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Abstract: MicroRNA (miRNA) is a type of non-coding RNA that regulates the expression 

of its target genes by interacting with the complementary sequence of the target mRNA 

molecules. Recent evidence has shown that genotoxic stress induces miRNA expression, 

but the target genes involved and role in cellular responses remain unclear. We examined 

the role of miRNA in the cellular response to X-ray irradiation by studying the expression 

profiles of radio-responsive miRNAs and their target genes in cultured human cell lines. 

We found that expression of miR-574-3p was induced in the lung cancer cell line A549 by 

X-ray irradiation. Overexpression of miR-574-3p caused delayed growth in A549 cells.  

A predicted target site was detected in the 3'-untranslated region of the enhancer of the 

rudimentary homolog (ERH) gene, and transfected cells showed an interaction between the 

luciferase reporter containing the target sequences and miR-574-3p. Overexpression of 

miR-574-3p suppressed ERH protein production and delayed cell growth. This delay was 

confirmed by knockdown of ERH expression. Our study suggests that miR-574-3p may 

contribute to the regulation of the cell cycle in response to X-ray irradiation via 

suppression of ERH protein production. 
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1. Introduction 

Genotoxic stress, including ionizing irradiation, triggers a variety of cellular responses such as 

growth delay, DNA repair, apoptosis, and senescence [1–3]. These responses are the result of 

activation, inactivation, interaction, or changes in the activity level of numerous proteins. Although 

many studies have indicated that the fate of irradiated cells is specific to the cell type, tumor type, 

irradiation type, and nature of the induced stress [1–4], the mechanism that regulates these cellular 

responses remains unclear. 

Early cellular responses to genotoxic stress are characterized by transcriptional regulation of  

genes [5]. Previous reports suggest that the effect of irradiation on gene expression networks is 

mediated by induction and/or suppression of specific transcription factors [6–8]. In addition, during the 

last decade, small RNA molecules such as microRNAs (miRNAs) were demonstrated to play 

important roles in the regulation of gene expression in almost all vertebrates [9–12]. 

miRNAs are a family of non-coding RNA molecules consisting of approximately 22 nucleotides. 

miRNAs bind to complementary elements in the 3′-untranslated regions (UTRs) of target mRNAs to 

regulate gene expression, mainly at the post-transcriptional level via the cleavage or translational 

repression of their target mRNAs [13]. Recent studies have indicated that radiation causes alterations 

in the expression levels of many miRNA molecules in malignant cells of the brain [14], head and  

neck [14], lung [15], prostate [16], lymphocytes [17], and colon [18], in addition to normal  

fibroblasts [19]. Interestingly, of the known species of miRNAs, only a few have been reported as 

commonly expressed in multiple tissues [20], suggesting that radiation-induced changes in miRNA 

expression may be tissue- or cell-type specific.  

To understand the mechanisms underlying the regulation of gene expression in cellular responses to 

a given stimulus, identification of the target mRNAs is important. Although many in silico studies 

have predicted miRNA targets, these data need to be verified by in vitro and in vivo experiments.  

To date, several studies have experimentally shown changes in target mRNA expression induced by 

radiation-responsive miRNAs in humans. For example, Girardi et al. found that Gamma ray irradiation 

induced the expression of miR-27a and subsequently suppressed the expression of its predicted target 

“ATM” in human lymphocytes [17], and they further demonstrated a direct interaction between the 

two [21]. Kwon et al. reported that radiation-inducible miR-193a-3p induced apoptosis in glioma cells 

by directly targeting Mcl-1, an anti-apoptotic Bcl-2 family member [22]. These findings highlight the 

importance of experimental studies aimed at determining the mechanisms underlying the regulation of 

gene expression by miRNA in response to genotoxic stress. 

In this study, we found that X-ray irradiation of cells from human lung adenocarcinoma, brain 

medulloblastoma, and astrocytoma induced the expression of miR-574-3p, which, in turn, suppressed 

the production of the enhancer of rudimentary homolog (ERH) protein and delayed cell growth. These 

findings provide important insight into the cellular responses to X-ray irradiation. 
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2. Results and Discussion 

2.1. Induction of miRNA Expression after Irradiation  

To explore the role of miRNA molecules in X-ray-induced changes in gene expression, we analyzed 

the miRNA expression profile of the A549 cell line within a few hours of irradiation using miRNA 

arrays (Figure 1). After a 3-h exposure to 2-Gy X-irradiation, the cells showed induction of miR-181d 

(2.51-fold, p = 0), miR-574-3p (2.27-fold, p = 2.4 × 10−34), miR-197 (2.12-fold, p = 2.9 × 10−26), and 

miR-766 (1.64-fold, p = 2.5 × 10−7). Among the four miRNAs, induction of miR-574-3p (1.67-fold,  

p = 0.0011) and miR-766 (1.54-fold, p = 0.0001) was confirmed by quantitative RT-PCR (qRT-PCR). 

We did not find any downregulation of miRNA following exposure to 2-Gy irradiation. The 

irradiation-induced increase in miR-574-3p expression was further confirmed by qRT-PCR after 1, 2, 

and 3 h of exposure to 2, 5, and 20 Gy of X-irradiation (Figure 2). Because an interaction between 

miR-766 and its predictive target mRNA was not experimentally detected (data not shown), we 

focused on the characterization of miR-574-3p.  

Figure 1. X-ray-responsive miRNA in A549 cells. The expression level of the miRNA in 

A549 cells after 3 h of irradiation with 2 Gy X-ray was compared with that of the miRNA 

in non-irradiated cells. The dotted lines indicate a threshold of 1.5-fold change. 
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Figure 2. Induction of miR-574-3p after X-ray irradiation. Induction of miR-574-3p in 

A549 cells 1, 2, and 3 h after irradiation with 2, 5, and 20 Gy X-ray was determined by 

qRT-PCR, using the delta Ct method. miR-31 was used as a negative control. Error bars 

represent the standard deviation. Each experiment was conducted three times. * p < 0.05 

vs. the non-irradiated sample. 

 

miR-574-3p was first identified in colorectal cancer cell lines [23]. miR-574-3p is downregulated in 

patients with bladder cancer [24], whereas it is upregulated in patients with hepatocellular carcinoma [25]. 

Because this miRNA displays differential expression regulation, we analyzed the response of  

miR-574-3p to X-irradiation in ONS-76 (brain medulloblastoma), SF126 (brain astrocytoma), C32TG 

(amelanotic melanoma), HeLa (cervical adenocarcinoma), and NB1RGB (normal skin fibroblast) cell 

lines. qRT-PCR analysis revealed that the irradiation increased miR-574-3p expression in A549  

(2.5-fold, p = 0.0190), ONS76 (1.3-fold, p = 0.0469), and SF126 (1.2-fold, p = 0.0115) cell lines, 

whereas expression was unaffected in C32TG (1.0-fold, P = 0.4331) cells. Expression of miR-574-3p 

was significantly, although slightly, suppressed in the NB1RGB (0.9-fold, p = 0.0048) and HeLa  

(0.9 fold, p = 0.0377) cell lines.  

Next, we attempted to find common genetic features in cell lines showing induction of miR-574-3p 

expression. P53 mutations have been reported only in the ONS76 and SF126 cell lines [5], and the 

retinoblastoma 1 (RB1) mutation was shown only in the SF126 cell line [26,27]. Therefore, neither the 

P53 nor the RB1 loci present a common feature in the three cell lines that showed irradiation-induced 

up-regulation of miR-574-3p. Interestingly, the three cell lines all have a common homozygous 

deletion of the CDKN2A locus [26,27]. In contrast, the wild-type CDKN2A locus was reported to be 

present in the C32TG and HeLa cell lines, which do not show induction of miR-574-3p expression 

following irradiation [26–28]. The remaining cell line, NB1RGB, was established from normal human 

fibroblasts, and no information is available regarding the CDKN2A locus in public databases such as 

COSMIC [26,27] or IGRhCellID [28]. 
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2.2. Delay in Cell Growth by Overexpression of miR-574-3p 

To study the biological significance of miR-574-3p induction, synthetic miR-574-3p or locked 

nucleic acid (LNA)-modified oligonucleotides (antagomirs) targeting miR-574-3p were transfected 

into A549 cells. Real-time monitoring of cell viability using an RT-CES instrument showed a 

significant delay in growth in the miR-574-3p-overexpressing cells (Figure 3A). Cell growth at 36 h 

was analyzed statistically (Figure 3B). Cells transfected with the synthetic miR-574-3p had a 

significant delay in growth compared with the cells transfected with antagomirs or compared with 

mock-transfected cells. Interestingly, cells transfected with antagomirs at 20 nM tended to show 

increased growth at later time points compared with the mock-transfected cells. 

Figure 3. Delay in cell growth caused by overexpression of miR-574-3p in A549 cells.  

(A) A549 cells were transfected with 10 or 20 nM synthetic miR-574-3p or miR-574-3p 

antagomirs. Cells transfected with the synthetic miR-574-3p or miR-574-3p antagomirs 

were incubated for 24 h and then re-plated into the wells of a device that allows real-time 

measurement of cell growth (calculated as the cell index) at 1-h intervals. Each experiment 

was conducted four times; (B) Cell growth was assessed using the cell index at 36 h.  

* p < 0.05 vs. mock-transfected cells. 

 

Growth delay is a known cellular response to irradiation. To study the involvement of miR-574-3p 

in the growth delay induced by X-irradiation, the growth of A549 cells transfected with miR-574-3p 

antagomirs or synthetic miR-574-3p and subsequently irradiated with X-ray was observed. The growth 

delay induced by X-irradiation was partially attenuated in cells transfected with miR-574-3p 

antagomirs (Figure 4A). In contrast, the growth delay induced by X-irradiation did not increase in cells 

transfected with synthetic miR-574-3p. Therefore, the expression of miR-574-3p induced by 5-Gy of 

X-ray appears to be sufficient to delay growth in irradiated cells. At 36 h after X-irradiation, the 
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number of cells in the miR-574-3p antagomirs group was higher than that in the mock-transfected 

group (1.3-fold, p = 0.0015) (Figure 4B). 

Figure 4. Attenuation of X-ray-induced growth delay in A549 cells through suppression of 

miR-574-3p. (A) A549 cells were transfected with 20 nM miR-574-3p antagomirs or 

synthetic miR-574-3p. Cells transfected with the miR-574-3p antagomirs or synthetic  

miR-574-3p were incubated for 24 h and then irradiated with 5-Gy of X-ray. X-irradiated 

cells were seeded on 35-mm dishes at a density of 67,000 cells per dish. Cells were 

counted using a hemocytometer at 24, 36, 48, or 72 h after irradiation. Each experiment 

was conducted three times; (B) Cell growth was assessed using the cell number at 36 h.  

* Statistical difference with p < 0.05 was considered significant.  

 

2.3. Expression Analysis of Transcripts Regulated by miR-574-3p  

To identify the target mRNA regulated by miR-574-3p, the expression profile of mRNA in A549 

cells transfected with synthetic miR-574-3p was compared with that in cells transfected with miR-574-3p 

antagomirs. After transfection (24 h), the miR-574-3p expression level in each cell line was measured 

by qRT-PCR. As expected, compared to non-transfected cells, cells transfected with synthetic  

miR-574-3p showed significantly higher levels of miR-574-3p (404-fold, p = 5.2 × 10−55), whereas 

those transfected with the antagomirs showed considerably lower levels of miR-574-3p (0.61-fold,  

p = 0.0016) (Figure 5). 
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Figure 5. Overexpression or downregulation of miR-574-3p in A549 cells transfected with 

synthetic miR-574-3p or miR-574-3p antagomirs. Expression levels of miR-574-3p in 

A549 cells transfected with synthetic miR-574-3p or miR-574-3p antagomirs were 

determined by qRT-PCR. ** p < 0.01 vs. non-transfected cells. 

 

Using these transfection conditions, we utilized an mRNA array to identify 53 mRNAs that were 

downregulated by at least 0.5 fold (p ≤ 0.001) in cells overexpressing miR-574-3p compared to cells 

with miR-574-3p knocked down. Although various algorithms exist for miRNA target prediction [29–33], 

the predicted targets generated by these different prediction tools overlap poorly with the small number 

of validated targets [34]. Algorithms for miRNA targeting of mRNA have not been fully examined yet 

and are based mainly on experimentally validated miRNA-mRNA interactions, which represent only a 

portion of the possible interactions available in vivo. Therefore, experimental validation of predicted 

target sites is essential for studies of miRNA function. In this study, miRanda, a target-prediction tool, 

was selected because it is superior in predicting sites with imperfect binding between the miRNA and 

mRNA, although the rate of false positives is high [34]. 

Among the 53 targets identified, 11 genes had the predicted target sequences for miR-574-3p in 

their 3'-UTR. We assessed these target sequences using a BLAST search against the human genome. 

Three candidate genes were excluded from analysis because their target sequences contain repetitive 

sequences such as di-nucleotide repeats; however, this does not mean these repetitive sequences are 

not functional. Each of the remaining eight genes harbored a unique sequence in the 3'-UTR that is 

possibly targeted by miR-574-3p (Table 1). Gene ontology analysis revealed that among these eight 

genes, only ERH is associated with cellular responses to genotoxic stress. 
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Table 1. Potential candidate genes regulated by miR-574-3p. 

Gene symbol Gene description Accession no. 
Expression level (signal intensity) 

FC KD OE p-value 

ERH Enhancer of rudimentary 

homolog (Drosophila) 

NM_004450.1 −2.1 31,602 14,698 3.8 × 10−36 

ZYG11A zyg-11 homolog A  

(C. elegans) 

XM_001133615.1 −2.1 269  126 4.5 × 10−22 

GPR172B G protein-coupled 

receptor 172B 

NM_001104577.1 (var. 1) −7.1 232 33 0 

NM_017986.3 (var. 2)     

ZMAT3 Zinc finger, matrin  

type 3 

NM_022470.2 (var. 1) −5.5 80 15 0 

NM_152240.1 (var. 2)     

ATPAF-AS1 ATPAF1 antisense RNA 

1 (non-protein coding) 

NM_001145474.1 −3.1 46 13 0.0006 

SLC34A1 Solute carrier family 34 

(sodium phosphate), 

member 1 

NM_003052.3 −3.8 26 7 4.5 × 10−9 

AQP7 Aquaporin 7 NM_001170.1 −2.0 24 12 9.7 × 10−7 

PRDM7 PR domain containing 7 NM_001098173.1 (var. 1) −2.3 20 9 7.0 × 10−5 

NM_052996.2 (var. 2)     

Abbreviations: var. = splicing variant, FC = fold change, KD = knockdown, OE = overexpression. FC was calculated 

using the “weight by error” method in Resolver software (Rosetta Biosoftware, Seattle, WA, USA).  

The enhancer of rudimentary (ER) gene was originally isolated from Drosophila melanogaster and 

found to participate in the pyrimidine metabolic pathway [35]. Its human homolog, ERH, was identified 

later, and the nucleotide identity between the human and Drosophila genes is almost 80% [36]. 

Furthermore, the ER gene is highly conserved across animals, plants, and protists, but not fungi [37,38]. 

ERH is a multifunctional nuclear protein that mediates cell cycle progression [37,39] and 

transcriptional regulation [35,40]. Recently, Fujimura et al. reported that ERH-depleted cells showed 

severe chromosome misalignment and weakened kinetochore-microtubule attachment, followed by 

dissociation of the centromere-associated protein E (CENP-E), a mitotic kinesin that is involved in 

stabilizing the kinetochore-microtubule attachment [41]. Weng et al. also reported that ERH is 

required for mRNA splicing of CENP-E, in addition to localization of CENP-E at the kinetochore [42]. 

ERH showed the highest hybridization intensity among the eight genes in our study, leading us to 

focus further on the ERH gene. To test whether ERH expression is affected by miR-574-3p, the 

miRNA was transfected into A549 cells. Western blot analysis revealed that expression of the ERH 

protein was 0.68 fold lower in A549 cells transfected with the synthetic miR-574-3p than in the  

non-transfected cells (Figure 6). 
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Figure 6. Downregulation of ERH in A549 cells overexpressing miR-574-3p. ERH protein 

in A549 cells transfected with synthetic miR-574-3p was detected by western blot analysis. 

The relative expression levels of the ERH protein in the cells are quantified and indicated 

in the panel.  

 

Figure 7. Luciferase reporter assay for binding of the modified ERH-3'-UTR with  

miR-574-3p. (A) The miR-574-3p target sequence was predicted to be at nucleotide 

positions 427 to 446 (3'-UTR) in ERH [Genbank: NM_004450.2]. The putative miR-574-3p 

recognition sequence (solid lines) was cloned with four repetitions downstream of the 

firefly luciferase gene in the pMIR-REPORT vector. Expression of the luciferase gene is 

controlled by the CMV promoter and SV40 polyA; (B) A549 cells were transfected with 

the pMIR-ERH plasmid or pMIR-REPORT vector without the ERH sequence as a control 

at 25 pM and 6 h later with synthetic miR-574-3p or the miR-574-3p antagomirs at 10 nM. 

Luciferase activity was measured 6 h after transfection with the synthetic miR-574-3p or 

miR-574-3p antagomirs. Each experiment was conducted three times. Error bars represent 

the standard deviation. * p < 0.05 vs. cells transfected with the pMIR-ERH vector. 
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2.4. Binding of miR-574-3p to the 3′-UTR of ERH  

To examine whether miR-574-3p could bind to the predicted sequence found in the 3'-UTR of the 

ERH mRNA, an 80-bp DNA fragment consisting of the four units of the predicted binding sequence 

(20 bp) of miR-574-3p was synthesized and cloned into the pMIR-REPORT Luciferase vector  

(Figure 7A). This construct, named pMIR-ERH, or the pMIR-REPORT vector without the ERH sequence 

as a control, was co-transfected into A549 cells with either synthetic miR-574-3p or miR-574-3p 

antagomirs. We found that the luciferase activity in A549 cells co-transfected with the synthetic  

miR-574-3p and the pMIR-ERH vector was significantly lower (0.84-fold, p = 0.0204) than that in the 

cells transfected with the pMIR-ERH vector, demonstrating that miR-574-3p bound to the target 

sequences (Figure 7B). These data suggest that miR-574-3p could regulate ERH function. 

Figure 8. Cell growth is delayed when ERH is knocked down in A549 cells. (A) A549 

cells were transfected with siRNA oligonucleotides for either ERH or a negative control at 

5 nM. Total cell extracts were prepared 48 h after transfection. The expression level of 

ERH was confirmed by western blot analysis. The relative expression level of ERH protein 

was quantified and is indicated in the panel; (B) A549 cells transfected with siRNA for 

ERH were incubated for 24 h and then re-plated into the wells of a device for RT-CES. 

Each experiment was conducted four times; (C) Cell growth was assessed using the cell 

index at 36 h. * p < 0.05 vs. mock-transfected cells. 
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2.5. ERH Regulates Cell Cycle Progression 

To ascertain whether ERH directly affects cell growth, siRNA against ERH (siERH) or negative 

control oligonucleotides were transfected into A549 cells. Western blot analysis showed that ERH 

expression was, as expected, lower in cells transfected with the siRNA (0.43-fold) than in those 

transfected with the negative control oligonucleotides and mock-transfected cells (Figure 8A).  

Real-time monitoring of cell viability using an RT-CES instrument revealed a significant growth delay 

in ERH-suppressed cells (Figure 8B). The cell growth at 36 h was analyzed statistically (Figure 8C). 

Cells transfected with siERH displayed a significant delay in growth compared with cells transfected 

with the negative control oligonucleotides, mock transfected cells, or non-transfected cells. 

DNA damage caused by genotoxic stress is known to arrest cell cycle progression through the 

activation of the tumor suppressor protein, p53, and subsequent induction of the cyclin kinase 

inhibitor, p21Cip1/Waf1, which binds to and inhibits CDK-cyclin complexes [43]. In addition to these 

important components involved in cell cycle control, many proteins also interact with p53 and 

p21Cip1/Waf1. Mitsui et al. isolated the Cip1-interacting zinc finger protein, Ciz1, which binds to the N 

terminus of p21Cip1/Waf1 [44]. Ciz1 is aberrantly expressed in various types of tumors [45–48] and is 

thought to be a tumor suppressor [49]. Ciz1 is believed to facilitate the formation of the  

CDK-cyclinE-p21Cip1/Waf1 complex. Ciz1 induces the cytoplasmic localization of p21Cip1/Waf1 when it is 

upregulated by DNA damage. Therefore, we infer that the CDK-cyclinE-p21Cip1/Waf1 complex is 

formed under the action of Ciz1 to arrest the cell cycle after DNA damage. Interestingly, Ciz1 has been 

characterized as a novel molecular partner for human ERH [36,50]. We postulate that because ERH 

blocks the action of Ciz1, induction of miR-574-3p by DNA damage with subsequent reduction of 

ERH expression facilitates the formation of the CDK-cyclinE-p21Cip1/Waf1 complex. As a result, growth 

delay is maintained, thereby enabling the repair of DNA damage (Figure 9). 

Figure 9. Proposed role of miR-574-3p in radiation-induced growth delay. Genotoxic 

stress, including irradiation, arrests the cell cycle through activation of p53 and subsequent 

induction of p21Cip1/Waf1, which binds to and inhibits CDK-cyclin complexes [43]. miR-574-3p 

is also induced by irradiation and suppresses the expression of ERH, which is the binding 

partner of Ciz1 [36,50]. Ciz1 is thought to support the CDK-cyclinE-p21Cip1/Waf1 complex. 

ERH blocks the action of Ciz1, but miR-574-3p induced by DNA damage reduces the 

expression of ERH, thus facilitating the formation of the CDK-cyclinE-p21Cip1/Waf1 complex. 

As a result, growth delay is maintained, thereby enabling DNA damage repair.  
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2.6. miR-574-3p Expression during Cellular Response to X-Ray Irradiation 

In this study, miR-574-3p expression was induced by X-ray irradiation in cells harboring a 

homozygous deletion of the CDKN2A locus. The CDKN2A gene is among the most commonly 

mutated loci in human cancers [51] and encodes two different tumor suppressors, P16INK4a and P14ARF, 

which are translated from alternatively spliced mRNAs. P16INK4a is involved in cell cycle arrest and 

the induction of senescence [52], and it inhibits CDK4/6, thus keeping RB1 in its hypo-phosphorylated 

active state [52]. Hypo-phosphorylated RB1 suppresses G1 advance by binding to E2F transcription 

factors (inactive E2Fs). After RB1 is phosphorylated, the repression of E2F is released, driving the 

expression of genes required for the G1/S-phase transition and initiation of DNA synthesis [53,54]. In 

general, the loss of P16INK4a has been suggested to facilitate aberrant cell cycle progression through the 

RB1 pathway [55]. P14ARF is involved in the p53 pathway. By inhibiting MDM2, P14ARF stabilizes and 

activates P53 [52], subsequently halting the cell cycle. P14ARF also functions independently of P53. In 

P53-deficient human tumor cell lines, expression of P14ARF arrests the cells in S or G2 phase, followed 

by an apoptotic response [56–60]. As CDKN2A encodes two proteins, the interpretation of the effect of 

the loss of the CDKN2A/P16INK4a/P14ARF locus is not straightforward. In this study, miR-574-3p 

expression was not induced in X-ray-irradiated cells harboring a normal CDKN2A locus. Rather, 

P16INK4a and P14ARF probably function in cells harboring a normal CDKN2A locus after X-ray 

irradiation. Although homozygous deletion of the CDKN2A/P16INK4a/P14ARF locus simultaneously 

compromises the function of both P53 and RB1, we have not yet analyzed the association between 

deletion of the CDKN2A/P16INK4a/P14ARF locus and induction of miR-574-3p by X-ray irradiation. 

Although further studies are necessary to elucidate the precise mechanism of miR-574-3p and its target 

gene ERH, our finding lends important insight to the cellular response to X-ray irradiation. 

3. Experimental Section 

3.1. Cell Lines, Culture Conditions, and Irradiation 

The following human cell lines were used in this study: A549 (lung adenocarcinoma), C32TG 

(amelanotic melanoma), ONS-76 (brain medulloblastoma), SF126 (brain astrocytoma), HeLa (cervical 

adenocarcinoma), and NB1RGB (normal skin fibroblasts). The A549 and C32TG cell lines were 

obtained from the Japanese Cancer Research Resource Bank (Osaka, Japan). The ONS-76 and SF126 

cell lines were obtained from the Institute for Fermentation (Osaka, Japan). The HeLa and NB1RGB 

cell lines were obtained from the RIKEN Cell Bank (Ibaraki, Japan). The properties of the cell lines, 

including p53 mutations, have been described previously [5]. All cell lines were cultured in Eagle 

minimum essential medium (E-MEM; Nissui, Tokyo, Japan) supplemented with 10% fetal bovine 

serum (FBS; Biological Industries Ltd., Beit HaEmek, Israel) and grown in 5% CO2 at 37 °C. Cells 

were irradiated with 2, 5, or 20 Gy X-rays, as described previously, at a rate of approximately  

1 Gy/min [61].  
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3.2. Isolation of Total RNA 

Total RNA, including small RNA species, was isolated from the cells by using a mirVana miRNA 

isolation kit according to the manufacturer’s instructions (Life Technologies, Carlsbad, CA, USA). 

Total RNA was then quantified using RiboGreen Reagent (Life Technologies). 

3.3. Transfection 

The synthetic miRNA “miCENTURY OX miNatural” and antagomirs “miRCURY LNA Knockdown” 

were obtained from Exiqon (Vedbaek, Denmark). A549 cells were transfected with the oligonucleotides 

at 3, 10, or 20 nM using LipoTrust EX Oligo reagent, according to the manufacturer’s protocol 

(Hokkaido System Science, Hokkaido, Japan). Total RNA was extracted from the cells 24 h after 

transfection using a mirVana miRNA isolation kit. For western blot analysis, the cell extracts were 

collected from the cells at 60 h post-transfection by adding 2% SDS (sodium dodecyl sulfate), 10% 

glycerol, and 50 mM Tris-HCl (pH 6.8) supplemented with 100 mM DTT. The concentration of total 

protein in the cell extracts was measured using the bicinchoninic acid (BCA) method using the BCA 

Protein Assay Kit (Thermo Fisher Scientific, Rockford, IL, USA). 

siRNA against ERH was obtained from Life Technologies. As a negative control for siRNA 

transfection, we used commercially designed Silencer Select Negative Control #2 (Life Technologies). 

A549 cells were transfected with the siRNA or Silencer Select Negative Control #2 at 5 nM using 

LipoTrust EX Oligo reagent. Cell extracts were collected 48 h post-transfection, and protein 

concentrations were measured as described earlier. 

3.4. Microarray Analysis of miRNA Expression 

miRNA expression analysis was conducted using Human miRNA Oligo Microarray, G4470A, and 

an miRNA Labeling Reagent & Hybridization Kit, according to the manufacturer’s instructions 

(Agilent Technologies, Santa Clara, CA, USA) [62]. This array consists of 470 human miRNA genes 

listed in the miRBase, release 9.1 [63–65], and contains 20–40 features targeting each of the  

470 miRNA, although there are 4449 human miRNA genes listed in the latest version of miRBase, 

release 20. Once hybridized, the array was scanned using an Agilent DNA Microarray Scanner 

(Agilent Technologies), and TIFF images were fed into Feature Extraction software version 9.5.3 

(Agilent Technologies) to extract the expression profile data. The data were further processed for 

statistical analysis using the advanced analysis tool Rosetta Resolver Gene Expression Data Analysis 

System, version 7.1 (Rosetta Biosoftware, Seattle, WA, USA). The Rosetta Resolver System calculates 

the expression data, i.e., intensity and ratio, using an error-weighting algorithm. The error-weighting 

involves using measurement error derived from the microarray technology-specific error model and 

weighting expression measurements based on that error such that intensities from array probes with 

larger errors are given lower weight than intensities from array probes with smaller errors. Expression 

data were generally accepted as true when the p-value of each intensity and the ratio of the intensity in 

the overexpressed sample to that in the suppressed sample (log10 transformed) were ≤0.001. miRNA 

with ratios (overexpressed sample/suppressed sample) of at least 1.50 fold were considered hits, i.e., 

induced miRNA. The gene expression omnibus accession number of the microarray data is GSE30130. 
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3.5. Quantitative Real-Time Reverse Transcription (RT)-PCR Analysis of miRNA Expression 

For the reverse-transcription reaction, 1 µg of total RNA was used in conjunction with a miScript 

Reverse Transcription Kit (Qiagen Inc., Valencia, CA, USA). Quantitative real-time PCR was 

performed using the miScript System (Qiagen Inc.), comprising a miScript SYBR Green PCR Kit and 

miScript Primer Assay. A LightCycler 480 Real-Time PCR System (Roche Diagnostics, Basel, 

Switzerland) with a 384-well plate format was used. Each sample was run in triplicate. 

3.6. Microarray Analysis of mRNA Expression 

For mRNA expression analysis, a dual-color microarray-based gene expression analysis was 

conducted using the Whole Human Genome Oligo DNA microarray, G4112F, according to the 

manufacturer’s instructions (Agilent Technologies). Briefly, 1 µg of the total RNA sample from A549 

cells, transfected with either the precursor oligonucleotides or the knockdown oligonucleotides, was 

amplified and labeled with either a Cy5 or Cy3 dye. This microarray consists of 41,000 unique probes. 

Once hybridized, the microarray was scanned, the expression profile was extracted, and the data were 

statistically analyzed using the Rosetta Resolver System. Expression data were accepted as true when 

the p-value of the overexpressed/suppressed ratio (log10 transformed) was ≤0.001. For this analysis, 

ratio values of <0.5 fold with intensities of the knocked down sample ≥20 were accepted as hits, i.e., 

suppressed mRNA. The gene expression omnibus accession number of the microarray data is GSE30131. 

3.7. Quantitative Real-Time RT-PCR Analysis of ERH Expression 

To confirm the expression levels of the ERH mRNA, 1 µg of total RNA was reverse-transcribed 

using a Transcriptor First-Strand cDNA Synthesis Kit, according to the manufacturer’s instruction 

(Roche Diagnostics). ERH expression was quantified using a Light Cycler 480 Probe Master and 

Universal Probe Library (Roche Diagnostics). The LightCycler 480 Real-Time PCR System was also 

used. Each sample was analyzed three times. 

3.8. Prediction of miR-574-3p Targets in Silico 

The mature miRNA sequence of miR-574-3p was obtained from miRBase [66]. The 3'-UTR 

sequences of the candidate mRNAs were obtained from NCBI [67]. The putative miR-574-3p 

recognition elements of the candidate genes were predicted using the miRanda algorithm [29,30,68]. 

The identified putative elements were further subjected to a BLAST search [69] against the human 

genome to remove elements that match completely with more than two loci in the genome. 

3.9. Western Blotting 

Western blotting analysis was performed as described previously [70]. An ERH monoclonal 

antibody (MO7), clone 1H4 (Abnova, Taipei City, Taiwan), was used to detect ERH protein. The ERH 

protein was detected as a band of approximately 12 kDa. 
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3.10. Reporter Constructs 

To generate a reporter vector bearing the miRNA-binding sites, the putative miR-574-3p 

recognition sequence in the 3'-UTR region of the ERH mRNA was synthesized with four repetitions 

and inserted downstream of the firefly luciferase gene in the pMIR-REPORT Luciferase vector (Life 

Technologies), as described previously [71]. Briefly, the oligonucleotides sequences were designed to 

carry the MluI and SpeI sites in the multicloning site of the pMIR-REPORT luciferase vector. The 

oligonucleotides used in these studies were as follows: 5'-CTAGTCACAGGTGTGTACAGC 

GTGCCACAGGTGTGTACAGCGTGCCACAGGTGTGTACAGCGTGCCACAGGTGTGTACAGC

GTGCGCTGAGCA-3' and 5'-CGCGTGCTCAGCGCACGCTGTACACACCTGTGGCACGCTGTA 

CACACCTGTGGCACGCTGTACACACCTGTGGCACGCTGTACACACCTGTGA-3'. A BlpI site 

(underlined) was added to each insert to test for positive clones. 

3.11. Luciferase Assay 

To investigate the effect of miR-574-3p on the expression of the ERH protein, cells were  

co-transfected with the pMIR-ERH construct at 25 pM and the pGL4.75[hRluc/CMV] construct at  

2.5 pM (Promega Corporation, Madison, WI, USA) using the FuGENE HD transfection reagent 

according to the manufacturer’s protocol (Roche Diagnostics). At 6 h after transfection of the 

constructs, the oligonucleotides, namely, the synthetic miR-574-3p or miR-574-3p antagomirs, were 

transfected at 10 nM using the LipoTrust EX Oligo reagent, according to the manufacturer’s protocol 

(Hokkaido System Science). Six hours after oligonucleotide transfection, the cells were lysed using a 

1× passive lysis buffer, and the activity of both firefly and Renilla luciferase was measured using a 

dual-luciferase reporter assay system (Promega Corporation) and Mithras LB940 device (Berthold 

Technologies, Bad Wildbad, Germany) according to the manufacturer’s instructions. Each sample was 

run at least in triplicate. 

3.12. Real-Time Monitoring of Cell Proliferation 

A549 cells were transfected with miRNA precursors or knockdown oligonucleotides for miR-574-3p 

(10 or 20 nM) or siRNA for ERH or negative control oligonucleotides (5 nM), as described above. 

After 24 h of transfection, the cells were trypsinized, counted, and re-plated at a density of  

1 × 104 cells/well into a 16-well device compatible with a real-time cell electronic sensing (RT-CES) 

analyzer and 16X station (Acea Biosciences, San Diego, CA, USA) [72]. Cell growth was monitored 

for 72 h at 1-h intervals by calculating the cell index (surface area covered by the cells) for each well. 

The measurements were performed at least in triplicate. 

3.13. Statistical Analysis 

Unless otherwise stated, statistical evaluations of significance were performed using Student’s  

t-tests (two-tailed), with data considered significant when p < 0.05. 
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4. Conclusions 

In this study, we provide evidence that X-ray-induced upregulation of miR-574-3p resulted in 

suppression of ERH protein expression and led to a delay in cell growth. Although further studies are 

necessary to elucidate the precise mechanism of miR-574-3p and its target gene ERH, our findings 

lend important insights into the cellular responses to X-ray irradiation. 
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