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Abstract

A fully-automated method based on graph shortest path, graph cut and neutrosophic (NS)

sets is presented for fluid segmentation in OCT volumes for exudative age related macular

degeneration (EAMD) subjects. The proposed method includes three main steps: 1) The

inner limiting membrane (ILM) and the retinal pigment epithelium (RPE) layers are seg-

mented using proposed methods based on graph shortest path in NS domain. A flattened

RPE boundary is calculated such that all three types of fluid regions, intra-retinal, sub-retinal

and sub-RPE, are located above it. 2) Seed points for fluid (object) and tissue (background)

are initialized for graph cut by the proposed automated method. 3) A new cost function is

proposed in kernel space, and is minimized with max-flow/min-cut algorithms, leading to a

binary segmentation. Important properties of the proposed steps are proven and quantita-

tive performance of each step is analyzed separately. The proposed method is evaluated

using a publicly available dataset referred as Optima and a local dataset from the UMN

clinic. For fluid segmentation in 2D individual slices, the proposed method outperforms the

previously proposed methods by 18%, 21% with respect to the dice coefficient and sensitiv-

ity, respectively, on the Optima dataset, and by 16%, 11% and 12% with respect to the dice

coefficient, sensitivity and precision, respectively, on the local UMN dataset. Finally, for 3D

fluid volume segmentation, the proposed method achieves true positive rate (TPR) and

false positive rate (FPR) of 90% and 0.74%, respectively, with a correlation of 95% between

automated and expert manual segmentations using linear regression analysis.
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Introduction

Automated OCT images analysis allows detection and quantitative assessment of retinal

abnormalities [1, 2]. The analysis of fluid and other abnormalities is a challenging task and has

been of greater interest in recent years [3, 4]. In this work, automated analysis of exudative age

related macular degeneration (EAMD) is carried out, which is characterized by the growth of

abnormal blood vessels from the choroidal vasculature, and the resultant fluid leakage into the

intra-retinal, sub-retinal, and sub-retinal pigment epithelium (RPE) spaces. The standard

treatment for this condition is guided by the presence and quantity of this fluid [5, 6]. The

fluid quantity cannot be routinely measured in clinical practice because commercial algo-

rithms do not directly detect fluid. An OCT image, labeled with the structure of the retinal lay-

ers and abnormal fluid/cyst regions, is shown in Fig 1.

Fluid segmentation in OCT images is important for both AMD and diabetic macular

edema (DME). With respect to the reported segmentation and quantification of fluid, mor-

phological and pathological features, various aspects have been considered in the literature.

These include retinal abnormality type such as AMD/DME, automated/semi-automated (with

user interaction), 2D/3D and supervised/not machine learning-based. In [7–11], semi-auto-

mated methods were proposed for fluid segmentation in AMD and DME subjects. In [12], a

supervised 2D fluid segmentation method was proposed for AMD subjects. In [13–16], super-

vised 3D fluid segmentation methods were proposed for AMD subjects. In [17–21], supervised

2D fluid segmentation methods were presented for DME subjects. In [22–28], not machine

learning-based 2D fluid segmentation methods were proposed for DME subjects. In [29],

supervised 3D fluid segmentation method was proposed for DME subjects. Finally, in [30, 31],

not machine learning-based 3D fluid segmentation methods were proposed for DME and

AMD subjects, respectively. The proposed fluid segmentation method in this paper is a not

machine learning-based automated method for EAMD subjects which is applied to 2D slices

individually and is used to create a 3D fluid volume for each OCT volume. A preliminary ver-

sion of this work has been reported in [32].

Neutrosophy is a branch of philosophy which studies the nature and scope of the neutrali-

ties and their interactions which is the basis of neutrosophic (NS) logic and NS set [33]. This

theory was applied for image segmentation first by Guo et al [34] and has subsequently been

successfully used for other image processing applications [35–41]. Graph theory is one of the

powerful tools for image segmentation due to the benefits of mapping the image pixels (voxels)

as well as their relationships onto a graph. Graph theory-based image segmentation makes use

of techniques such as minimal spanning tree, graph cut with cost function, graph cut on Mar-

kov random field models, shortest path and random walker methods [42]. Graph cut and

shortest path methods have been sucessfully applied in image segmentation aplications [43–

47].

Fluid segmentation in EAMD subjects is a challenging task due to these reasons: the low

contrast of retinal images; variation of size, shape, and location in fluid regions; the similarity

between the foreground and background textures; signal intensity changes in subsequent slices

in OCT volumes; existence of hard exudates in the form of intensely hyper-reflective struc-

tures; and dark regions underneath blood vessels [10, 14]. This paper addresses these chal-

lenges and presents approaches to segmentation of fluid regions in OCT volumes of EAMD

subjects. The proposed method constitutes three main steps: 1) The inner limiting membrane

(ILM) and the retinal pigment epithelium (RPE) layers are segmented using the proposed

weight computation equations for graph shortest path in the neutrosophic (NS) domain. Note

that in EAMD subjects, ILM segmentation is straightforward while RPE segmentation is a

more challenging task due to sub-retinal and sub-RPE fluids which may mislead the graph

Fluid segmentation in EAMD subjects
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shortest path method. These challenges are addressed in this paper. Then a flattened RPE

boundary is calculated such that all types of fluid regions are located above it. It may be noted

that the method proposed in [30] uses manual interaction to avoid such challenges. 2) In this

work, fluid segmentation is considered as a binary segmentation so that graph cut can be

applied. For this task, seed points for fluid (object) and tissue (background) are initialized

automatically by the proposed method based on NS theory. 3) To reduce the segmentation

errors of the graph cut cost function in [43] at boundaries, a new cost function is proposed in

kernel space, and is minimized effectively using min-cut/max-flow algorithms [48]. Finally,

several important properties of the proposed steps are presented and then proven. Then quan-

titative performance of each step is analyzed separately in Section IV.

The rest of this paper is organized as follows. Section II presents a review of the neutro-

sophic set and graph cut method. Our proposed algorithms are presented in Section III. Exper-

imental results are presented in Sections IV. Finally, conclusion is described in Sections V.

Review of neutrosophic set and graph cut

Neutrosophic set and neutrosophic image

Suppose that A is a set in neutrosophic domain. Each member x in A is described by three real

subsets named as T, I and F in [0, 1]. Element x in A is expressed as x(t, i, f) which can be inter-

preted as it is t% true, i% indeterminacy, and f% false [33]. This interpretation depends on the

application. In fluid segmentation, our definition is that for each pixel it is t% fluid, f% non-

fluid and the confidence of this assignment is (1 − i)%. For using the concept of NS in image

processing, an image should be transformed into the neutrosophic domain. The general

method for this transformation was proposed by Guo et al [34]. For OCT images with layered

structures, two transformation methods are proposed here for automated seed initialization

and fluid segmentation. These methods will be explained in the next section with details.

Graph cut

Graph cut is a semi-automated global optimization method for image segmentation. In this

method, each pixel in image is represented by a node in the graph, each node (pixel) is linked

to its neighboring nodes with the edge cost defined by the difference between pixel gray levels.

Also, two additional nodes referred as source and sink are added to represent the foreground

and background, respectively. Each node of the graph is connected to source and sink with the

Fig 1. OCT image with layers structure and fluid/cyst regions [17].

https://doi.org/10.1371/journal.pone.0186949.g001
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edge cost corresponding to the probability that corresponds to how the intensity of that pixel

fits into intensity probablities of foreground and background models computed from user

seed points. Segmentation problem can be viewed as a binary labeling in graph cut framework

which is equivalent to finding the minimum cut in the constructed graph from input image.

The energy function E(A) for image segmentation in graph cut is defined in (1) [43, 49].

EðAÞ ¼ l:RðAÞ þ BðAÞ ð1Þ

RðAÞ ¼
X

p2P

RpðApÞ ð2Þ

BðAÞ ¼
X

fp;qg2N

Bp;q:dðAp;AqÞ ð3Þ

dðAp;AqÞ ¼
1; if Ap ¼ Aq

0; otherwise

(

ð4Þ

where λ is a nonnegative parameter that represents a relative importance of the regional prop-

erty term R(A) versus the boundary property term B(A). In regional term R(A), the individual

penalties for assigning pixel p to object and background, Rp(obj) and Rp(bkg), respectively, are

considered. Ap is the label assigned to pixel p. Coefficient Bp,q>= 0 is interpreted as a penalty

for discontinuity between p and q [43, 49]. Our proposed algorithm for fluid segmentation in

OCT scans is based on graph cut with three improvements which will be discussed in the next

section.

Proposed method

Transform OCT scans to neutrosophic domain

In [34], it was shown that if the image is transformed to NS domain, the membership set T
becomes more distinct, which is suitable for segmentation. Also, it was shown that segmenta-

tion in NS domain is more robust against noise. In OCT scans with a great deal of noise, it

may be a good idea to transform images to NS domain and then apply fluid and layer segmen-

tation methods. This transformation can be useful in OCT image analysis in two main aspects:

1) some abnormalities in OCT scans such as hard exudate regions and hyper-reflective struc-

tures affect conventional segmentation methods. These regions can be handled in NS domain

to decrease their effects on segmentation. In this research, a new method is proposed to trans-

form OCT scans to NS domain which is consistent with the layered structure of OCT images.

In the next step, proposed layer and fluid segmentation methods are applied to images in NS

domain. 2) Indeterminacy set in NS domain is used in our proposed cost function for fluid

segmentation. As it will be discussed later, our proposed cost function penalizes noisy pixels.

Here, pixels with high indeterminacy values are assumed as noisy pixels. The proposed method

to transform OCT scans to NS domain is presented in Algorithm 1.

Algorithm 1 Proposed image transformation to NS domain
1: Inputs:g (inputimage),Output:T, I.

2: ComputeTði; jÞ ¼ 1 �
gði; jÞ � gmin
gmax � gmin

.

3: Considera rectangularGaussianfilterwith the dimensionof [3, 9].
4: Rotatethe filterin 10 differentdirectionsto cover180 degreesof
rotation.

Fluid segmentation in EAMD subjects
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5: Applyall filtersto imageT to compute10 filteredimages:FIk = 1. . .10.
6: ComputeI as: I(i, j) = mink|T(i,j) − FIk(i, j)|.
7: Applyλ-correctionoperationto T set as follows:

TðlÞ ¼
Tði; jÞ; if Iði; jÞ < l

T 0
l
ði; jÞ; otherwise

(

ð5Þ

Indði; jÞ ¼ argmaxkjTði; jÞ � FIkði; jÞj ð6Þ

T 0
l
ði; jÞ ¼ FIIndði;jÞði; jÞ ð7Þ

8: ComputeT ¼ T ðlÞ.
9: If |Entropy(It) − Entropy(It−1)| < 0.001 go to 10, otherwisego to 5.
10: End.

To achieve better segmentation results, several novel approaches are applied to conven-

tional NS transformation which are summarized as follows: 1) Since fluid regions are darker

than other regions, the inverse of normalized intensity is considered as T set in step 2. There-

fore, the proposed method assigns high memberships to pixels in fluid regions and low mem-

berships to pixels in hard exudate regions and hyper-reflective structures such that these

regions do not mislead the segmentation methods. Note that proposed layer and fluid segmen-

tation methods are applied to T set. 2) A new definition of indeterminacy set is proposed. In

indeterminacy definition of conventional NS, the greater the difference between each pixel

and the mean of its neighbors in the square window, the greater the indeterminacy. In this def-

inition, higher indeterminacy is assigned to pixels near the OCT layers and the boundaries

even though these are not noisy pixels. In the proposed indeterminacy definition (steps 3-6),

instead of considering the difference between each pixel and the mean of its surrounding win-

dow, the minimum difference between each pixel and the mean of its neighbors in 10 different

directions is considered. By this way, for pixels located in layer boundaries, a filter in horizon-

tal direction is selected in step 6 which results in the lowest difference. Thus, the indeterminacy

of these pixels is not increased. 3) Instead of α −mean and β − enhancement operations in con-

ventional NS, λ-correction operation (λ = 0.7 is chosen based on experiments) is proposed to

decrease the noise effect as defined in (5)–(7). In this definition, the very noisy pixels are

blurred with the filter which has the greatest difference (the biggest penalty is considered for

these pixels). 4) In NS domain, just T and I sets are used in the subsequent steps of segmenta-

tion and F is ignored. Fig 2 shows T and I sets of a transformed OCT scan to NS domain.

ILM/RPE segmentation

Layer segmentation is not the main contribution of this paper. However, to improve the fluid

segmentation results, ILM and RPE, the first and last retinal layers, respectively, are seg-

mented. Since the background regions (the regions above ILM and below RPE) are very simi-

lar to fluid regions in both brightness and texture, these regions are ignored after the ILM and

RPE layers are segmented. The proposed ILM/RPE segmentation methods for OCT scans of

EAMD subjects are derived from the layer segmentation method based on graph shortest path

in [46] which was proposed for the OCT layers of normal adult eyes. The general procedure in

shortest path method for layer segmentation is that first the graph is constructed from each

OCT image by mapping each pixel in the image to one node in a graph. Then, each node is

connected to its neighbors with a weight. The main challenge is that edge weights should be

calculated such that the edges between pixels located in a layer boundary have the minimum

Fluid segmentation in EAMD subjects

PLOS ONE | https://doi.org/10.1371/journal.pone.0186949 October 23, 2017 5 / 26

https://doi.org/10.1371/journal.pone.0186949


costs and these pixels are good candidates to be selected by the shortest path algorithm. Here,

we only consider the local relationship for 8 neighbors of each pixel, so, the 8-regular graph is

constructed. The proposed ILM segmentation is as follows: first, the image is filtered with filter

H for the calculation of vertical gradient of each pixel using (8) and (9).

H ¼

� 2

0

2

2

6
6
6
4

3

7
7
7
5

ð8Þ

VerGrad ¼ T � H ð9Þ

Fig 2. Transformation to NS domain. (a): input OCT scan, (b): subset T and (c): subset I.

https://doi.org/10.1371/journal.pone.0186949.g002

Fluid segmentation in EAMD subjects

PLOS ONE | https://doi.org/10.1371/journal.pone.0186949 October 23, 2017 6 / 26

https://doi.org/10.1371/journal.pone.0186949.g002
https://doi.org/10.1371/journal.pone.0186949


where T is the transformed image in NS. This filter is selected based on the fact that ILM pixels

are located in the boundary of dark region (background above ILM) and bright region (retina

tissue below ILM). The proposed weight computation between any two arbitrary pixels (a1, b1)

and (a2, b2) is defined by (10):

Wðða1; b1Þ; ða2; b2ÞÞ ¼ 4 �MaxG � VerGradða1; b1Þ � VerGradða2; b2Þ þ 2 �meanðRÞ ð10Þ

whereMaxG is the maximum gray level of the image and R is a set of R pixels above (a1, b1). In

this paper R is set to 40 based on experiments. Based on the filterH, the maximum of VerGrad
is 2 � MaxG. So, the maximum of VerGrad(a1, b1) + VerGrad(a 2, b2) is 4 � MaxG. Pixels which

are located in the first layer have the maximum vertical gradient. Therefore, the minimum

weight will be assigned between these pixels and they have the highest chance to be selected by

the shortest path algorithm. The problem is that in abnormal OCT scans there are pixels in

other layers which also have the maximum vertical gradient. Fig 3 shows the pixels which have

the maximum vertical gradient (and thus minimum weight) but are not located in the first

layer. The weight between these pixels is increased by introducing the term 2 � mean(R); note

that this term is very small for the pixels in ILM. Therefore, it is guaranteed that the pixels in

ILM always have the minimum weight.

The procedure for RPE segmentation in EAMD subjects is a more challenging task com-

pared to ILM. In OCT scans of normal eyes, the main feature of RPE pixels is that these pixels

are located in the boundary of a bright region (retina tissue above RPE) and a dark region

(choroidal vessels below RPE). In normal eyes, if the inverse of filterH in ILM segmentation is

used, RPE can be segmented. In EAMD subjects, two abnormalities referred as sub-retinal and

sub-RPE fluids are the main challenges in RPE segmentation. These challenges are addressed

in this paper as follows:

1. For sub-retinal fluid, the proposed weight computation is given by:

Wðða1; b1Þ; ða2; b2ÞÞ ¼ 4 �MaxG � VerGradða1; b1Þ � VerGradða2; b2Þ � meanðUÞ � b:D ð11Þ

where U represents a set of U pixels below (a1, b1) and D denotes the vertical distance

between (a1, b1) and ILM (see Fig 4). In all experiments, U and β have been set to 10 and

0.004, respectively.

2. For sub-RPE fluid, RPE is elevated by fluid. In these cases, the gradient information is lost

and it is not possible to distinguish RPE pixels. Therefore, shortest path method does not

work here. For this problem, after RPE segmentation, it is flattened by the proposed Algo-

rithm 2. In this Algorithm first all pixels in RPE are considered as a vector in which RPE(i)
is the height of ith pixel in RPE. When the RPE is elevated, a pick (or picks) are created.

This pick is determined by steps 3-9 which corresponds to a point with the maximum cur-

vature. Then, the left and right sides where the curve begins and ends are found in steps

Fig 3. R parameter for weight computation in ILM segmentation.

https://doi.org/10.1371/journal.pone.0186949.g003
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11-15 and 17-21, respectively. Finally, left and right sides are connected by 1D linear inter-

polation which leads to the flattened RPE. Two samples of the layer segmentation results

are shown in Fig 5.

The proposed ILM and RPE segmentation guarantees that intra-retinal, sub-retinal and

sub-RPE fluids are located between these layers. Therefore, in the proposed fluid segmentation

method, just the region between ILM and RPE is considered. In some cases, the layer segmen-

tation errors affect the fluid segmentation algorithm. In Section IV, we will analyze the error of

the layer segmentation methods and their effects on fluid segmentation.

Algorithm 2 RPE Flattening
1: Inputs:All pixelsin RPE, W = 150, Tr = 40
2: Output:Pick,PickStart,PickEnd
3: for i = 1:length(RPE)do ▷ Find a pointwith the maximumcurvature
4: L = 0;R = 0;
5: for j = 1:W do
6: L = L + RPE(i)− RPE(i− j);
7: R = R + RPE(i+ j) − RPE(i);
8: Curvature(i)= L + R;
9: Pick = maxi(Curvature(i))
10: C = 1;Curr= Pick
11: while C = = 1 do ▷ Find the left side of curvature
12: if RPE(Curr)< RPE(Curr− Tr) then
13: Curr = Curr − 1;
14: else C = 0;
15: PickStart= Curr;
16: C = 1;Curr= Pick
17: while C = = 1 do ▷ Find the rightside of curvature
18: if RPE(Curr)< RPE(Curr+ Tr) then
19: Curr = Curr + 1;
20: else C = 0;
21: PickEnd= Curr;
22: ConnectPickStartto PickEndusing1D linearinterpolation
23: End.

Fluid segmentation

In this paper, graph cut is developed for fluid segmentation. In this Section, following cases

are explained: 1) Why the proposed fluid segmentation method is based on graph cut, 2) what

are the limitations of graph cut for this application, and 3) how we address these limitations.

Fig 4. Parameters for weight computation in RPE.

https://doi.org/10.1371/journal.pone.0186949.g004
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Why graph cut. Optimization based on variational methods relies on approximating

numerical approaches that must be very carefully designed to achieve the robustness. Also,

convergence of such methods is a non-trivial issue. In contrast, graph cut image segmentation

relies on powerful combinatorial optimization methods which are very straightforward, robust

and repeatable numerically [43]. Also, in [50], the practical efficiency of combinatorial min-

cut/maxflow algorithms for solving optimization problem in graph cut problem was studied.

Finally, region, boundary, and shape priors can be integrated in the cost functions which are

optimized in graph cut [43, 50].

Graph cut limitations in fluid segmentation. Beside the computational benefits of graph

cut, there are three limitations in graph cut in our problem of interest, i.e., fluid segmentation:

1) Basically, graph cut is a semi-automated method and needs user seed points for regional

term and hard constraints while we focus on developing a fully-automated method for fluid

segmentation. 2) Graph cut is well-developed for the optimization of binary cost functions and

consequently binary image segmentation while in OCT scans there are at least 13 different tex-

ture structures in retinal layers. 3) Graph cut is very sensitive to seed points. Fig 6(a) and 6(b)

show the fluid segmentations for two different seed points which demonstrate the effect of

seed points in fluid segmentation results. These limitations are addressed as follows:

Automated seed initialization for graph cut. In this research, an automated method

(without needing user interaction) is proposed for seed initialization in Algorithm 3. It consid-

ers the fluid regions as object and tissue regions as background. Automated seed points

obtained from Algorithm 3 are depicted in Fig 7(b) in which fluid and tissue seed points are

illustrated in white and black colors, respectively.

Algorithm 3 Automated seed initialization in NS domain.
1: Inputs:g (inputimage),Numberof fluidpixels:FN (= 500) and numberof
tissuepixels:TN (= 700)
2: Output:seed pointsets Fl, Ti.
3: Compute:

4: Tði; jÞ ¼ 1 �
gði; jÞ � gmin
gmax � gmin

, Iði; jÞ ¼
dði; jÞ � dmin
dmax � dmin

, dði; jÞ ¼ jgði; jÞ � gði; jÞj.

Fig 5. Two samples of ILM and RPE segmentation results.

https://doi.org/10.1371/journal.pone.0186949.g005
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5: Applythe α − mean and β − enhancementoperationsproposedin [34] to subset
T.
6: If |Entropy(Ii) − Entropy(Ii−1)| < 0.001 go to 7, otherwisego to 4.
7: Applyk − meansclusteringon the subsetT to have a coarsepartitioning
(see Fig 7(a)).
8: Sort clustersfrom biggerto smallerclustercenters.
9: Fluidseed points:selectFN pointsrandomlyfrom the first two clusters
and save them in Fl set (see section“Clustersfor fluidand tissueseed
sets”).

Fig 7. Seed initialization in fluid segmentation. (a) coarse partitions in NS domain (b) final seed initialization result.

https://doi.org/10.1371/journal.pone.0186949.g007

Fig 6. Effect of seed initialization in fluid segmentation. (a) and (b): two different seed point sets (c): center of fluid seeds (C1), tissue seeds in (a) (C3)

and (b) (C2).

https://doi.org/10.1371/journal.pone.0186949.g006
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10: Tissueseed points:from remaining(k − 2) clusters,select(Npi × TN)

pixelsfrom clusteri(i = 3. . .k) randomlyand save them in Ti set: pi ¼
1

2i� 2
,

Npi ¼
pi

Pk
i¼3
pi

11: ReturnFl and Ti sets.

Cost function design for graph cut. Obtained seed points from Algorithm 3 are pre-

sented for graph cut in [43] for fluid segmentation. As it will be shown visually and quantita-

tively in section IV, fluid regions close to the boundaries are lost in segmentation. For

increasing segmentation accuracy, a new cost function based on kernel mapping is designed

for graph cut. In kernel mapping, data is transformed to the higher dimensional space which

can be expressed with a kernel function without explicit evaluation of the transform [51]. Ker-

nel concept was first integrated with graph cut by Salah et al. for automated multi-region

image segmentation [44]. Proposed method in [44] segments images to k regions without user

interaction. The main problem lies in determining what k value is appropriate for each OCT

scan. One of the main advantage of the proposed seed initialization method is that it does not

need the number of clusters (segments) since it is a binary segmentation which considers fluid

regions as object and non-fluid regions as background. Therefore, the cost function proposed

in [44] cannot be used here. In this work, a new kernel-based cost function is proposed in (12)

for binary segmentation which uses seed points obtained from Algorithm 3.

EðAÞ ¼ l1:
X

p2P

RpðApÞ þ l2:
X

fp;qg2N

Bp;q:dðAp;AqÞ ð12Þ

R1pðApÞ ¼ ð�ðmApÞ � �ðpÞÞ
2
¼ ð�ðmApÞ � �ðpÞÞ

T
:ð�ðmApÞ � �ðpÞÞ

¼ �ðmApÞ
T
:�ðmApÞ þ �ðmpÞ

T
:�ðmpÞ � 2�ðmApÞ

T
:�ðmpÞ

¼ KðmAp ; mApÞ þ Kðp; pÞ � 2KðmAp ; pÞ ¼ 2 � 2:expð� ððmAp � pÞ
2
Þ=ð2:s2ÞÞ

ð13Þ

Rpð
0O0Þ ¼ ðð1 � IpÞ:R1pð

0O0ÞÞGEðR1pð
0O0Þ;R1pð

0B0ÞÞ

�R1pð
0O0ÞGEðR1pð

0B0Þ;R1pð
0O0ÞÞ

ð14Þ

Rpð
0B0Þ ¼ ðð1 � IpÞ:R1pð

0B0ÞÞGEðR1pð
0B0Þ;R1pð

0O0ÞÞ

�R1pð
0B0ÞGEðR1pð

0O0Þ;R1pð
0B0ÞÞ

ð15Þ

GEða; bÞ ¼
1 : a > b

0 : otherwise

(

ð16Þ

where Ap = {0O0,0 B0} represents the label of pixel p which is either object (fluid) or background

(tissue) and mAp is the average of seed points with the label of Ap. λ1 and λ2 are the weights for

region and boundary terms, respectively. ϕmaps pixel intensities to higher dimension. For

this cost function parameters are set with λ1 = 1012, λ2 = 108 and σ = 0.1. Based on Mercer’’s

theorem, any continuous, symmetric and positive semidefinite kernel function can be

expressed as a dot product in a high-dimensional space, without any need to know explicitly

the mapping [44, 51]. In (13), centers of the object and background seeds (obtained from
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Algorithm 3) are used and then the RBF kernel is used since it has the best accuracy in fluid

segmentation. Finally, the boundary term in (12) is same as the boundary term proposed in

[43].

Final fluid segmentation algorithm. Final fluid segmentation scheme is described in

Algorithm 4.

Algorithm 4 Proposed fluid segmentation method.
1: Transformthe input OCT scan to T and I sets in NS domainwith Algorithm1.
2: SegmentILM and OPL layersof T.
3: Initializeseed pointsfor fluid and tissuewith Algorithm3.
4: Constructa graph for the proposedcost functionwith the same way proposed
in [43].
5: Minimize(12) by findingminimumcut of the constructedgraph in 4 with
min-cut/max-flowalgorithmsin [48].
6: IgnoresegmentedregionsaboveILM and belowRPE and regionsunderTr
pixels.
7: Returnall segmentedregionsas fluid (object)in graphcut segmentation.

The proposed methods satisfy certain properties. These are stated and proven below.

Property 1. Proposed weight computation in (11) does not mislead the shortest path meth-

ods in EAMD subjects with sub-retinal fluid.

Proof. In sub-retinal fluid, there are pixels above fluid regions with high vertical gradients

(similar to RPE pixels) which mislead the shortest path algorithm. Therefore, shortest path

algorithm follows a path above sub-retinal fluid instead of RPE (see Fig 8). Suppose that there

are n pixels which mislead the shortest path method. These pixels are depicted in Fig 9 with

the set {P0(1), . . ., P0(i), P0(i + 1), . . ., P0(n)}. These pixels are referred as “above RPE” pixels.

There is another set {P(1), . . ., P(i), P(i + 1), . . ., P(n)} referred as “under RPE” pixels which

should be selected by shortest path method. Note that corresponding pixels in these sets have

the same column number. Each pixel P(i) has a column and row number of ai and bi, respec-

tively. Therefore, it is represented by (ai, bi). What we are showing here is how the proposed

Fig 8. Sub-retinal fluid misleads shortest path algorithm.

https://doi.org/10.1371/journal.pone.0186949.g008

Fig 9. RPE weight computation.

https://doi.org/10.1371/journal.pone.0186949.g009
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weight computation leads the shortest path algorithm to select “under RPE” pixel set instead of

“above RPE”.

In (11), for D,D0, U and U0 parameters it is clear that:

D0 < D ð17Þ

U 0 < U ð18Þ

The term 4 � MaxG is same for both sets. To evaluate the relation between VerGrad terms two

cases are possible:

1. VerGradða0i; b0iÞ <¼ VerGradðai; biÞ and VerGradða0iþ1; b0iþ1Þ <¼ VerGradðaiþ1; biþ1Þ

In this case:

VerGradða0i; b
0
iÞ þ VerGradða

0
iþ1
; b0iþ1
Þ þmeanðU 0Þ þ b:D0 < VerGradðai; biÞ

þVerGradðaiþ1; biþ1Þ þmeanðUÞ þ b:D
ð19Þ

Therefore:

Wððai; biÞ; ðaiþ1; biþ1ÞÞ <Wðða0
1
; b0iÞ; ða

0
iþ1
; b0iþ1
ÞÞ ð20Þ

2. VerGradða0i; b0iÞ > VerGradðai; biÞ and VerGradða0iþ1; b0iþ1Þ > VerGradðaiþ1; biþ1Þ

In this case:

meanðUÞ � meanðU 0Þ > VerGradða0iþ1
; b0iþ1
Þ � VerGradðaiþ1; biþ1Þ ð21Þ

D � D0 > VerGradða0i; b
0
iÞ � VerGradðai; biÞ ð22Þ

It may be mentioned that U is a set of pixels in choroid region while U0 is in fluid region.

Therefore, inequality (21) is almost true. In inequality (22), the left side is based on distance

while the right side is based on gradient. To have a bigger quantity in the left side and also

have consistency in both sides, a β parameter is multiplied to the left side. Therefore, it can

be concluded that:

bðD � D0Þ þ ðmeanðUÞ � meanðU 0ÞÞ > VerGradða0i; b
0
iÞ � VerGradðai; biÞþ

VerGradða0iþ1
; b0iþ1
Þ � VerGradðaiþ1; biþ1Þ

ð23Þ

Therefore,

VerGradða0i; b
0
iÞ þ VerGradða

0
iþ1
; b0iþ1
Þ þmeanðU 0Þ þ b:D0 < VerGradðai; biÞþ

VerGradðaiþ1; biþ1Þ þmeanðUÞ þ b:D
ð24Þ

which leads to:

Wððai; biÞ; ðaiþ1; biþ1ÞÞ <Wðða0
1
; b0iÞ; ða

0
iþ1
; b0iþ1
ÞÞ ð25Þ

From (20)–(25), we see that the proposed weight computation in (11) assigns smaller

weights to “under RPE” pixels ({P(1), . . ., P(i), P(i + 1), . . ., P(n)}). Therefore, shortest path

method does not mislead for “above RPE” pixels.
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It should be noted that although inequality (23) is almost true, it does not hold for all cases.

It leads to error in RPE segmentation. This margin error is reported in Table 1.

Property 2. Initialized seeds by Algorithm 3 lead to more accurate results in fluid segmenta-

tion in graph cut.

Proof. In Algorithm 3, OCT images are first transformed to NS domain in steps 3-6. In

this transformation, high memberships are assigned to fluid pixels and then noisy pixels are

penalized with an averaging filter of dimension 11 × 11. This filter is used in α −mean and β −
enhancement operations. After that, k −means clustering is applied which leads to a coarse par-

titioned image with k clusters (Fig 7(a)). Based on the examples in Fig 6(a) and 6(b) with the

same seed points for fluid, it is clear that when the seed points for tissue are selected from

bright regions with the average of C3 = 0.24 shown in Fig 6(c), too many false positve pixels

are assigned as fluid. This is because many dark and non-fluid pixels are far from tissue seeds.

Therefore, these pixels are assigned as fluid. In contrast, if the tissue seed points are selected

from darker regions (C2 = 0.78), graph cut assigns all dark and non-fluid pixels to tissue

(because these pixels are close to tissue seed points) and consequently, the number of false pos-

itive pixels is decreased significantly. In Algorithm 3, fluid seed points are selected from two

clusters with the highest cluster centers, and tissue seed points are selected from remaining

(k − 2) clusters. Based on step 10 of Algorithm 3, 1

2i� 2 percent of tissue seed points are selected

from cluster i(i = 3, 4, 5, . . ., (k − 2)). Therefore,

1

2i� 2
¼

1

2i
ð2Þ þ

1

2i
ð1Þ þ

1

2i
ð1Þ >

1

2i
ð2Þ þ

1

2i
ð1Þ þ

1

2i
ð1Þ � ð

1

2
Þ
k� 2i� 2

ð26Þ

1

2i� 2
>

1

2i
ð2Þ þ

1

2i
ð1Þ þ

1

2i
ð

1

2
� ð

1

2
Þ
k� i� 1

1

2

Þ ð27Þ

ð

1

2
� ð

1

2
Þ
k� i� 1

1

2

Þ ¼
1

2

1

þ
1

2

2

þ . . .þ ð
1

2
Þ
k� i� 2

ð28Þ

By substituting (28) in (27):

1

2i� 2
>

1

2i� 1
þ

1

2i
þ

1

2iþ1
þ . . .þ

1

2k� 2
ð29Þ

Therefore,

pi > piþ1 þ piþ2 þ piþ3 þ . . .þ pk ð30Þ

And consequently,

Npi > ðNpiþ1 þ Npiþ2 þ Npiþ3 þ . . .þ NpkÞ ð31Þ

Table 1. ILM/RPE segmentation errors.

Num. of scans ILM errors RPE errors

UMN dataset 600 1 34

Optima dataset 196 0 6

https://doi.org/10.1371/journal.pone.0186949.t001
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It is proven that Npi >
Pk

h¼iþ1
Nph which means that more seed points are selected from

clusters which are closer to fluid clusters. As shown in Fig 6, the proposed approach decreases

the false positive pixels significantly in fluid segmentation.

In Section IV, the robustness of the proposed method in Algorithm 3 will be shown

quantitatively.

Property 3. Proposed cost function for graph cut penalizes the high indeterminacy pixels to

decrease the effect of these pixels in segmentation.

Proof. The effect of noise is considered with indeterminacy set I in NS domain in Algorithm

1. Based on the graph construction procedure in [43] for regional term, Rp(0B0) is the weight

between pixels and Object terminal node. In (13), centers of the fluid and tissue seeds

(obtained from Algorithm 3) are used for computing the regional term. It is clear that pixels

which are likely fluid are strongly connected to Object terminal node with large weights

(Rp(0B0)). If these pixels are noisy (with low values in (1 − I)), their strong connection will be

weaker by multiplier (1 − I) in (32). This procedure is applied in an inverse manner for noisy

non-fluid pixels in (33)

Rpð
0B0Þ ¼

ð1 � IpÞ:R1pð
0B0Þ; : R1pð

0B0Þ > R1pð
0O0Þ

R1pð
0B0Þ; otherwise

8
<

:
ð32Þ

Rpð
0O0Þ ¼

ð1 � IpÞ:R1pð
0O0Þ; : R1pð

0O0Þ > R1pð
0B0Þ

R1pð
0O0Þ; otherwise

8
<

:
ð33Þ

To show the effectiveness of the proposed cost function, the segmentation results of this

cost function are compared with the cost functions in [43, 44] qualitatively and quantitatively

in Section IV.

Experimental results

Datasets

In this work, two datasets have been used for the evaluation of the proposed fluid segmentation

method. The first dataset is a local dataset from the UMN ophthalmology clinic containing

600 OCT scans collected from 24 EAMD subjects which were taken using the Heidelberg Spec-

tralis imaging system. We have selected 25 scans with the highest area of fluid among about

100 scans in each subject. Scans are obtained by averaging 12-19 frames with the resolution

of 5.88μm/pixel along the length and 3.87μm/pixel along the width. Fluid regions were seg-

mented by two UMN ophthalmologists (DDK and PMD). The experimental procedures

involving human subjects described in this paper were approved by the Institutional Review

Board (IRB) at the University of Minnesota. The second dataset is from the OPTIMA Cyst

Segmentation Challenge and contains 4 subjects with 49 images per subject where the image

resolution varies from 512x496 to 512x1024. This dataset can be found at: http://optima.

meduniwien.ac.at/challenges/optima-segmentation-challenge-1/.

ILM/RPE segmentation errors

ILM/RPE segmentation separates retinal tissue from background. After applying fluid segmen-

tation method, just the segmented regions between ILM and RPE are considered. Therefore, if

ILM and RPE are segmented below and above fluid regions, respectively, these regions will be

lost and these cases are considered as layer segmentation errors which are reported in Table 1.
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It can be concluded that there are more errors in RPE rather than ILM which stems from RPE

elevation and sub-retinal fluid in EAMD subjects. Also, RPE errors in UMN dataset are much

more than Optima dataset. UMN dataset is collected from EAMD subjects and there are great

deal of sub-RPE and sub-retinal fluid regions which adversely affect proposed RPE segmenta-

tion algorithm while Optima is a dataset for early AMD subjects with less sub-RPE fluid

regions.

2D fluid segmentation results

The 2D fluid segmentation results of the proposed method are compared with the ground

truth annotated by two experts, graph cut (GC) [43] and kernel graph cut (KGC) [44]. For the

Optima dataset, we further compare our results with those of [31, 52, 53] which correspond to

the top three ranked solutions in this challenge.

For having a fair comparison, in both GC and KGC, segmented ILM and RPE layers are

used in post processing. Also, in GC, the automated seed points obtained from Algorithm 3

are used since GC is basically an interactive method. Segmentation results in UMN and

Optima datasets are depicted in Figs 10 and 11, respectively. From these figures, it is clear that

the proposed method segments boundaries more accurately than GC since it performs seg-

mentation in higher kernel space. Although KGC has good results at the boundaries, appropri-

ate number of clusters (NC) in this method should be assigned accurately. Here, NC = 7 is

considered which leads to better results. Tables 2 and 3 report the dice coefficient, precision

and sensitivity of all methods for all subjects in Optima and UMN datasets, respectively. The

bold numbers in each row correspond to the maximum among other numbers. Also, Figs 12

and 13 show the average dice coefficients, sensitivity and precision of 600 images in our local

Fig 10. Final fluid segmentation results in UMN dataset. Segmentation by: (a): expert 1, (b): expert 2, (c): proposed method, (d): GC method and (e):

KGC method.

https://doi.org/10.1371/journal.pone.0186949.g010
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Fig 11. Final fluid segmentation results in Optima dataset. Segmentation by: (a): expert 1, (b): expert 2, (c): proposed method, (d): GC method and

(e): KGC method.

https://doi.org/10.1371/journal.pone.0186949.g011

Table 2. Average dice coefficients, sensitivity and precision of the proposed method in Optima dataset.

GC [43] KGC [44] Method in [31] Method in [52] Method in [53] Prop. Method

Sub E.1 E. 2 Ave. E.1 E. 2 Ave. E.1 E. 2 Ave. E. 1 E. 2 Ave. E. 1 E. 2 Ave. Expr.1 Expr. 2 Ave.

Dice Coeff. 1 73.49 72.96 73.22 80.43 79.10 79.76 71.40 68.17 69.78 61 56 58.5 72 76 74 82.96 82.90 83.02

2 73.90 71.68 72.79 55.10 55.11 55.10 45.49 45.81 45.65 79 76 77.5 84 84 84 78.11 79.09 77.13

3 78.46 82.33 80.40 75.35 79.34 77.35 69.54 65.01 67.27 43 42 42.5 72 75 73.5 82.23 80.36 84.10

4 78.12 77.91 78.01 71.78 71.56 71.67 71.15 72.55 71.85 46 45 45.5 64 67 65.5 80.75 80.87 80.63

Ave. 75.99 76.22 76.10 70.66 71.27 70.97 64.39 62.88 63.63 57.25 54.75 56 73 75.5 74.25 81.01 80.80 81.22

Sensitivity 1 70.81 69.95 70.38 82.19 78.56 80.37 72.49 66.75 69.62 NA NA NA NA NA NA 84.43 80.94 82.68

2 96.79 92.25 94.52 99.04 94.54 96.79 70.45 64.71 67.58 NA NA NA NA NA NA 98.94 94.45 96.70

3 75.72 81.49 78.60 85.13 90.95 88.04 47.38 54.84 51.11 NA NA NA NA NA NA 85.18 90.75 87.96

4 78.78 78.54 78.66 80.59 80.22 80.40 77.79 77.56 77.67 NA NA NA NA NA NA 84.49 83.70 84.09

Ave. 80.52 80.55 80.54 86.73 86.06 86.40 67.02 65.96 66.49 NA NA NA NA NA NA 88.26 87.46 87.85

Precision 1 93.00 95.71 94.36 85.06 86.55 85.81 54.87 59.61 57.24 NA NA NA NA NA NA 84.03 87.53 85.78

2 74.36 74.45 74.40 54.18 54.14 54.16 51.12 51.34 51.23 NA NA NA NA NA NA 78.48 78.58 78.53

3 94.89 96.10 95.49 79.88 79.96 79.92 30.93 37.99 34.46 NA NA NA NA NA NA 85.45 85.48 85.47

4 96.97 97.24 97.11 88.62 88.99 88.81 54.98 59.50 57.24 NA NA NA NA NA NA 93.20 93.58 93.39

Ave. 89.80 90.87 90.34 76.93 77.41 77.17 47.97 52.11 50.04 NA NA NA NA NA NA 85.29 86.29 85.79

https://doi.org/10.1371/journal.pone.0186949.t002
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UMN dataset (24 subjects, 25 images per subject), and 196 images in the Optima dataset (4

subjects, 49 images per subject), respectively. In these figures, abbreviations GC, KGC, P.M.

and Esm mean graph cut, kernel graph cut, proposed method and method proposed in [31],

respectively. In Optima dataset, the proposed method achieves about 5%, 11%, 18%, 25% and

7% higher dice coefficients compared to GC, KGC and method in [31, 52, 53], respectively.

Also, the proposed method with sensitivity of 87% outperforms GC, KGC and the method in

[31] with sensitivity of 80%, 86% and 66%, respectively. GC has better precision of 90% in

comparison with the proposed method with 85%. In local UMN dataset, the proposed method

outperforms the GC and KGC, by 12% and 16%, with respect to dice coefficient, 11% and 6%

with respect to sensitivity, and 2% and 12% with respect to precision, respectively.

3D fluid segmentation results

In 3D OCT volumes, if there are fluid regions in consecutive 2D scans, fluid volumes are

obtained. In 21 OCT volumes (out of 24 volumes) in local UMN dataset there are fluid regions

in subsequence scans; therefore, 3D fluid volumes can be segmented. Fig 14 shows the seg-

mented 3D fluids for two OCT volumes. Fig 15 depicts the linear regression analysis between

the volume of fluid segmented by the proposed method and expert (intersection between

Table 3. Average dice coefficients, sensitivity and precision of the proposed method in our local UMN dataset.

Dice Cofficients Sensitivity Precision

GC [43] KGC [44] Prop. Method GC [43] KGC [44] Prop. Method GC [43] KGC [44] Prop. Method

Sub E.1 E. 2 E.1 E. 2 E.1 E. 2 E.1 E. 2 E.1 E. 2 E.1 E. 2 E.1 E. 2 E.1 E. 2 E.1 E. 2

1 78.68 75.34 79.07 74.76 85.68 81.81 74.39 71.24 83.03 79.40 84.38 81.01 99.59 99.43 89.47 88.97 96.70 95.88

2 77.79 77.83 86.11 82.03 89.49 85.36 84.24 80.33 92.42 88.31 94.38 90.36 86.56 86.47 86.22 86.24 87.80 87.57

3 56.54 53.05 56.56 51.91 85.81 79.40 50.70 47.26 67.23 62.30 81.82 75.08 95.19 94.57 77.98 77.94 97.32 94.54

4 71.94 72.26 69.51 69.49 82.81 82.34 61.70 62.15 79.60 79.88 84.92 84.89 96.67 96.56 73.90 73.90 86.36 85.50

5 45.80 43.70 25.20 24.64 68.25 66.02 56.10 53.13 54.73 53.18 67.90 64.26 68.44 68.25 53.98 53.96 84.66 84.60

6 73.32 68.61 61.34 57.10 85.91 80.53 81.38 76.73 78.80 74.62 87.78 82.34 86.93 86.65 76.84 76.45 89.96 89.08

7 56.71 52.61 46.32 42.00 67.31 63.13 57.14 54.03 56.70 52.05 66.37 63.28 83.63 83.31 79.18 79.15 83.14 82.18

8 86.89 86.25 79.06 79.06 86.85 86.29 88.43 87.18 86.39 86.14 92.75 91.56 90.44 90.59 87.11 87.19 89.29 89.80

9 76.65 72.61 74.95 70.92 83.00 78.81 79.37 75.32 78.24 74.30 89.31 84.95 86.78 86.79 85.00 84.94 85.94 85.94

10 76.54 76.39 76.57 76.44 84.63 80.51 74.39 70.24 77.86 73.59 82.91 78.44 92.55 92.64 89.51 89.62 87.94 88.11

11 72.22 67.74 55.28 51.02 86.51 82.26 74.29 69.78 77.00 72.63 82.23 77.62 86.48 86.58 67.16 67.24 93.37 93.71

12 71.34 68.03 69.53 66.08 82.42 79.43 62.61 59.60 67.56 64.88 77.15 74.84 98.12 98.14 93.25 93.42 97.21 97.43

13 62.61 62.57 64.67 64.56 89.90 89.85 76.83 76.96 84.06 84.02 88.31 88.13 74.98 75.06 68.92 69.01 96.61 96.74

14 63.48 59.26 57.34 53.47 81.07 76.98 62.24 57.92 65.87 61.82 78.27 73.80 94.57 94.60 78.60 78.87 89.49 89.69

15 61.94 53.73 58.19 50.26 74.16 66.07 64.41 56.20 66.02 57.76 74.24 66.04 89.64 89.67 81.15 81.30 88.21 88.32

16 71.17 71.07 69.21 69.20 87.62 83.57 88.08 84.04 88.63 84.69 90.34 86.29 79.66 79.62 77.90 77.85 93.10 93.07

17 73.03 72.17 88.31 83.58 91.52 86.48 79.57 74.88 89.29 84.13 90.71 85.36 84.52 84.77 89.12 89.41 93.38 93.43

18 66.27 58.43 66.93 59.42 84.70 77.06 59.55 51.68 67.45 59.86 81.33 73.30 96.97 98.12 85.12 85.67 93.57 94.37

19 73.93 73.64 43.31 43.26 86.38 82.09 72.30 67.93 77.73 73.44 83.24 78.57 95.27 95.48 58.07 58.45 98.46 98.82

20 65.76 57.41 69.75 63.05 85.40 75.13 75.35 62.68 87.05 74.09 88.61 75.60 77.52 78.22 68.67 69.85 86.05 88.32

21 81.11 70.62 76.04 66.16 89.00 78.38 77.60 64.02 84.37 69.73 85.61 69.97 95.30 95.04 80.93 80.61 94.57 94.23

22 71.33 64.40 61.50 55.00 77.16 70.19 83.81 73.53 90.66 78.71 87.94 76.80 76.00 75.97 60.03 59.89 83.20 83.16

23 87.83 79.47 90.85 82.49 91.68 82.66 85.90 73.21 94.29 79.51 87.77 72.97 91.42 91.27 88.26 88.12 96.43 96.20

24 81.37 77.12 87.27 83.22 88.79 84.77 74.72 70.33 86.72 82.41 86.85 82.57 94.49 94.49 89.56 89.73 91.93 92.19

Ave. 71.01 67.26 67.20 63.30 84.00 79.13 72.71 67.52 78.40 72.98 83.96 78.25 88.41 88.43 78.58 78.66 91.03 90.95

Ave. 69.13 65.25 81.56 70.11 75.69 81.10 88.42 78.62 90.99

https://doi.org/10.1371/journal.pone.0186949.t003
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Fig 12. Average dice coefficients, sensitivity and precision of all subjects in UMN datasets.

https://doi.org/10.1371/journal.pone.0186949.g012

Fig 13. Average dice coefficients, sensitivity and precision of all subjects in Optima datasets.

https://doi.org/10.1371/journal.pone.0186949.g013
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Fig 14. Segmented 3D fluids for two OCT volumes in two rows. Volume segmented by (a): expert 1, (b): expert 2 and (c): proposed method.

https://doi.org/10.1371/journal.pone.0186949.g014

Fig 15. Linear regression analysis between the volume of fluid segmented by the proposed method

and expert.

https://doi.org/10.1371/journal.pone.0186949.g015
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experts 1 and 2). For 3D fluid segmentation, the proposed method has been compared and

reported with methods in [43, 44] in Table 4.

Seed initialization robustness

Graph cut is very sensitive to seed points. Changes in seed points lead to significant changes in

segmentation results (see Fig 6). In the proposed seed initialization method in Algorithm 3,

seed points are selected randomly in specific clusters in NS domain in steps 9-10. Therefore, in

different runs of the Algorithm 3, different seed initializations are obtained. To show how fluid

segmentation results are affected from different seed initializations, 100 scans are selected ran-

domly from each dataset and then 10 seed point sets are obtained from 10 different runs of

Algorithm 3. Table 5 reports the average and standard deviation of dice coefficient, sensitivity

and precision. Also, the accuracy of fluid and tissue seed points are reported in this Table. It

can be concluded that different seed initializations obtained from Algorithm 3 lead to minor

changes (low standard deviation) in fluid segmentation results.

Inter-observer varibility

In this study, correlation between observers referred as grader 1 (G1) and grader 2 (G2) is ana-

lyzed and reported in Table 6. When the observer correlation is high, the segmentation errors

are due to the segmentation algorithm, not inter-observer variation. The observer correlation

of the used datasets in this study are 92.88% and 91.15% with respect to the dice coefficients in

the UMN and Optima datasets, respectively. From the low inter-observer variabilities in both

datasets, it can be concluded that the segmentation errors of the proposed algorithm stem

from the different steps of the algorithm, not inter-observer variability.

Table 4. Mean and standard deviation of TPR and FPR in 3D fluid segmentation achieved by the proposed method and other methods.

Method # of Subjects TPR(%) FPR(%)

GC [43] 21 70.63±14.37 1.47±1.82

KGC [44] 21 82.49± 11.35 0.68± 0.53

Proposed method 21 90.17 ± 3.74 0.74±1.51

https://doi.org/10.1371/journal.pone.0186949.t004

Table 5. Seed initialization robustness analysis.

FG Acc BG Acc Dice Coff. Sensitivity Precision

UMN 88.81±0.42 96.63±0.12 81.59±1.41 98.14±0.2 69.87±1.90

Optima 82.34±1.58 94.67±0.32 61.82±2.98 77.74±1.32 56.41±3.22

https://doi.org/10.1371/journal.pone.0186949.t005

Table 6. Inter-observer variability analysis.

Average of Automatic vs. G1 and G2 Inter-Observer Automatic vs.G1 and G2 Intersection

UMN dataset Dice Coff. 78.97 92.88% 81.21%

Sensitivity 77.9 92.69% 81.04%

Precision 90.49 97.10% 89.79%

Optima dataset Dice Coff. 81.22% 91.15% 81.48%

Sensitivity 87.85% 91.39% 91.02%

Precision 85.79% 94.35% 83.97%

https://doi.org/10.1371/journal.pone.0186949.t006
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Clusters for fluid and tissue seed sets

One of the challenges of the automated seed initialization method in Algorithm 3 is to determine

the clusters for fluid and tissue seed selection. Based on the transformation method in Algorithm

1, the fluid regions have the maximum intensity. After sorting in step 8 of Algorithm 3, the first

cluster (with the biggest center value) is the best candidate for fluid seed selection. The challenge

is that in some scans with very dark background, this cluster contains only background regions.

In such cases, fluid regions are assigned to second or maybe third cluster. Therefore, fluid seed

selection from the first cluster lead to incorrect seeds and low accuracy segmentation. To address

this problem, fluid seed points are selected from the first and second clusters. Table 5 reports the

accuracy of fluid (foreground) and tissue (background) seed points selection.

OCT scans without fluid

For normal scans (without fluid), a few fluid seed points are selected in step 9 of Algorithm 3.

This leads to small segmented fluid regions in graph cut segmentation and these regions are

ignored in step 6 of Algorithm 4. Therefore, OCT scans without fluid are detected as normal

scans automatically.

Cirrus OCT data

To evaluate the performance of the proposed method on OCT data acquired from other imag-

ing devices, a Cirrus OCT dataset from Optima challenge 2015 including 512 Bscans from 4

subjects is used. Table 7 reports dice coefficients of the proposed method and methods pro-

posed by first and second ranks in this challenge. The method in third rank has not been

applied to Cirrus data. The proposed method achieved the dice coefficient of 78% which out-

performs methods in first and second rank with 64% and 44%, respectively. It may be noted

that the proposed method has a better performance on Spectralis datasests which is due to

higher quality of these datasets.

Fluid types

From OCT Bscans, three types of fluid including intraretinal, subretinal and sub-RPE are clini-

cally distinguishable. Intraretinal fluid are revealed as contiguous fluid-filled spaces containing

columns of tissue. Some times, these spaces appear as separated hyporeflective cystoid pockets.

When these regions are too small, they are referred as micro-cyst regions. Accumulation of a

clear or lipid-rich exudate underneath retinal space creates subretinal fluid. Note that intraret-

inal and subretunal fluid types are common in both AMD and DME subjects. In early and

neovascular AMD, detachment of the RPE layer along with the overlying retina from the

remaining Bruch’s membrane occurs which is referred as Pigment Epithelial Detachment

(PED). This is due to the accumulation of sub-RPE fluid. This type of abnormality appears as

Table 7. Average dice coefficients of the proposed method in Cirrus dataset.

Method in [52] Method in [53] Proposed Method

Sub E. 1 E. 2 Ave. E. 1 E. 2 Ave. E. 1 E. 2 Ave.

1 0.41 0.40 0.405 0.69 0.71 0.70 0.8378 0.8345 0.8361

2 0.47 0.45 0.46 0.85 0.84 0.845 0.9194 0.9042 0.9118

3 0.50 0.50 0.50 0.64 0.61 0.625 0.6727 0.6680 0.6703

4 0.41 0.41 0.41 0.42 0.38 0.40 0.7235 0.7080 0.7157

Ave. 0.4475 0.44 0.4437 0.65 0.63.5 64.25 0.7883 0.7786 0.7834

https://doi.org/10.1371/journal.pone.0186949.t007
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serous, fibrovascular and drusenoid. Fig 16 represents intraretinal, subretinal and sub-RPE

fluid with red, green and blue colors, respectively [6].

In this research, the collected UMN dataset contains all three fluid types while datasets

from Optima challenge contain only intraretinal fluid. Intraretinal and subretinal fluids are

segmented by Algorithms 1, 3 and 4. Sub-RPE fluid is segmented by the proposed RPE seg-

mentation and RPE flattening (Algorithm 2). It may be worth mentioning that, the proposed

methods for sub-RPE fluid segmentation is not affected by the intensity corresponding to fluid

regions which leads to the segmentation of any type of RPE elevation.

Conclusion

In line with advanced EAMD treatment methods, OCT has emerged as an essential adjunct

for the diagnosis and monitoring of this disease and the ability to accurately segment fluid as

an EAMD biomarker is a prerequisite for ophthalmologists in treatment process. In this

research, an automated algorithm for 3D fluid volume segmentation in subjects with EAMD

pathology has been proposed based on graph cut, graph shortest path and neutrosophic sets.

To show the efficiency of the proposed method, it was tested on two OCT datasets. Results

show that fluid volumes obtained from our proposed algorithm closely correlated to the man-

ual segmentations of the two ophthalmologist experts in 3D fluid volume and achieve better

performance in comparison with prior methods with respect to dice coefficient, sensitivity and

precision measures in 2D individual scans. Future efforts will be directed towards fine-tuning

the algorithm for OCT images obtained from other manufacturers and DME subjects which

do not have RPE elevation. Finally, reproducibility studies between segmentation following

repeat imaging can be addressed as another future work.
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