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Abstract

The RNA-guided endonuclease Cas9 can be converted into a programmable transcriptional 

repressor, yet inefficiencies in target gene silencing have limited its utility. Here we describe an 

improved Cas9 repressor based on the C-terminal fusion of a rationally designed bipartite 

repressor domain, KRAB-MeCP2, to nuclease-null Cas9. We demonstrate the system’s superiority 

in silencing coding and non-coding genes, simultaneously repressing a series of target genes, 

improving the results of single and dual gRNA library screens, and enabling new architectures of 

synthetic genetic circuits.

INTRODUCTION

The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 system, 

which mediates adaptive immunity within bacteria and archaea, has emerged as a powerful 

tool for genome engineering1-7. Cas9 is an RNA-guided endonuclease that can be directed to 

specific DNA sequences through complementarity between the Cas9-associated guide RNA 

(gRNA) and the target locus, provided that a protospacer-adjacent motif (PAM) is proximal 

to the target. Because changing the target locus only requires alteration of the delivered 

gRNA, Cas9 has been quickly adopted for selective gene ablation and for performing 

unbiased genome-wide screens8–11. However, Cas9 cutting can lead to cellular toxicity due 

to the formation of DNA double-strand breaks and Cas9-generated modifications are 

irreversible, which limit its applications12.

Within Cas9, the amino acids critical for DNA catalysis can be mutated to generate a 

nuclease-dead Cas9 (dCas9), which remains competent for DNA binding but lacks 

endonuclease activity13. When directed towards the transcriptional start site (TSS) of a gene, 

dCas9 can physically block RNA polymerase passage, thereby leading to gene silencing13. 

Further improvement in transcriptional inhibition can be achieved by addition of repression 

domains such as the Krüppel-associated box (KRAB) to dCas9, with the resultant dCas9-

KRAB fusion protein being the current gold standard for dCas9-based repression 

studies14-17. While widely adopted, the dCas9-KRAB system suffers from inefficient 

knockdown and poor performance when compared to Cas9 nuclease-based methods14,18-19.

Previous work has shown that by fusing several transcriptional regulators to dCas9 in 

tandem, a synergistic increase in activity can be achieved20-23, with initial efforts focused on 
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building more potent transcriptional activators. Here we assemble and screen combinations 

of potent repressor domains to engineer a highly effective dCas9-KRAB-MeCP2 

transcriptional repressor.

RESULTS

Identification of dCas9-KRAB-MeCP2

To begin to design a more potent Cas9 repressor, we separately fused more than 20 different 

effector domains known to play a role in transcriptional regulation and gene silencing to the 

C-terminus of dCas9. The resulting dCas9 fusion proteins were then transfected into 

HEK293T cells along with a gRNA targeting the promoter of an enhanced yellow 

fluorescent protein (EYFP) reporter gene. The majority of dCas9 fusions were able to 

repress EYFP expression, with a few exhibiting greater repression (up to 8-fold) compared 

to dCas9 (Supplementary Fig. 1). Next we generated a library of dCas9 bipartite repressors 

consisting of the commonly used KRAB repressor and the six top-performing domains from 

our initial screen (MeCP2, SIN3A, HDT1, MBD2B, NIPP1, and HP1A). Our library 

contained all pairwise repeating and non-repeating combinations of the seven selected 

domains. As expected, many bipartite fusion proteins showed stronger improvement, 

ranging from 5- to 60-fold greater repression of EYFP compared to dCas9 (Supplementary 

Fig. 2).

Having done our initial studies with a synthetic reporter, we next determined whether our 

most potent repressors could also downregulate endogenous target genes. We selected nine 

bipartite repressors for further characterization. Each of the dCas9 variants was co-

transfected into HEK293T cells along with a set of gRNAs targeting four different 

endogenous genes. While varying degrees of gene repression were observed depending upon 

the target gene, the dCas9 repressor consisting of KRAB and the TRD domain of MeCP2, 

named dCas9-KRAB-MeCP2 (Fig. 1a and Supplementary Table 1), was the most potent 

across all targets (Supplementary Fig. 3). We also generated a series of tripartite fusion 

proteins to test whether further improvements in repression could be achieved by employing 

three different effector domains (Supplementary Fig. 4). No improvement in gene silencing 

was obtained using any of the designed tripartite repressors as compared to the dCas9-

KRAB-MeCP2 protein (Supplementary Fig. 5). The lack of improved repression with the 

tripartite repressors could be due to the domains recruiting identical secondary effectors that 

have already been recruited. It is also possible that the extent to which the domains fold and 

function properly decreases as greater numbers of effectors are fused together.

To understand the contributions of KRAB and MeCP2 to the overall effect, we performed a 

side-by-side comparison of different dCas9 fusion proteins consisting KRAB or MeCP2 

(Supplementary Fig. 6). The dCas9-KRAB-MeCP2 fusion outperformed either KRAB or 

MeCP2 either as single or double fusions to dCas9, suggesting that it is the combined effect 

of both domains leading to increased gene repression.
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Improved repression of endogenous gene using dCas9-KRAB-MeCP2

We next systematically compared the activity of dCas9-KRAB-MeCP2 to that of the current 

gold-standard dCas9-KRAB repressor by targeting a wide range of endogenous loci in 

HEK293T cells. For the majority of single genes tested, dCas9-KRAB-MeCP2 showed 

improved repression (Fig. 1b). To test whether dCas9-KRAB-MeCP2 could downregulate 

the expression of multiple genes more effectively, we co-transfected four gRNAs each 

targeting a different locus into HEK293T cells (Fig. 1c). dCas9-KRAB-MeCP2 showed 

improved multiplexed repression for all genes tested except for two where it showed similar 

activity to dCas9-KRAB.

We next designed an array of gRNAs targeting both the template and non-template strands 

ranging from 1-kb upstream to 1-kb downstream of the TSS for two different genes (CANX 
and SYVN1). 15 out of 25 gRNAs tested showed improved repression with dCas9-KRAB-

MeCP2 as compared to dCas9-KRAB. These results were independent of the DNA strand 

targeted and whether or not the gRNA was directed outside of the previously characterized 

optimal targeting window for repression15 (Fig. 2a-b). Initial studies with CRISPR 

repressors suggested that using multiple gRNAs targeting the same locus led to marked 

improvement in gene knockdown13. In contrast to these results, neither dCas9-KRAB nor 

dCas9-KRAB-MeCP2 showed improved repression when multiple guides against the same 

target were used; rather, they exhibited an activity that appeared to be dictated by the most 

potent guide within the set tested, consistent with recent observations24 (Fig. 2b-c).

The effect of dCas9-KRAB-MeCP2 is highly specific

Effector domains recruiting chromatin modifiers can cause widespread epigenetic changes 

over large regions of DNA25-27. We evaluated the targeting specificity of dCas9-KRAB-

MeCP2 by probing the expression of neighboring genes when either CXCR4 or SYVN1 was 

targeted (Supplementary Fig. 7a-b). No significant off-target effect was observed on the 

neighboring genes examined.

We next targeted the CXCR4 gene and performed whole-transcriptome sequencing (RNA-

seq) to evaluate the specificity of dCas9-KRAB-MeCP2 on a genome-wide scale. Results 

were compared to those obtained from cells transfected with either dCas9 or dCas9-KRAB. 

dCas9-KRAB-MeCP2 showed the strongest repression signal for the target gene, CXCR4. 

The global transcriptome profiles of all dCas9-repressors were highly correlated with that of 

the negative control, cells transfected with gRNA alone (Fig. 3 and Supplementary Fig. 7c), 

although an overlapping set of differentially expressed (DE) genes was also observed 

(Supplementary Fig. 8-9, Supplementary Table 2-3, and Supplementary Data 1). Of the few 

DE genes that showed downregulation, none exhibited a near-sequence match to the 

CXCR4-targeting gRNA, suggesting that these changes did not result from inappropriate 

targeting of repressors to the loci with altered expression.

dCas9-KRAB-MeCP2 efficiently suppresses genes when used at library scales

One of the most powerful uses of CRISPR-Cas9 technology is to enable facile genome-wide 

screens. To determine whether our tool was amenable to such screening, we generated 

heterogenous populations of human haploid (HAP1) cells stably expressing either dCas9, 
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dCas9-KRAB, or dCas9-KRAB-MeCP2. RNA expression levels of the dCas9-KRAB and 

dCas9-KRAB-MeCP2 repressors were similar in these haploid lines but were significantly 

lower than that of dCas9 alone (Supplementary Fig. 10a). When endogenous genes were 

targeted, cells containing dCas9-KRAB-MeCP2 showed a stronger repression compared to 

cells with other dCas9 constructs (Supplementary Fig. 10b).

Genes that are essential for cellular function serve as a useful set of targets for comparing 

the relative performance of different screening platforms19. Consequently, we infected each 

of our dCas9-expressing lines, as well as wild-type HAP1 cells, with a lentiviral single-

gRNA (sgRNA) library targeting an assortment of essential and non-essential genes. We 

then passaged the cells over a period of 14 days and quantified the extent to which the 

various sgRNAs were depleted over time. In the screen, cells-expressing dCas9-KRAB-

MeCP2 showed the strongest depletion for guides targeting essential genes relative to non-

essential genes (p= 3.52 × 10−80 using dCas9-KRAB-MeCP2 vs. 5.41 × 10−19 using dCas9-

KRAB at day 14) (Fig. 4a, Supplementary Table 4, and Supplementary Data 2). In addition, 

strong depletion signals (up to 256-fold depletion) were observed with dCas9-KRAB-

MeCP2 as early as day 7, compared to the mostly weak signals exhibited by dCas9-KRAB 

(up to 2-fold depletion). No depletion in sgRNAs targeting essential genes was observed for 

wild-type cells, indicating that our results were not due to technical artifacts (Supplementary 

Fig. 10c).

To test the generality of our system, we repeated the above screen in SH-SY5Y, a near-

diploid human neuroblastoma cell line (Fig. 4b and Supplementary Data 3), and HEK293T 

(Fig. 4c and Supplementary Data 4). While the overall depletion signal was not as strong as 

that observed in HAP1 cells, cell lines containing dCas9-KRAB-MeCP2 showed a greater 

degree of depletion for sgRNAs targeting essential genes at all times of measurement 

compared to previous technologies (Supplementary Table 5-6).

We plotted sgRNA depletion as a function of position from the TSS for the several hundred 

essential gene-targeting sgRNAs used (Supplementary Fig. 11a and Supplementary Table 7). 

As expected, sgRNAs positioned within the previously identified optimal targeting window 

(-50bp to +200bp from TSS) showed a higher likelihood of being depleted compared to 

sgRNAs positioned outside of the window (Supplementary Fig. 11b). Regardless of 

targeting position, dCas9-KRAB-MeCP2 outperformed dCas9-KRAB (Supplementary Fig. 

11c).

In the dCas9-KRAB-MECP2 screen, a few of the sgRNAs designed to target non-essential 

genes also showed marked depletion. We found that a subset of these sgRNAs also showed 

depletion when combined with either dCas9-KRAB or dCas9 alone (Supplementary Fig. 12 

and Supplementary Data 5), indicating that the observed off-target binding is not only a 

property of our improved repressor. Furthermore, a few sgRNAs that showed unexpected 

depletion within the HAP1 screen also showed depletion within the SH-SY5Y screen for 

either dCas9-KRAB-MeCP2 or dCas9-KRAB (Supplementary Data 5). These data suggest 

that there are consistent off-target sites that these unique sgRNAs are binding to which affect 

growth. We hypothesize that because dCas9-KRAB-MeCP2 is a more potent repressor, 

signals from these off-target binding events are more readily observed.
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To assess the overall performance of dCas9-KRAB-MeCP2 within screening environments, 

we used the conventional MAGeCK analysis pipeline28. MAGeCK takes into account the 

behavior of all sgRNAs against a given gene when determining whether it is subject to 

selection during the screen. In HAP1 cells, dCas9-KRAB-MeCP2 correctly identified 21 

essential genes compared to only 3 identified by dCas9-KRAB at day 14. Similarly in 

HEK293T cells, dCas9-KRAB-MeCP2 identified 11 essential genes compared to 5 

identified by dCas9-KRAB. In SH-SY5Y cells, dCas9-KRAB-MeCP2 showed similar 

performance by identifying 11 essential genes compared to 10 identified by dCas9-KRAB. 

No non-essential genes were deemed significant in any of the experimental groups, 

(Supplementary Fig. 13 and Supplementary Data 6). These results support that dCas9-

KRAB-MeCP2 is a more potent tool for screening gene essentiality compared to dCas9-

KRAB.

dCas9-KRAB-MeCP2 improves genetic interaction mapping

To further assess the capabilities of dCas9-KRAB-MeCP2, we performed a combinatorial 

repression screen. Our screening library consisted of dual guides against genes involved in 

DNA repair along with a set of positive and negative controls. Within our library each 

construct contained two gRNAs, with the majority of gRNA pairs targeted to two different 

genes (Supplementary Table 8). Similar to the single gene targeting screens, samples for the 

dual guide screen that contained dCas9-KRAB-MeCP2 showed improved selection for or 

against specific gRNA pairs over time compared to samples containing dCas9-KRAB (Fig. 

5a).

We next estimated the fitness effects for each individual gRNA and quantified genetic 

interactions (indicated by pi-scores) between gene pairs29 (See Supplementary Note 1 for 

interpretation of pi-scores). Specifically, we tested whether distant gene pairs tend to engage 

more in negative genetic interactions, while gene pairs that form protein complexes tend to 

have positive pi-scores30,31. For the negative control and dCas9-KRAB screens, no clear 

correlation was observed between gene distance in the protein complex network and pi-

scores. In contrast, the expected effect was observed in dCas9-KRAB-MeCP2 screens 

(Supplementary Fig. 14a-b).

Clustering of genetic interaction profiles provides a quantitative measure of functional 

similarity32. Among the samples, only dCas9-KRAB-MeCP2-containing cells showed a 

discernible clustering structure (Fig. 5b, Supplementary Fig. 14c-d, and Supplementary Data 

7). We subsequently looked at the gene pairs with the strongest interactions within the 

dCas9-KRAB-MeCP2 dataset. One of the most significant negative interactions was 

between BLM and SOD1, in line with previous data showing this to be a synthetically lethal 

interaction33. We also detected a negative genetic interaction between BLM and DNA2, 

consistent with results from yeast showing that the BLM homologue, SGS1, could rescue 

DNA2 deficiency, and absence of both genes cause enhanced DNA damage sensitivity34,35. 

Analyses of the positive genetic interactions revealed a strong interaction between CHEK1 
and RECQL1. This result is consistent with previous knowledge that a loss of RECQL1 led 

to activation of CHEK1 signaling, which causes cell cycle arrest. Thus in cells lacking 

RECQL1, the growth arrest caused by CHEK1 activation should be alleviated upon its 
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removal, enabling the double mutants to grow better36. When the same interactions are 

examined within cells expressing dCas9-KRAB, either no interaction is observed (BLM-
DNA2) or the interaction is the opposite of what is expected (BLM-SOD1 and CHEK1-
RECQL1).

Superiority of dCas9-KRAB-MeCP2 in synthetic gene circuits

We next performed five separate experiments highlighting the benefit of dCas9-KRAB-

MeCP2 in the context of synthetic gene circuits. First, we constructed a simple repressor 

circuit in which EYFP was repressed by a U6-driven gRNA in combination with different 

dCas9 repressors. Approximately 400-fold repression was observed using dCas9-KRAB-

MeCP2, while earlier dCas9 variants repressed <60-fold (Supplementary Figure 15a).

Next, these U6-driven gRNAs were added to a two-layer repressor circuit. Here, an sgRNA/

dCas9 pair repressed the expression of a TALE repressor, which in turn repressed expression 

of EYFP. EYFP should be repressed in the absence of sgRNA, but should be derepressed 

upon addition of sgRNA to the circuit, depending on the strength of the dCas9 repressor. As 

expected, dCas9-Krab-MeCP2 led to higher levels of derepression of EYFP, to the extent 

that it was indistinguishable from EYFP expressed in the absence of TALE repressors 

(Supplementary Fig. 15b).

Because inducible circuits are desirable within many synthetic gene networks, we 

reconstructed two previously described circuits in which gRNA expression was driven by a 

doxycycline-inducible RNA polymerase II (Pol II) promoter37. While similar constructs 

have previously been shown to be functional, their activity has been inferior to that of 

constructs in which gRNA expression is under the control of Pol III promoters37. In the 

context of a simple repressor circuit, dCas9-KRAB-MeCP2 significantly increased the 

efficiency of Pol II-driven gRNA repression (Fig. 6a). We next employed it within a Pol II-

driven two-layer cascade. Unlike previous dCas9 tools, we observed, for the first time, a 

clear transfer of information using dCas9-KRAB-MeCP2, which showed the expected 

changes in EYFP expression between induced and uninduced states (Fig. 6b).

We next sought to determine whether dCas9-KRAB-MeCP2 could be used to create a 

functional three-layer cascade with an output being expression of an endogenous gene. We 

constructed a circuit in which a U6-driven gRNA/dCas9 complex represses a TALE 

repressor (layer1). The TALE repressor suppresses another gRNA (layer 2), which targets 

the endogenous CXCR4 locus and mediates repression of this gene when combined with 

dCas9 repressors (layer 3). We tested the different repressors in circuits containing either all 

three layers, layers 2 and 3, or layer 3 alone, and we measured the surface expression of 

CXCR4. Our results demonstrate that only dCas9-KRAB-MeCP2 can facilitate transfer of 

information in all settings, with CXCR4 levels showing the expected expression patterns 

(Fig. 6c).

DISCUSSION

Here we identify the multimeric fusion protein dCas9-KRAB-MeCP2 as a highly potent 

transcriptional repressor. Using this tool we observed improved knockdown of both reporter 
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and endogenous genes. Furthermore, our data show that dCas9-KRAB-MeCP2 outperforms 

previous dCas9 repressors in identifying genes essential for cell survival, detecting genetic 

interactions between genes, and actuating complex regulatory activity within various 

synthetic gene circuits. These data demonstrate the power of our tool to assist in the 

interrogation and selective regulation of the mammalian genome.

Similar to our work with transcriptional activators, the improved performance of dCas9-

KRAB-MeCP2 repressor is likely due to the distinct mechanisms by which each of the fused 

domains function. The KRAB domain represses transcription via interaction with KAP1, 

which functions as a scaffold to recruit co-repressors including heterochromatin protein 1 

(HP1), histone deacetylases, and SETDB138-40. The transcription repression domain (TRD) 

of MeCP2 binds to a different set of transcriptional regulators including the DNA 

methyltransferase DNMT1 and the SIN3A-histone deacetylase corepressor complex41-44.

RNA-seq data suggest that dCas9-KRAB-MeCP2 is not inducing additional gross 

differences in the cellular transcriptome outside of those already produced by current 

methods. It is worth pointing out that in our screen targeting essential genes, the dCas9-

KRAB-MECP2-expressing cells exhibited a much more robust depletion, but a few of the 

guides designed to target non-essential genes also showed marked depletion. Further 

investigations are needed to clarify the source of these effects. Although not utilized in these 

studies, various methods to improve Cas9 specificity have been reported in the literature 

such as using a “high-fidelity” Cas9 protein or truncated sgRNAs, each of which have been 

shown to help mitigate off-target activity45,46.

For the majority of loci tested, dCas9-KRAB-MeCP2 achieved greater degrees of gene 

repression than dCas9-KRAB. Yet, there were a few loci for which we observed only modest 

repression from either tool. Potential causes for variations in gene silencing include poorly 

functional guides, insufficient time between targeting and measurement of gene expression, 

local chromatin effects, competition for binding between Cas9 and endogenous 

transcriptional regulators, and interference from already present epigenetic marks preventing 

further modification by our tools47–49. For the most part, these inefficiencies in repression 

can be overcome by simply targeting the same gene with an array of different sgRNAs. The 

utility of this strategy is shown in our essential gene screen. For most essential genes tested, 

at least one of the targeting guides exhibited the expected levels of depletion, with the most 

robust effects observed in samples expressing dCas9-KRAB-MeCP2.

ONLINE METHODS

Repressor and gRNA plasmid construction

Repressor fusions were initially cloned into a modified Gateway-compatible dCas9 plasmid 

backbone50. The bipartite and tripartite dCas9 fusions were cloned into a modified Golden 

Gate-compatible version of the dCas9-m4 vector (Addgene plasmid #47316). DNA 

fragments containing the specific domains of interest were then PCR amplified and cloned 

into each of our vectors using either Gateway or Golden Gate assembly methods. For 

bipartite and tripartite repressors, a glycine-serine-rich linker was placed in between the 

different domains. The sequences, as well as species origin, of all protein domains used to 
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construct the different repressors are listed in Supplementary Data 8. The sequences of 

dCas9-KRAB (Addgene plasmid #110820) dCas9-KRAB-MeCP2 (Addgene plasmid 

#110821) are provided in Supplementary Table 1. All other vectors are available upon 

request.

All gRNAs for endogenous gene repression were selected to bind within -50 to +200 bp 

around the gene TSS, unless the position was specified otherwise. Target genes were 

selected based on use in previous publications or because they were of particular interest to 

our research group, such as DNA repair and cell motility genes14,15. To generate sgRNA 

expression plasmids, oligonucleotides containing gRNA sequence were cloned into a 

pSB700 vector (Addgene plasmid #64046) or variants with different selection markers 

downstream of a U6 promoter using Golden Gate assembly methods. Sequences for gRNAs 

are listed in Supplementary Table 9.

Cell culture and transfections

HEK293T cells (gift from P. Mali, University of California, San Diego) were maintained in 

Dulbecco’s Modified Eagle’s Medium (DMEM) (Life Technologies) with 10% heat-

inactivated fetal bovine serum (FBS) (Life Technologies) and penicillin-streptomycin (Life 

Technologies) as previously described50. Approximately 50,000 cells were seeded per well 

in 24-well plates and next day transfected using lipofectamine 2000 (Life Technologies) as 

previously described50. 200 ng of dCas9 repressors, 50 ng of sgRNA, and 60 ng of EYFP 

reporter along with 50 ng of Gal4-VP16 (reporter assay only) were delivered to each well of 

cells. 50 ng of puromycin-resistant plasmids (endogenous gene study) or 25 ng EBFP-

expressing plasmids (reporter assay) were co-transfected to select for transfected cells. 10 ng 

of each sgRNA per gene were used during multiplex repression. For the endogenous gene 

study, cells were treated with 3 ug/ml of puromycin at 24 hours post-transfection to enrich 

for transfected cells. 48 or 72 hours after transfection cells were collected to assay by flow 

cytometry or lysed for RNA purification, for reporter and endogenous experiments, 

respectively. Cells were tested every 3 months for mycoplasma contamination and 

consistently tested negative.

Flow cytometry for reporter assays

Reporter assays were performed by targeting dCas9 fusion proteins to a Gal4-VP16 

regulated EYFP reporter gene. The reporter plasmid contains an sgRNA-binding sequence 

(tacctcatcaggaacatgt) followed by a PAM (tgg). HEK293T cells were transfected with the 

reporter, Gal4-VP16 activator, sgRNA, and the indicated dCas9 fusion proteins along with 

an EBFP-expressing plasmid to aide in analyzing only cells that were transfected. Cells were 

assayed using flow cytometry 48 hours after transfection. Analysis was performed on cells 

expressing > 103 arbitrary units of EBFP2 and the median of EYFP intensity within the 

gated population was quantified using FlowJo.

Quantitative real-time polymerase chain reaction (qPCR) to analyze endogenous gene 
expression

Total RNA was extracted using RNAeasy Plus mini kit (Qiagen). 500 ng of RNA was used 

to make cDNA using qScript cDNA synthesis kit (Quanta Bio). KAPA SYBR Fast universal 
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2x quantitative PCR master mix (KAPA Biosystems) with 0.5 ul of cDNA and 0.4 ul of each 

forward and reverse primers at 10 uM were used for qPCR, with cycling conditions: 95 °C 

for 3 min, and 40 cycles of 95 °C for 10 sec, 55 °C for 20 sec, and 72 °C for 30 sec. RNA 

expression was normalized to the housekeeping gene ACTB and relative gene expression 

was calculated using 2−ΔΔCT method51. Sequences for qPCR primers are listed in 

Supplementary Table 10.

Statistical analysis

For reporter and endogenous gene targeting studies, at least two biologically independent 

samples (independent transfections) per group were used. Statistical comparison was 

performed in experiments using sample sizes (n) of 3 or 4 biologically independent samples 

using one-tailed Student’s T-test with a p-value < 0.05 as the threshold for significance. The 

exact n values used to calculate statistics are described in the associated figure legends. 

Statistical analyses for RNA-seq, gRNA library screening, and circuit experiments are 

described in Supplementary Note 2-5.

Whole transcriptome RNA sequencing (RNA-seq) for analyzing repressor specificity

For each sample, total RNA was extracted using RNeasy mini kit (Qiagen) and treated with 

on-column RNase-free DNase I (Qiagen) following manufacturer’s instructions. 1 ug of 

RNA from each sample was used for library preparation. RNA-seq libraries were 

constructed using TruSeq Stranded Total RNA Library Prep Kit with Ribo-Zero Gold 

(Illumina) designed for cytoplasmic and mitochondrial rRNA depletion. All coding RNA 

and certain forms of non-coding RNA were isolated using bead-based rRNA depletion, 

followed by cDNA synthesis, and PCR amplification as per the manufacturer’s protocol. 

Final libraries were analyzed on TapeStation, quantified with qPCR, pooled together, and 

run on one lane of an Illumina HiSeq 2500 using 2 × 100-bp paired-end reads. The Illumina 

paired-end adapter sequences were removed from the raw reads using Cutadapt v1.8.1. The 

TruSeq adaptor sequence 5′- AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC-3′ 
was used for read 1, and its reverse complement, 3′-

AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTATC

ATT-5′ was used for read 2.

Next, RNA libraries were processed using a pipeline that includes STAR-HtSeq-EdgeR for 

alignment, count generation, and gene expression. Briefly, STAR aligner (v. 2.4.0j) was used 

to map the reads to hg19, and HtSeq was used to generate gene expression counts. For gene 

expression and differential expression (DE) analyses, edgeR, limma, and custom R scripts 

were used to filter out very lowly expressed genes (with a cutoff of 1 count in at least 2 

samples), calculate normalization factors, and compute effective library sizes using Trimmed 

Mean of M Values (TMM) normalization. Gene count is then reported in counts per million 

(CPM) and correlations are calculated on log2-transformed data. Finally, to determine the 

most biologically significant differentially expressed genes, relative gene expression was 

performed by fold-change thresholding (log2 FC >1.5) and ranking by p-value. See 

Supplementary Note 2 for details in DE analysis. A small set of genes in addition to the 

target gene CXCR4 showed decreases (log2 FC < 1.5) in their transcript expression 

(Supplementary Table 3). These genes were further analyzed to assess whether the observed 
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DE was caused by non-specific binding of our gRNA. Genomic sequences of 2 kb upstream 

and downstream from TSS of those genes were examined by searching for the presence of a 

full-length gRNA binding site (up to 6 mismatches for near matches) as well as searching 

for the seed region of the gRNA alone (8 bp in proximal to PAM).

Cell culture and generation repressor-expressing stable cell lines

HAP1 cells (Horizon Discovery) were maintained in Iscove’s Modified Dulbecco’s Medium 

(IMDM) with 10% FBS (Life Technologies) and penicillin-streptomycin (Life 

Technologies) following the manufacturer’s instructions. SH-SY5Y (ATCC) was maintained 

in 1:1 mixture of Eagle’s Minimum Essential Medium (EMEM) and F12 Medium (ATCC) 

with 10% FBS and penicillin-streptomycin following the manufacturer’s instructions. To 

generate stable dCas9 repressor-expressing cell lines, approximately 30,000-50,000 cells 

were transfected in 24-well plates with 400 ng of dCas9 repressor-containing PiggyBac 

expression plasmids (Addgene plasmid #110822, #110823, #110824) and 100 ng of 

transposase vector using lipofectamine 3000 (Life Technologies) as previously described50. 

Media was changed after 24 hours. Cells were allowed to recover for 2 days and then treated 

with 5 ug/ml of blasticidin. Cells were passaged regularly in drug media for more than 2 

weeks to select for heterogeneous populations of dCas9 repressor integrant-containing cells.

Production of single gene-targeting gRNA lentivirus and cell transduction

HEK293T cells were seeded at 200,000 cells per well in 6-well plates a day prior to 

transfection. Cells were transfected with 450 ng of pSB700 sgRNA expression plasmid (with 

puromycin-resistant marker), 600 ng of psPAX2 (a gift from Didier Trono, Addgene plasmid 

# 12260), and 150 ng of pCMV-VSV-G (a gift from Bob Weinberg Addgene plasmid # 

8454) using lipofectamine 2000 (Life Technologies). Viral supernatants were collected at 72 

hours after transfection by centrifuging the medium at 400 g for 5 min to remove cell debris. 

HAP1 and SH-SY5Y repressor stable cell lines were seeded at ~15,000 and 35,000 cells, 

respectively, per well in 24-well plates. The following day each sample was infected with 

100 ul of sgRNA-containing lentiviruses. Cells were treated with 0.5 ug/ml (HAP1) or 2.5 

ug/ml (SH-SY5Y) of puromycin to select for transductants at 48 hours after transduction. 

Cells stably expressing sgRNA were passaged for 2 weeks and collected for RNA extraction 

and qPCR analysis. Sequences for qPCR primers are listed in Supplementary Table 10.

Production of lentiviral single and dual guide RNA (gRNA) libraries

The plasmid containing single guide RNA library targeting essential genes was a gift from 

Dr. Rene Bernards19. To generate the dual guide library a series of oligonucleotides were 

designed such that the forward oligo created the first gRNA within the array and the reverse 

oligo was used to introduce the second gRNA into the array (list of oligos used for library 

construction are provided within Supplementary Table 8). A template containing a modified 

sgRNA tail sequence fused in cis to the 7SK pol III promoter was then used as a PCR 

template (sequence of sgRNA2-7SK template listed in Supplementary Table 11). To 

generate the dual guide library a PCR reaction was performed in which all forward and 

reverse primers were mixed together. The resulting ~475bp PCR product was run on a gel, 

extracted and inserted into the pSB700 gRNA expression backbone using Golden Gate 

cloning. To produce lentiviruses expressing each gRNA library, approximately 1 million 
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HEK293T cells were plated on a 10 cm dish. The following day cells were transfected with 

each of the gRNA library plasmids mixed with psPAX2 and pCMV-VSV-G at 4:3:2 ratio 

using a total of 7-8 ug of DNA using the following protocol. Total plasmid DNA was diluted 

in 1 ml of serum-free media. Polyethylenimine or PEI (Polysciences) was added to the 

diluted DNA based on 3:1 ratio of PEI (ug): total DNA (ug). Mixtures were incubated for 15 

min at room temperature and then added onto the cells. Viral supernatants were collected at 

72 hours and concentrated using PEG Virus Precipitation Kit (BioVision) according to 

manufacturer’s instructions.

CRISPR repressor screens

To compare the ability of different repressors in screening, a series of stable cell lines each 

containing a unique repressor along with a control cell line without a repressor integrated 

into the genome were seeded in 6-well plates and allowed to grow to 30-50% confluency to 

prepare for transduction the following day. Lentiviruses expressing each guide RNA library 

were produced and used to infect experimental cells so the multiplicity of infection (MOI) 

was <0.5. Cells were treated with 0.5 ug/ml (HAP1, 293T) or 2.5 ug/ml (SH-SY5Y) of 

puromycin at 48 hours (HAP1) or 72 hours (SY-SH5Y, 293T) post virus transduction. After 

drug selection, 50% of the cells were collected immediately for DNA extraction using 

Epicentre Quick Extract Solution, and 50% of the cells were seeded into a set of 15 cm 

dishes for subsequent passaging. Cells were regularly passaged using standard protocols and 

collected again at 7, 14, and 22 days (SH-SY5Y screen only) post-drug selection for DNA 

extraction. The number of cells manipulated was kept sufficiently large such that we 

maintained a ~500 to 1000-fold coverage of the library at each stage of passaging. For PCR, 

25 ug (lethality screen) or 60 ug (gene epistasis screen) of genomic DNA divided over 25 or 

60 reactions, respectively, were amplified using KAPA2G Robust PCR kit (KAPA 

Biosystems) along with primer set, PCR 1 (Supplementary Table 12). The products of all 

first-round PCR reactions from the same sample were then pooled. 1 ul of the pooled 

product was used for a sample indexing in preparation for next generation sequencing using 

either Illumina Truseq or Nextera indexing primers. PCR cycling conditions are listed in 

Supplementary Table 13. See Supplementary Note 3 and 4 for bioinformatics analyses of 

screen data.

Circuit experiments

HEK293FT cells were transfected as previously described37 using PEI reagents. For 

inducible circuits, 2 ug/uL of doxycycline was added to samples and changed daily post-

transfection until flow-cytometry. All samples were processed for flow-cytometry at 72 

hours post-transfection and data were analyzed by FlowJo. Supplementary Note 5 provides 

detailed methods and materials used to perform circuit experiments.

Software

FlowJo (version 7) was used to analyze data generated from flow-cytometry experiments. 

MAGeCK (0.5.7) was used to analyze single gRNA library screens to determine gene 

essentiality.
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Detailed information on experimental design and reagents is described in the Life Sciences 

Reporting Summary
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Figure 1. 
Repression of endogenous genes using dCas9-KRAB-MeCP2. (a) Schematic of dCAS9-

KRAB and dCas9-KRAB-MeCP2 repressors. NLS=nuclear localization signal. (b) RNA 

expression of targeted single gene. n=2 biologically independent samples (cell cultures). (c) 

RNA expression during three separate multiplex repression studies. In each study, four 

different genes were targeted simultaneously. Two non-coding (nc) genes, XIST and TERC, 

were studied. n=2 biologically independent samples (cell cultures).
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Figure 2. 
dCas9-KRAB-MeCP paired with gRNA at various positions. (a) An array of gRNAs was 

design to target 1-kb upstream to 1-kb downstream of the TSS for CANX. Shown is RNA 

expression of CANX when different gRNA was used. T=template strand, NT=non-template 

strand. n=2 biologically independent samples (cell cultures). (b) Shown is RNA expression 

of SYVN1 when individual or combinations of different gRNAs were used. n=2 biologically 

independent samples (cell cultures). (c) RNA expression of the indicated target genes using 

one or two gRNAs. n=2 biologically independent samples (cell cultures).
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Figure 3. 
dCas9-KRAB-MeCP2-mediated repression is highly specific in human cells. RNA-seq 

analyses of HEK293T cells transfected with a gRNA targeting CXCR4 along with dCas9, 

dCas9-KRAB or dCas9-KRAB-MeCP2 repressors. Data are normalized and log2-

transformed counts per million (CPM) values are plotted for each repressor (y-axis) versus 

that of a negative control transfected with gRNA alone (x-axis). Pearson’s and Spearman’s 

correlation coefficients are provided for each repressor. n=2 biologically independent 

samples (cell cultures).
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Figure 4. 
dCas9-KRAB-MeCP2 outperforms previous tools in screens of gene essentiality. (a) Shown 

are log2 odd ratios of all sgRNA constructs as compared to the HAP1 wild-type cells at days 

14. sgRNAs targeting essential genes are marked in orange and sgRNAs targeting non-

essential genes are marked in blue. A similar experiment was repeated in (b) SH-SY5Y and 

(c) HEK293T cells. Shown are log2 odd ratios of all sgRNA constructs as compared to the 

respective wild-type cells at days 14.
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Figure 5. 
dCas9-KRAB-MeCP2 improves genetic interaction mapping. (a) A density plot showing 

negative and positive selection pressure against gRNA pairs over time. (b) Shown is the 

hierarchical clustered heatmap of genetic interactions for dCas9-KRAB and dCas9-KRAB-

MeCP2. Only the screen using dCas9-KRAB-MeCP2 showed a discernible clustering 

structure.
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Figure 6. 
Superiority of dCas9-Krab-MeCP2 in regulating complex synthetic circuits. (a) When 

expressed from a doxycycline inducible Pol II promoter and edited by Csy4, gRNA showed 

improved repression of EYFP when co-expressed with dCas9-KRAB-MeCP2, relative to 

dCas9 or dCas9-KRAB. n=4 biologically independent samples (cell cultures). (b) Inducible 

Pol II-expressed gRNA edited by Csy4 and complexed with dCas9-KRAB-MeCP2 showed 

improved performance in a two-tier repressor cascade. n=4 biologically independent 

samples (cell cultures). (c) With full circuit, dCas9-KRAB-MeCP2 decreases CXCR4 
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protein level. In absence of layer 1, dCas9-KRAB-MeCP2 mediates derepression of 

CXCR4. In absence of layers 1 and 2, the repressor surpasses dCas9 and dCas9-KRAB in 

repressing CXCR4 levels. n=3 biologically independent samples (cell cultures). For a-c, data 

are presented as mean ± s.e.m. One-sided Student T-test was performed for all statistical 

comparison. # p< 0.05 vs. unrepressed or TALER only control, ¥ p< 0.05 v.s. dCas9, and *p 

< 0.05 v.s. dCas9-KRAB.
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