ACO are the enzymes closely
involved in mitochondrial fatty acid β-oxidation (Lu et al., 2014).
Furthermore, it is worth noting that resveratrol supplementation
significantly inhibited the transcriptions of SREBP1, FAS, and
ACCα, but up-regulated that of CPTI compared to the HC group,
indicating that resveratrol could enhance fatty acid β-oxidation
and reduce hepatic lipid accumulation of fish. According to
a previous study, the up-regulation of SIRT1 by resveratrol
triggered the activities of PGC-1α through deacetylation, thereby
resulting in a reduced lipogenesis by inhibiting the expressions of
SREBP1 and PPARγ in zebrafish (Ran et al., 2017). In fact, it has
been shown that resveratrol supplementation could significantly
elevate the CPTI and ACO activities in rats, thus preventing liver
fat accumulation (Andrade et al., 2014).

After a glucose load, the highest plasma glycemia was obtained
at 1 h. The time to reach the highest glucose level in blunt
snout bream was similar to that observed in common carp
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Cyprinus carpio and tilapia Oreochromis niloticus × O. aureus
(Furuichi and Yone, 1981; Lin et al., 1995), but was lower than
that of most carnivorous fish like red sea bream Chrysophrys
major and yellowtail Seriola quinqueradiata (Furuichi and
Yone, 1981), which required 2–3 h to reach the glucose peak.
Furthermore, present data suggested that blunt snout bream
require circa 6 h for re-establishing basal values of circulating
levels of glucose. This was similar to the results observed in
omnivorous tilapia (6 h) (Chen et al., 2017) and common
carp (5 h) (Furuichi and Yone, 1981) administrated with the
same glucose dose, but was much lower than that of the
carnivorous (12–24 h), such as chinook salmon Oncorhynchus
tshawytscha and European sea bass Dicentrarchus labrax (Mazur
et al., 1992; Enes et al., 2011). This may be due to the fact
that being a herbivorous fish, blunt snout bream might have a
higher glucose phosphorylation capacity in muscle and fat tissues
(main peripheral tissues) and a stronger inhibition of hepatic
gluconeogenesis (Kirchner et al., 2005; Polakof et al., 2012) than
most carnivorous ones. In addition, after insulin administration,
plasma glucose levels promptly decreased at 1 h, indicating that
blunt snout bream could effectively respond to exogenous insulin.
The time to reach the glucose lowest in this species was shorter
than that of most carnivorous species (Jin et al., 2014, 2017;
Deck et al., 2017), which required 3–9 h to attain the minimum
value. This was supported by the fact that being a herbivorous
freshwater fish, blunt snout bream has a higher capability of
glycogen synthesis in peripheral tissue (Polakof et al., 2010)
and a stronger inhibition of hepatic gluconeogenesis than most
carnivorous species (Navarro et al., 2006). Furthermore, the time
hypoglycemia duration in blunt snout bream (within 12 h) was
similar to that (within 12 h) of gibel carp Carassis auratus gibelio
injected the same insulin dose (Jin et al., 2017), but was much
faster than that (12–24 h) of carnivorous fish like rainbow trout
(Capilla et al., 2002). Furthermore, in terms of dietary treatments,
the plasma glucose level of fish fed the HC diet was lower than
that of the control group after both the GTT and ITT. This
may be due to the fact that fish subjected to high-carbohydrate
feeding usually characterize an increased number of insulin
receptors, an enhanced capacity for glucose phosphorylation,
and an inhibition of hepatic gluconeogenesis (Hemre et al.,
2002; Polakof et al., 2012), as might consequently lead to the
decreased plasma glucose levels. Furthermore, after glucose
and/or insulin load, resveratrol supplementation remarkably
decreased plasma glucose levels of fish fed the HC diet, as revealed

an improved glucose and insulin tolerance of fish. This result
might be due to the following facts that: (1) resveratrol could
stimulate glucose uptake by increasing the action of GLUTs in the
cytoplasmic membrane, thereby normalizing the blood glucose
levels (Vallianou et al., 2013); (2) resveratrol could improve
insulin tolerance by the induction of a more efficient insulin
signaling via the Akt pathway (Brasnyó et al., 2011), thus resulting
in a lower plasma glucose levels.

CONCLUSION

In conclusion, the present study suggested that dietary
supplementation of resveratrol could improve the energy
sensing and glycolipid metabolism of blunt snout
bream fed high-carbohydrate diets by activating the
AMPK–SIRT1–PGC-1α network, the up-regulation of the genes
related to glucose transportation, glycogenesis, and fatty acid
β-oxidation coupled with the depression of lipogenesis. In
addition, resveratrol supplementation slightly compromised the
growth performance of blunt snout bream.
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