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retrieval of accurate, relevant knowledge on COVID-19 can pose significant challenges for

researchers.

Methods: To improve quality in accessing important literature findings, we developed a

novel natural language processing (NLP) method to automatically recognize the associa-

tions among potential targeted host organ systems, associated clinical manifestations, and

pathways. We further validated these associations through clinician experts' evaluations

and prioritize candidate drug targets through bioinformatics network analysis.

Results: We found that the angiotensin-converting enzyme 2 (ACE2), a receptor that SARS-

CoV-2 required for cell entry, is associated with cardiovascular and endocrine organ sys-

tem and diseases. Furthermore, we found SARS-CoV-2 is associated with some important

pathways such as IL-6, TNF-alpha, and IL-1 beta-induced dyslipidemia, which are related to

inflammation, lipogenesis, and oxidative stress mechanisms, suggesting potential drug

candidates.

Conclusion: We prioritized the list of therapeutic targets involved in antiviral and immune

modulating drugs for experimental validation, rendering it valuable during public health

crises marked by stresses on clinical and research capacity. Our automatic intelligence

pipeline also contributes to other novel and emerging disease management and treatments

in the future.
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Early responses to the escalating emergence of human disease

occasioned by infection with the novel coronavirus SARS-

CoV-2 were hampered by confusion about the disease's
symptoms and natural history, as well as its incidence [1]. At

the initial stages of the COVID-19 pandemic, clinical mani-

festations were largely viewed as mild, with patients experi-

encing fever, coughing, vomiting, and headaches, or severe,

with patients experiencing dyspnea, coagulation dysfunction,

and potentially impaired function in the kidneys and other

organ systems [2,3]. Because of the complexity of clinical

manifestations, precise diagnosis and treatment for COVID-19

have been an ongoing challenge. Additionally, since there are

no effective drugs to treat COVID-19, finding drugs based on

coronavirus pathogenesis, clinical manifestations, organ

involvement and past treatment experience is urgent.
A number of studies used bioinformatics approaches to

predict COVID-19 candidate drugs from gene expression an-

alyses and proteineprotein interaction analyses [4,5]. Other

studies have focused on predicting drug candidates through

virtual docking screening of molecular 3D structures [6e8].

These approaches have primarily used systems biology ap-

proaches to identify COVID-19 drug candidates. Artificial in-

telligence (AI)-based natural language processing (NLP)

approaches provide a new avenue for pinpointing evidence-

based medicine potentially able to thwart coronavirus path-

ogenesis from a large number of unstructured research arti-

cles. NLP can automatically elucidate hidden knowledge in the

textual representations of biomedical concepts from the

literature. However, to date, no published studies have

comprehensively studied COVID-19 clinical manifestations

and biomedical mechanisms to prioritize therapeutic targets

using NLP approaches.

To achieve this goal, we developed an approach to identify

literature evidence information for COVID-19 (LEI4COV). Our

iteration of the LEI4COV method is based on a deep learning

framework with an advanced self-attention structure. This

state-of-the-art algorithm has proven its strength to better

detect contextual relations of entities [9]. LEI4COV is able to

learn correlated biomedical concept entities from a large

amount of unstructured text from the literature by converting

entities into high-dimensional vector space by maximizing

their co-occurrence probabilities, and in this way capturing

closely related entities within a smaller distance in vector

space. LEI4COV enables biology researchers and clinicians to

efficiently test their hypothesis or to run in silico experiments

for the discovery of important knowledge from the literature.

Not limited to COVID-19, LEI4COV can be used to infer the

biomedical knowledges for other diseases.

It is known that coronaviruses enter cells through the

binding of their viral spike (S) proteins to the host's cellular

receptors [10]. The S protein is actually primed by host cell

proteases, so blocking the host's receptor proteins and their
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helpers could stop the entry of the virus into cells [11]. Recent

studies have confirmed that SARS-CoV-2 makes use of the

SARS-CoV receptor ACE2 to enter cells and the serine protease

TMPRSS2 to activate the binding of viral S proteins [12e14].

Given this recently acquired knowledge, we reasoned that

using LEI4COV to identify evidence-based reports on ACE2 and

TMPRSS2 might rapidly and efficiently yield important

knowledge on the relationship of these genes to SARS-CoV-2.

This knowledge could help inform efforts to effectively target

receptor proteins and their helpers to control infections in

COVID-19.

In this project, we used LEI4COV to access and categorize a

broad compendium of current knowledge and insights on

COVID-19, particularly those associated with (1) clinical

manifestations, (2) target organs, (3) signaling pathways, and

(4) predictions on the repurposing drugs to treat COVID-19.

Our findings provide valuable information on the use of data

mining approaches such as ours to inform the intersection of

precisionmedicinewith public health. It also offers references

of use as clinical and research communities are asked to

rapidly e almost instantaneously e develop effective, viable,

and affordable approaches for managing novel coronavirus-

related diseases.
Material and methods

Project design and data collection

We used COVID-19 target genes ACE2 and TMPRSS2 as key-

words to conduct literature retrieval in the PubMed public

database. Next, we used the NLP embedding approach to

analyze ACE2- and TMPRSS2-related biomedical concepts,

including organ systems, disease, and genes. We also per-

formed a meta-analysis of coronavirus-infected cases and

compared the ACE2- and TMPRSS2-related clinical manifes-

tations. Then, we performed pathway enrichment analysis to

identify COVID-19 gene-related pathways. Finally, we used a

network analysis method, random walk with restart algo-

rithm to prioritize drugs.

Natural language processing to extract clinical and
biomedical concepts from unstructured free text

We used MetaMap to extract biomedical concept terms from

unstructured literature. MetaMap was published by the Na-

tional Library of Medicine (NLM) in 2001 and is considered the

foundation for biomedical NLP tools for information extrac-

tion by mapping biomedical text to the Unified Medical Lan-

guage System (UMLS) Metathesaurus [15]. MetaMap uses
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computational-linguistic techniques and has been widely

used for semiautomatic and fully automatic indexing of
biomedical literature at NLM. Since the initial information

extracted by MetaMap contained too many redundant terms

not related to research purposes, we only kept terms

belonging to organ systems, diseases, and genes. Since some

genes had aliases, we normalized gene names using Gene-

Cards [16]. All medical entities were tokenized as the input of

the vector for downstream embedding analysis.
NLP embedding approach to identify clinical manifestations
associated with COVID-19 genes

We developed a new NLP embedding approach to identify

COVID-19-related biomedical concepts from the literature

evidence information (LEI4COV: https://github.com/hitales-

tech/Lei4Cov). This approach is an extended version of our

recently published work EHR2Vec, which was designed for

vector embedding on electronic health record (EHR) clinical

notes [17]. EHR2Vec integrated the word embedding algorithm

Word2Vec with a multi-head self-attention structure, which

has shown its improved performance of the embedding ac-

curacy compared to other representation learning approaches

[9]. LEI4COV applied the same DL algorithm as EHR2Vec but

with a particular emphasis on the representations learning for

biomedical concepts from literature. Instead of analyzing the

clinical note per visit in EHR2Vec, LEI4COV used each abstract

as the analysis unit and performed the self-attention mech-

anism analysis within each abstract window.

The initialized vector-matrix W is in vector space Rh*c,

where c is the dimension of each entity vector and h is the

number of entities in all abstract. Here, we used default value

c ¼ 512, which means each entity maps to 512-dimensional

vector space. This hyper-parameter is chosen based on the

trade-off of computational complexity and accuracy based on

our previous experiments. We first input the initialized vector

matrix to the first sublayer (attention mechanism). Then, the

AttentionðQ;K;VÞ ¼ softmaxððQKTÞ =
ffiffiffiffiffi
dk

p
ÞV is the core for-

mula of the attention mechanism that is used, in which Q, K

and V represent the query vector, key vector, and value vector,

respectively, and dk represents the dimension of Q, K or V [9].

In the multi-head attention model, a total of eight attention

heads were used as the default. The eight attention heads are

equivalent to eight subtasks, each subtask generating its own

attention with in each abstract window.

The optimized vector matrix W is obtained through itera-

tive training. We obtained the final matrix by continuously

optimizing the vector-matrix W. Assume ei, ej represent the

different entities in the abstract, Et represents one abstract.

The co-occurrence log-likelihood function is used to optimize

the obtained vectors (Eq. (1)).
Since some of the abstracts have extremely long entity

sequences, we used the 98% quantile of max length as the

https://github.com/hitales-tech/Lei4Cov
https://github.com/hitales-tech/Lei4Cov
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Fig. 1 Project design overview.We searched for studies related to two COVID-19 genes, ACE2 and TMPRSS2, in PubMed. Next, we

used NLP methods to extract biomedical concepts and calculated their correlations with COVID-19 genes. Then, we filtered out

unrelated entities and only kept concept entities belonging to organs, disease, genes, etc. Finally, we performed pathway

enrichment analysis and predicted drugs by network analysis.
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cutoff as the entity sequence length. The entity sequences

from abstracts that are longer than the 98% quantile of the

maximum value were truncated and shorter were padded

with 0. Finally, associations between entity vectors were

further calculated by the cosine similarity score (Sc).

LEI4COV was implemented and trained using the Tensor-

Flow 1.8.0 deep learning framework. All models were per-

formed on a CentOS server equipped with two 16G NVIDIA

TESLA P100 graphics cards. LEI4COV used the Adadelta opti-

mizer to optimize the target function with a drop rate of 0.1 to

achieve model convergence. LEI4COV used eight attention

heads in the self-attentionmechanism, 512 vector dimensions

for each entity, and trained for 20 epochs to obtain the best

result.
Manual synthesis of literature evidence by clinician experts
to confirm the clinical manifestations for COVID-19

To test the reliability of our analysis, we performed a literature

review of coronavirus-infected cases. Keywords including

SARS-CoV-2, 2019-nCoV, COVID-19, SARS-CoV, SARS, MERS-

CoV, and MERS were used to conduct initial literature

retrieval in PubMed and CNKI. The literature included 1278

cases of COVID-19 (3 references), 7671 cases of SARS (12 ref-

erences), and 608 cases of MERS (8 references). Two experi-

enced physicians independently reviewed the related

literature concerning clinical presentation/clinical character-

istics/clinical features/symptoms/clinical manifestation. The

number of symptomswas counted, and the symptoms of each

system were counted and calculated as percentages.
Network analysis to prioritize repurposing drug candidates
for COVID-19

Since there was no standard threshold for the cosine simi-

larity score (Sc) between queried vectors (ACE2 and TMPRSS2)

and other molecule vectors, we set the top 200 as the cutoff to
consider them as the most relevant NERs. These correlated

genes were subjected to pathway enrichment analysis using

the direct interaction algorithm of MetaCore™ (Clarivate An-

alytics) [18]. According to the results, pathways were verified

in the 21 reported drugs of 2019-nCoV based on host-based

treatment strategies [19]. In addition, the top 50 pathway-

related MetaCore-collected drugs were summarized to sup-

port further clinical trials. We used the PageRank algorithm to

prioritize drugs for both ACE2- and TMPRSS2-related genes

[20]. PageRank, which was developed by Google, is a network-

based approach used to rank the most important web pages.

Here, it works by counting the number and quality of path-

ways linked to a drug in a network to determine how impor-

tant the drug is. The underlying assumption is that more

important drugs are likely to receive more links from path-

ways. The PageRank score and degree of network connectivity

were calculated by the R igraph package [21].
Results

LEI4COV enabled rapid acquisition of representative entities
associated with COVID19

An overview of our project design can be found in Fig. 1. We

collected a total of 1912 abstracts related to ACE2 published

between 1994 and 2020 and a total of 1025 abstracts related to

TMPRSS2 published between 1997 and 2020. Using the NLP

information extraction tool MetaMap, a total of 15,845

biomedical concept entities were extracted fromunstructured

literature with diverse semantic categories, such as diseases

and genes [15]. These entities were converted to digital vectors

by our vector embedding approach, LEI4COV, with cosine

similarity scores between entities represented as Sc. Our

assumption is if LEI4COV converted digital vectors correctly,

the vector embeddings should be able to separate abstracts

into two classes, ACE2-related or TMPRSS2-realated abstracts.

https://doi.org/10.1016/j.bj.2022.03.011
https://doi.org/10.1016/j.bj.2022.03.011


Table 1 Top 10 correlated organs/systems for ACE2 and
TMPRSS2.

ACE2 TMPRSS2

Organ/system entities Sc Organ/system entities Sc

Renineangiotensin

system

0.85 Prostate 0.83

Heart 0.68 Hippocampus proper 0.39

Kidney 0.68 Lung 0.21

Axis vertebra 0.55 Urinary tract 0.20

Cardiovascular system 0.51 Bony process 0.20

Renineangiotensine

aldosterone system

0.47 Lutheran

blood-group system

0.19

Lung 0.42 Hand 0.19

Brain 0.41 Exocrine glands 0.18

Bony process 0.37 Gland 0.17

Blood vessel 0.33 Region of prostate 0.16
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We comparatively studied the embedding performance of

LEI4COV with other state-of-art algorithms, Word2Vec and

BioBERT. Results in Supplementary Fig. 1 showed LEI4COV

performs best among the three embedding algorithms.

Therefore, we provided the initial top 200 most relevant

medical concept entities for ACE2 and TMPRSS2 in

Supplementary Tables S1e2. After further excluding some

irrelevant entities, we only kept entities from three categories

of interest, including molecular/protein entities, organ/sys-

tem entities, and disease entities. For ACE2, we retrieved a

total of 81 molecular/protein entities, 32 organ/system en-

tities, and 38 disease entities. For TMPRSS2, LEI4COV retrieved

a total of 86 molecular/protein entities, 21 organ/system en-

tities, and 19 disease entities.

LEI4COV enabled identification of clinical manifestations
relevant to COVID-19

LEI4COV allowed us to quickly identify that ACE2 and

TMPRSS2 are associated with different organ systems [See

Table 1]. ACE2 appears more relevant within cardiovascular
Fig. 2 Comparison of clinical manifestations for ACE2 and TMPRS

significantly different in ACE2- and TMPRSS2-related organs/syst

outermost point with the greatest value is the cardiovascular sys

cardiovascular system disease and endocrine system disease. Fo

disease.
organ systems, such as the renineangiotensin system, heart,

and kidneys. TMPRSS2, by contrast, appears more relevant to

the prostate, hippocampus proper, and lungs. For general

disease associations, we found that both ACE2 and TMPRSS2

were highly associated with communicable diseases

[Supplementary Table S3]. When we compared virus-related

disease associations, we found that ACE2 and TMPRSS2 were

highly associated with SARS coronavirus, as well as other

coronaviruses, as shown in Supplementary Table S4. These

results were consistent with clinical observations.

An overview and summary comparison of clinical mani-

festations associated with ACE2 and TMPRSS2 are provided in

Fig. 2. ACE2, in addition to its association with viral infection,

is distinctly associated with cardiovascular disease, in which

hypertensive disease, at 0.67, has the highest correlation with

ACE2, with at, cardiac arrest next at 0.56, and heart failure at

0.43. Endocrine system disease was also common in ACE2-

associated disease, while infectious disease was common in

TMPRSS2-related disease. One explanation could be that ACE2

was also a key enzyme in the renineangiotensinealdosterone

system and was a target for cardiovascular disease treatment.

In addition, ACE2 could increase blood flow perfusion of islets,

thus improving secretion of islets and contributing to diabetes

control. This might explain why cardiovascular disease and

endocrine system disease were common in ACE2-associated

disease [Fig. 3].
COVID-19 clinical manifestations confirmed by human
experts' meta-analysis

To further confirm the relevance of clinical manifestations

with COVID-19 found by LEI4COV, a total of 23 reference pa-

pers that, taken together, examined 9557 cases of coronavirus

infection were retrieved from the PubMed database. The re-

ports represented cases of SARS, MERS, and COVID-19 in-

fections. Two study clinician experts (Tian, Geng) analyzed all

symptoms described for the reported coronavirus cases. As

seen in the statistics provided in Table 2, the clinical
S2. Radar plots showing the characteristics that were

ems and diseases. For ACE2-related organs/systems, the

tem. For ACE2-related disease, the outermost points are

r TMPRSS2-related disease, the outermost point is infectious

https://doi.org/10.1016/j.bj.2022.03.011
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Fig. 3 Illustration of COVID-19 genes as the therapeutic targets for drugs. ACE2- and TMPRSS2-relatedmolecular/protein entities

were normalized to official gene symbols by GeneCards. After performing gene set enrichment analysis, some genes enriched

in certain COVID-19 pathogenic pathways were identified as the therapeutic targets that link to potential drug candidates.
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manifestations in these reports yielded three dominant

symptom areas: respiratory system, digestive system and

fever.

For COVID-19, SARS, and MERS, respiratory system

involvement accounted for 42.9%, 30.7% and 50.4% of virus-

related symptoms, respectively. That is, the impact of MERS
Table 2 Clinical symptoms of coronavirus infection.

COVID-19 S

Cases 1278 7671

Symptoms 4080 22,29

Respiratory system 1751 (42.9%) 6842

Digestive system 144 (3.5%) 2254

Fever 1141 (28.0%) 6479

Headache 153 (3.8%) 1944

Myalgia 211 (5.2%) 2039

Fatigue 533 (13.1%) 179 (

Shiver 125 (3.1%) 2218

Vertigo 13 (0.3%) 338 (

Conjunctivitis 9 (0.2%) 0 (0)
on respiratory symptoms was higher than that of the other

two coronavirus diseases. Digestive system involvement

accounted for 3.5%, 10.1% and 14.2% of symptoms, respec-

tively. Fever symptoms accounted for 28.0%, 29.1% and 20.8%,

respectively. Our analysis by LEI4COV showed a similar

involvement of respiratory and digestive system impact, with
ARS MERS Total

608 9557

3 2145 28,518

(30.7%) 1082 (50.4%) 9675 (33.9%)

(10.1%) 305 (14.2%) 2703 (9.5%)

(29.1%) 447 (20.8%) 8067 (28.3%)

(8.7%) 63 (2.9%) 2160 (7.6%)

(9.1%) 119 (5.5%) 2369 (8.3%)

0.8%) 127 (5.9%) 839 (2.9%)

(9.9%) 1 (0) 2344 (8.2%)

1.5%) 0 (0) 351 (1.2%)

1 (0) 10 (0)

https://doi.org/10.1016/j.bj.2022.03.011
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Table 3 Top 3 predicted drugs in each category.

Candidate drugs Sum score ACE2 score ACE2 PR score TMPRSS2 score TMPRSS2 PR score Category

Doxycycline 74 44 0.030507557 30 0.031105069 Infection

Roxithromycin 53 41 0.027830773 12 0.013403104 Infection

Gemifloxacin 49 38 0.025035836 11 0.012095995 Infection

Doramapimod 37 24 0.017474146 13 0.014515815 Immune; Infection

Eritoran 11 10 0.007557487 1 0.002315731 Immune; Infection

Emricasan 11 2 0.002597711 9 0.010193351 Immune; Infection

Mycophenolic acid 53 39 0.025907587 14 0.015016035 Infection (antiviral)

Pimodivir 50 23 0.016885078 27 0.030772509 Infection (antiviral)

Oleic acid 49 29 0.020948295 20 0.021375538 Infection (antiviral)

PageRank (PR).
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lung Sc ¼ 0.4 and intestinal Sc ¼ 0.21. Gastrointestinal symp-

toms were less common in patients with COVID-19 compared

to SARS and MERS, which was also reported by others; the

reason is still unknown [22].

COVID-19 clinical manifestations identified by LEI4COV

are consistent with meta-analysis by human experts. By

combining all cases from three diseases, we found that res-

piratory system involvement was the most common (45.7%),

which was highly consistent with the respiratory system

involvement predicted by our algorithm analysis with ACE2

and TEMPRESS2 as the key words [Table 1 “lung” ACE2

Sc ¼ 0.42, TMPRSS2 Sc ¼ 0.21]. Digestive system involvement

was the second most prevalent symptom for all three dis-

eases (13.4%), which was also consistent with the conclusion

for ACE2 [see Table 1 “Intestines” Sc¼ 0.21]. Symptoms of the

cardiovascular system (ACE2 Sc ¼ 0.33), kidney (ACE2

Sc ¼ 0.28), endocrine system (ACE2 Sc ¼ 0.25, TMPRSS2

Sc ¼ 0.19) and brain (ACE2 Sc ¼ 0.23) were also found in the

algorithm prediction, which showed that our algorithmhad a

reliable prediction performance. Additional results need to

be confirmed by collecting more clinical data. Symptoms

involving the cardiovascular systemwere seldom reported in

the three coronavirus (CoV)-related clinical studies. One

possible reason for this may be that cardiovascular symp-

toms were previously ignored, as some patients may have

had coexisting cardiovascular disease before their corona-

virus infection. Another reason might be that ACE2 is

frequently a target for cardiovascular disease treatment,

with cardiovascular disease therefore often presented in

ACE2-related papers but not in reports of CoV-related

diseases.
LEI4COV enabled identification of therapeutic targets in
COVID-19 pathways

Meaningful molecules/proteins, including 31 ACE2-related

and 45 TMPRSS2-related molecules/proteins, were screened.

Examples of ACE2-associated molecules/proteins included

VIPR1, ACE, SLC33A1, CTSC, APLN, ACHE, IL10, and IL-6. Offi-

cial gene symbols for these entities, normalized by GeneCard

[16], are provided in Supplementary Table S4. A gene set

enrichment analysis of signaling pathways was performed by

using a direct interaction algorithm of MetaCore (Clarivate

Analytics) (p < 0.05). The TOP50 pathways of ACE2 and

TMPRSS2 are listed in Supplementary Table S6.
These pathways, and their association with ACE2- and

TMPRSS2-related molecules/proteins, might point toward

effective drug candidates for COVID-19 treatment. For

example, the pathways of TNF-alpha, IL-1 beta-induced dys-

lipidemia, and inflammation in obesity and type 2 diabetes in

adipocytes (p¼ 6.07E-10), which are involved in inflammation,

lipogenesis, lipolysis, fatty acid oxidation, and oxidative

stress, suggest drug candidates such as mycophenolic acid

and siltuximab. Additionally, the pathway of IL-6 signaling in

colorectal cancer (p ¼ 1.79E-06) suggests candidate drugs such

as tocilizumab and nafamostat. Another interesting pathway

that has gained attention is mucin expression. Several possi-

bilities suggest exploration here. Proteases and EGFR-

activated mucin production in airway epithelium in chronic

obstructive pulmonary disorder (COPD) (p ¼ 3.17E-05) may

shed light on the considerable mucus accumulation in the

airways of COVID-19 patients, which is widely observed in

radiology studies and in autopsies [23].
Prioritized potential drugs for COVID-19 by network
analysis

We searched all potential drugs related to the top 50 path-

ways for both ACE2 and TMPRSS2 in the MetaCore database.

Removal of three overlapping pathways between the two

genes yielded a combined list of 97 pathways linking to 427

potential drugs, 281 of which had Anatomical Therapeutic

Chemical classification (ATC) codes. The 427 potential drugs

were classified into five categories: infection, inflammation,

immune, respiratory, and cancer. Among these drugs,

several drugs are particularly interesting. Siltuximab, for

example, classified as a cancer therapy, is a chimeric

monoclonal antibody (mAb) that binds to and blocks the ef-

fect of IL-6. Recently, it was used to treat COVID-19 and

reduced serum CRP levels to within the normal range by Day

5 [24]. Another cancer drug, tocilizumab, is an IL-6R-targeted

mAb; it received rapid approval in China for the treatment of

patients with severe COVID-19 with extensive lung damage

[25]. Nafamostat, in the respiratory category, is a synthetic

serine protease inhibitor similar to camostat, which was

reported to partially block SARS-COV-2 S-driven entry into

TMPRSS2þ cells and was considered a promising drug for

COVID-19 treatment [14]. We also compared the 427 drug

candidates predicted by our study with a recently published

paper in Nature Drug Discovery, “Potential repurposing

https://doi.org/10.1016/j.bj.2022.03.011
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candidates for 2019-nCoV.” The authors of this work pro-

posed 21 host-targeted agents [19]. Analyzing the pathways

of these 21 drugs, we found that 3 of these agents can be

found in the ACE2 and TMPRSS2-related pathways, including

oxidative stress_ROS-induced cellular signaling, the signal

transduction_PTEN pathway, and transcription_androgen

receptor nuclear signaling [Supplementary Table S7].

Whenwe only focused on drug candidates belonging to the

anti-infection category, our analysis was narrowed down to a

total of 65 candidate drugs [Supplementary Table S8]. These

drug candidates, ranked by their importance score using a

Google PageRank algorithm, are shown in Table 3. Of them,

doxycycline ranks as the most important drug for fighting. An

antibiotic used to treat bacterial infections, doxycycline has

also been found to have antiviral effects against vesicular

stomatitis virus [26], dengue virus [27], and retrovirus [28], as

well as attenuating acrolein-induced mucin production [29].

Doxycycline's effectiveness has not been indicated in COVID-

19 patients, but it might be a promising candidate for COVID-

19 treatment, given autopsy findings of considerable mucus in

the alveoli of COVID-19 patients.

In our examination of agents useful for antiviral infection,

mycophenolic acid topped the list. Mycophenolic acid, an

immunosuppressant, is classified as a reversible inhibitor of

inosine monophosphate dehydrogenase (IMPDH). In addition

to its anti-inflammatory effects, it has also been reported to

show an antiviral effect on coronaviruses [30] and has been

proven effective against MERS in a small sample clinical

report [31]. When we turned our focus to immune infection,

eritoran, a synthetic TLR4 antagonist, ranked second. This

drug can reportedly block influenza-induced lethality in mice,

as well as decrease lung pathology, cytokine and oxidized

phospholipid expression, and viral titers [32].
Discussion

Over the present century, a number of emerging viral patho-

gens have led to major public health disease outbreaks, such

as SARS, MERS, H1N1, Ebola and COVID-19. Despite the cen-

tury's advances in technology, these agents have greatly

threatened social development, the economic fabric, and

human life itself. The prevalence and severity of the present

COVID-19 pandemic now highlight the urgent need for

research on the pathogenic mechanisms, prevention strate-

gies, diagnosis and treatment of the pathogens responsible for

these outbreaks. However, scientific research grounded solely

in traditional models of observation and hypothesis develop-

ment may not be able to keep pace with the urgencies of

epidemic prevention and control [1]. It is imperative instead to

harness technological advances, not merely for computing

power to establish statistical validity and findings but to assist

in hypothesis generation. The use of technology to establish

new, high-throughput approaches to the scientific research

literature and the use of data mining tools based on natural

language can significantly contribute to the urgent task of

research and design, aimed at prevention and control, in the

face of pandemic threats such as that now posed by a single,

novel coronavirus.
In this study, the NLP approachwas used to identify hidden

relationships among biomedical concept entities through a

mining of the literature. ACE2 and TMPRESS2, the key inva-

sion target genes of COVID-19, were selected as the main key

entries for related literature retrieval. Using a vector embed-

ding approach, we ranked entities, including organ systems,

disease, and the gene/proteins related to these two COVID-19

genes. Our findings thus support the insights provided by

LEI4COV that can assist the rapid interrogation of pathways

that could better inform clinical diagnosis, symptom detec-

tion and treatment across a rapidly escalating disease threat.

Not surprisingly, both ACE2 and TMPRESS were associated

with coronavirus-related disease. We also found that cardio-

vascular diseases, such as hypertension and diabetes, were

particularly associated with ACE2. This findingwas consistent

with reports that COVID-19 has a high occurrence in patients

with hypertension and diabetes [33]. Our findings showed

LEI4COV's ability to help access references that can assist

clinical diagnosis and understanding of a disease's natural

history. Our study also included a literature review for meta-

analysis by human experts. The findings of this expert re-

view, which focused on symptom analysis for COVID-19,

SARS, and MERS, verified the relevance of LEV4COV-

identified studies, as the studies they included well-known

respiratory and digestive system findings associated with

coronavirus diseases.

We found several important molecules/proteins and

pathways that were associated with ACE2 and TMPRSS2. One

was IL-6, which is involved in pathways such as the produc-

tion and activation of TGF-beta in airway smoothmuscle cells

(p¼ 1.42E-06); IL-6 signaling in colorectal cancer (p¼ 1.79E-06);

and the release of proinflammatory factors and proteases by

alveolar macrophages in asthma (p ¼ 3.63E-06). Another

important finding was PTEN, which is involved in the signal

transduction_PTEN pathway (p ¼ 2.27E-05) and plays a role in

proteases and EGFR-activated mucin production in airway

epithelium in COPD (p ¼ 3.17E-05). Examination of treatments

used in diseases and disorders associated with these mole-

cules, in turn, helped us identify candidate drugs for COVID-19

treatment consideration. Our approach also led to the iden-

tification of other potential drugs, successfully applied in

treating infections having relevance to those occasioned by

coronaviruses, such as mycophenolic acid, siltuximab, tocili-

zumab, nafamostat, and doxycycline. Baricitinib, an AP2-

associated protein kinase 1 (AAK1) inhibitor that could inter-

rupt virus passage into host cells and the intracellular as-

sembly of virus particles, which we present in our drug

candidate list, has also been predicted by others using

BenevolentAI's knowledge graph tool, also developed from the

NLP approach [34,35].

Limitations in the use of natural language document

discovery are hampered by such factors as limitations on

access to complete reports. Thus, most of our data mining

was based on abstracts, with the data analyzed thus limited

to core data discovery and incomplete mining a strong pos-

sibility. Additionally, the current data mining effort was

predicated on two well-known COVID-19 genes, ACE2 and

TMPRESS. As more knowledge of key functional genes and

their roles in SARS-COV-2 are identified, more comprehen-

sive and complete analyses will be possible. An important

http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM9922979
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further consideration is that the mining strategy we

employed was aimed at natural language and was thus

greatly influenced by subjective conclusions drawn by study

authors. In the future, it will be possible to weight the liter-

ature toward obtaining more refined sources by better

screening tools. We are currently developing a more refined

operation of tools and platforms that can improve the reli-

ability and validity of findings accessed and included for

analysis. Finally, as our results were based on NLP without

experimental validation, further confirmation is needed by

future studies.
Conclusion

In this project, we developed a novel NLP method LEI4COV to

identify hidden relationships among biomedical concept

entities through a mining of the literature. Using LEI4COV,

we ranked the associated entities, including organ systems,

disease, and the gene/proteins related to the key invasion

target genes of COVID-19, ACE2 and TMPRESS2. Our results

showed LEI4COV's ability to help access references that can

assist clinical diagnosis. We found several important mole-

cules/proteins and pathways that were associated with ACE2

and TMPRSS2, such as IL-6 signal pathways and trans-

duction_PTEN pathway. We also found several drug candi-

dates such as siltuximab, tocilizumab, and doxycycline that

need to be further validated. Our work can assist the rapid

interrogation of pathways to inform clinical diagnosis and

drug discovery.
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